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A numerical model of a tanpura string is presented, based on a recently developed, stability-preserving way of

incorporating the non-smooth forces involved in the impactive distributed contact between the string and the bridge.

By defining and modelling the string-bridge contact over the full length of the bridge, the simulated vibrations can

be monitored through the force signals at both the bridge and the nut. As such it offers a reference model for both

measurements and sound synthesis. Simulations starting from different types of initial conditions demonstrate that

the model reproduces the main characteristic feature of the tanpura, namely the sustained appearance of a precursor

in the force waveforms, carrying a band of overtones which decrease in frequency as the string vibrations decay.

Results obtained with the numerical model are used to examine, through comparison, the effect of the bridge and

of the thread on the vibrations.

1 Introduction
The tanpura is a fretless string instrument producing lively

sounding drones typical of the musical cultures of the Indian

subcontinent. It usually has four metal strings stretched over

a resonant body connected to a long, hollow neck [1, 2].

Like various other Eastern string instruments, its specific

overtone-rich sound results from the interaction of its strings

with a slightly curved bridge, but with the additional feature

of having a thin thread placed between the string and the

bridge (see Figure 1). The musician adjusts the position of

the thread - which is commonly made of silk or cotton - in

search of a desired javari, i.e. the drone-like sound effect.

The main mechanical principles involved in the

generation of a javari have been understood for some time.

Raman [1] already noted in 1921 that the string vibrations of

the tanpura and other Indian instruments will contain a full

series of overtones regardless of where the string is plucked

or mechanically held still, and attributed this phenomenon

correctly to the impactive interaction between the bridge and

the string. Burridge [3] provided a more detailed analysis

of sitar string vibrations, identifying two main stages, both

quasi-periodic. For the specific configuration of a tanpura,

Valette et al. [4] showed that the placement of a thread

can be considered as creating a “two-point bridge”, which

periodically reinforces high frequency waves that travel

slightly ahead of waves of lower frequencies due to string

stiffness.

Neverthless, time-domain simulations of the tanpura and

other “flat-bridge” string instruments have yet to advance

to a level that allows a detailed quantitative comparison

with experimental data; at the same time, physics-based

sound synthesis models do not display the same level

of realism as those of various other string instruments.

One possible reason for this is that vibrations of a string

interacting with a one-sided bridge constraint have mostly

been studied and synthesised under various simplifying

assumptions. For example, by defining the string-bridge

collisions as fully inelastic [3, 5, 6], or completely lossless

[7, 8], either of which may be a too severe simplification.

In addition, string stiffness and losses are often omitted,

but adding these to an existing formulation is relatively

simple. The complementary extension of defining the

contact as semi-elastic is less straightforward though,

because modelling impactive contact with repelling forces

- which are necessarily non-analytic functions of the

transversal displacement of the string - generally poses

considerable challenges with regard to the construction of

stable, convergent time-stepping schemes [9]. While various

simulation results have successfully been obtained (e.g. for

the sitar [10]), provably stable formulations of this kind

have yet to appear. A further indication of the need for a

Figure 1: Side-view of a tanpura bridge.

better approach to constructing time-stepping schemes is the

appearance of artefacts in the extracted signals, such as the

‘spikes’ visible in the nut force signals presented in [11].

This paper describes a numerical model of tanpura string

vibrations, based on a recently developed energy method

for modelling distributed contact in musical instruments

[12]. The proposed numerical formulation is derived by

discretising equations governing the transversal vibrations

of a stiff string stretched over a bridge as depicted in Figure

2. While previous studies on the tanpura have defined one

of the two terminations at the point where the string meets

the thread (A), in our model this falls at the position of

the connection with tuning bead (B). The rationale is to

explicitly model contact with the thread and with the bridge

over its full length, which allows the computation of the total

force on the bridge. In addition, it is of help in assessing

where the lower bound of the contact elasticity constants

should lie.

The structure of the paper is as follows: a dissipative

form of the power law defining a collision force and its

discretisation is briefly discussed in Section 2. The equations

governing the system of geometry (B) in Figure 2 are then

presented in Section 3, followed by the formulation of

the numerical scheme in Section 4. The main results are

presented and discussed in Section 5.

(A)

(B)

y

x

tuning
bead

x = 0

thread
position

x = xc

nut
x = L

Figure 2: Tanpura string model configurations.



2 Impactive contact with damping
A well-known dissipative form of a power law for the contact

force Fb between an object positioned at y with a barrier

positioned below it at yb is that by Hunt and Crossley [13]:

Fb = k�(yb − y)α�
(
1 − r

∂y
∂t

)
, (1)

where α is the exponent, k is a stiffness-like term, and �y�
denotes h(y) · y, where h is the Heaviside step function. The

amount of damping is controlled through the coefficient r.

As explained in [14], the lossless version of this power law

can be discretised in stable form by first writing the force as

a derivate of the potential energy, which equals

V(y) =
k
α + 1

�(yb − y)α+1�. (2)

This approach is readily extended to the above Hunt-Crossley

form, by writing (1) as

Fb = −
∂V
∂y
+ r
∂V
∂t
, (3)

and discretising using mid-point-in-time derivative

approximations:

Fn+ 1
2

b
= −

V(yn+1) − V(yn)

yn+1 − yn + r
V(yn+1) − V(yn)

Δt
, (4)

where n is the time index. This equation can be written into a

form suitable for use in a numerical model simulating vibro-

impact phenomena after subsitution of (2). In application to

modelling distributed contact, as in the following section, the

force term in these equations is replaced with force density,

potential energy is replaced with potential energy density,

and stiffness becomes stiffness per unit length.

3 Governing equations
Considering a stiff, lossy vibrating tanpura string with

external force terms due to contact with the bridge (supscript

‘b’), a cotton thread (supscript ‘c’), and a plucking finger

(supscript ‘f’), the equation of motion in space-time

coordinates (x, t) can be stated as

ρA
∂2y
∂t2
=

(
τ
∂2y
∂x2
− EI

∂4y
∂x4

) (
1 − η

∂

∂t

)
− ρAγ

∂y
∂t

+ Fb(x, t) + Fc(x, t) + Ff (x, t), (5)

where ρ, A, τ, E and I denote string mass density, cross-

section, tension, Young’s modulus, and moment of inertia,

respectively, and where η and γ represent loss parameters.

The respective force densities acting upon the string are,

within their specific spatial domains,

Fb(x, t) =
⌊
kb

[
yb(x) − y(x, t)

] ⌋ (
1 − rb

∂y
∂t

)
, (6a)

Fc(x, t) =
⌊
kc

[
yc(x) − y(x, t)

] ⌋ (
1 − rc

∂y
∂t

)
, (6b)

Ff(x, t) =
⌊
kf

[
yf(x) − y(x, t)

] ⌋ (
1 − rf

∂y
∂t

)
, (6c)

and zero outside their domains. These expressions

essentially represent Hunt-Crossley contact laws with unity

exponents. Some justification for the choice α = 1 can be

found in the measurement of elastic deformation of strings,

such as carried out by Taguti for the silk string of the biwa

[7]. A further consideration is that choosing α = 1 with

sufficiently high k values is the simplest way of avoiding

unrealistically deep compression. For a string of length L,

the boundary conditions are:

y(0, t) = yTB,

{
∂2y
∂t2

}
x=0

= 0, (7a)

y(L, t) = 0,

{
∂2y
∂t2

}
x=L
= 0, (7b)

where yTB denotes the vertical position of the left-end

support (see (B) in Figure 2). The bridge profile yb(x) is

taken here as measured by Guettler [15], with its maximum

positioned at x = 46.5mm, y = 0mm. The terms yc(x)

and yf(x) represent the shapes of the cotton thread and the

plucking finger, respectively, both of which are defined as

parabolic. At the start of any simulation, the initial state of

the string is first solved by letting the initial vibrations due

to contact forces decay. The string is then excited by setting

the finger spring constant kf to zero. Using T to denote the

kinetic component, the system energy is:

H =
∫ L

0

[
T (p)+Vt(u)+Vs(v)+Vb(y)+Vc(y)+Vf(y)

]
dx

(8)

where the energy densities are zero outside the respective

domains and otherwise

T (p) =
p2

2ρA
, Vt(u) =

1

2
τu2,

Vs(u) =
1

2
EIv2, Vb(y) =

kb

2

⌊
(yb − y)2

⌋
, (9)

Vc(y) =
kc

2

⌊
(yc − y)2

⌋
, Vf(y) =

kf

2

⌊
(yf − y)2

⌋
,

and where

p = ρA
∂y
∂t
, u =

∂y
∂x
, v =

∂2y
∂x2
. (10)

We may now, following a path similar to that of the lossless

formulation in [12], rewrite the system dynamics in terms of

its energy densities and losses per unit length as follows

∂p
∂t
=
∂

∂x

(
∂Vτ
∂u

)
−
∂2

∂x2

(
∂Vs

∂v

)
−
∂Vb

∂y
−
∂Vc

∂y
−
∂Vf

∂y

− τη
∂3y
∂t∂x2

+ EIη
∂5y
∂t∂x4

− ρAγ
∂y
∂t

+ rb

∂Vb

∂t
+ rc

∂Vc

∂t
+ +rf

∂Vf

∂t
, (11a)

∂y
∂t
=
∂T
∂p
. (11b)

The total force on the bridge is

Fb(t) =
∫ L

0

[
Fb(x, t) + Fc(x, t)

]
dx. (12)

This expression can be used as a first approximation to

the sound produced by the instrument. Another signal that

is useful to extract from simulations - as it allows direct

comparison with earlier studies on tanpura string vibrations

[4, 2, 11] - is the force that the string exerts on the nut:

Fn(t) = EI
{
∂3y
∂x3

}
x=L
− τ
{
∂y
∂x

}
x=L
. (13)



4 Numerical formulation
Denoting the spatial and temporal step with Δx and

Δt, respectively, the string state is discretised as

yn
m ≡ y(mΔx, nΔt). Applying difference operators as in

[12], the system without contact forces can be written in

matrix form as

qn+1 − qn = −D
[(

1 +
2η

Δt

)
yn+1 +

(
1 −

2η

Δt

)
yn
]

−
γΔt
2

(
yn+1 − yn

)
(14a)

yn+1 − yn = qn+1 + qn, (14b)

where qn = Δt/(2ρA)pn, and where D is a square symmetric

matrix representing all spatial differentiation involved [12],

with numerical versions of the boundary conditions defining

the elements at and near the corners. Note that in this case

the condition in (7a) of a ‘lowered left support’ has to be

incorporated. The system can be solved at each time step by

finding the root s of the function

F =
[(

1 +
γΔt
2

)
I +
(
1 +

2η

Δt

)
D
]

s + 2 (Dyn − qn) (15)

and subsequently updating the string displacement vector

and scaled momentum vector with

yn+1 = yn + s, qn+1 = s − qn. (16)

Now adding contact forces to the system, force density terms

at the bridge, thread, and finger are computed at separate

grids for each element, using the spatial stepsizes Δxb, Δxc,

and Δxf, respectively. Hence a way of translating between

the string grid and each of these separate grids is required.

To this purpose, third-order Lagrange interpolation matrices

are used as follows:

ȳn
b = I byn, ȳn

c = I cyn, ȳn
f = I fyn. (17)

Note that interpolation is a necessary tool in accurate

positioning of the thread, the bridge, and the finger. The

(scaled) contact forces are formulated at these points, for

example for the bridge we have, from (4):

f̄ n+ 1
2

b,i = −βb

�(yb,i − ȳn
b,i − s̄b,i)

2� − �(yb,i − ȳn
b,i)

2�
s̄b,i

+ ζb
[
�(yb,i − ȳn

b,i − s̄b,i)
2� − �(yb,i − ȳn

b,i)
2�
]
, (18)

with βb = (kbΔt2)/(2ρA) and ζb = (kbrbΔt)/(2ρA), and where

s̄b,i = ȳn+1
b,i − ȳn

b,i. (19)

The forces can be translated back to the string spatial

coordinates using a corresponding downsampling

interpolant:

f n+ 1
2

b
= I ∗b f̄ n+ 1

2

b
. (20)

This can be done without affecting energy conservation

for zero damping if the scaled conjugate is used as the

downsampling interpolant [9]:

I ∗b =
(
Δxb

Δx

)
I t

b. (21)

With the added contact forces, (15) becomes

F =
[(

1 +
γΔt
2

)
I +
(
1 +

2η

Δt

)
D
]

s + 2 (Dyn − qn)

− f n+ 1
2

b
− f n+ 1

2
c − f n+ 1

2

f
. (22)

where the added force terms are non-linear functions of

s, and where the respective interpolated versions of s are

computed in the same way as for y:

s̄b = I bs, s̄c = I cs, s̄f = I fs. (23)

Equation (22) can be solved at each time step with the multi-

dimensional Newton-Rhapson method, using the Jacobian

J =
[(

1 +
γΔt
2

)
I +
(
1 +

2η

Δt

)
D
]
+I ∗bCbI b+I ∗cCcI c+I ∗f CfI f,

(24)

where Cb, Cc, and Cf are diagonal matrices with elements

{
cb,i,i
}
=
∂ f̄ n+ 1

2

b,i

∂s̄b,i
,
{
cc, j, j

}
=
∂ f̄ n+ 1

2

c, j

∂s̄c, j
,
{
cf,k,k
}
=
∂ f̄ n+ 1

2

f,k

∂s̄f,k
.

(25)

5 Simulation results
To obtain representative string parameters, the diameter

(d = 0.3 mm) and length (L = 668 mm) of the third string

of a small travelling tanpura were measured. Taking into

account the fundamental frequency of the speaking length

of the string as well as the mass density and Young’s

modulus of steel, the tension and stiffness terms were set

accordingly to τ = 31.47 N m−1 and EI = 8.35 × 10−5

N m2, with ρA = 5.58 × 10−4 Kg m−1. The damping

parameters were set to γ = 0.6 s−1 and η = 7 × 10−9 s,

which results in a frequency-dependent decay pattern which

approximately matches that observed when the string is left

in free vibration (i.e. without string-bridge interaction). The

bridge and thread contact elasticity coefficients are chosen

as kb = kc = 1 × 108 N m−2, which ensures that the effective

compression does not exceed 5% of the string diameter.

The contact damping coefficients are set to rb = rc = 0.1
and and rf = 1. The numerical parameters are as follows:

Δt = 1/176.4 ms, Δx = 3 1
3

mm, Δxb = 0.18 mm, Δxc = 0.15

mm, and Δxf = 1 mm.

5.1 Quasi-Helmholz motion
Figure 3 shows snapshots of the string motion for an initial

condition that matches the shape of the first mode of the

string; this is achieved by re-defining the shape of the

finger. In the plots, the more recent states are represented

by colour-intensive curves, with the colour-tone fading out

for the earlier string states. It can be observed that the

bridge collisions force the string to gradually take on a more

triangular shape, indicating the excitation of the other modes

of vibration. A Helmholz-like motion emerges, as illustrated

by the appearance of a kink that travels along the string,

as indicated by the arrows in Figure 3(c). Similar findings

have been presented in [11] and in studies of various other

string-bridge configurations [3, 8].
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Figure 3: Snapshots of the string vibration, with the first mode initial condition, for the 1st (a), 17th (b), and 33rd (c) period of

oscillation. The arrows in (c) indicate the movement of the kink, indicative of a Helmholtz-like motion.
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Figure 4: Evolution of the nut force signal for two different initial conditions: top: first mode shape, bottom: finger pluck shape.

Figure 5: Spectral evolution for different initial conditions and bridge configurations.



5.2 Precursive wave generation
Figure 4 plots instances of the nut force signal for the

‘first mode shape’ and the ‘finger pluck’ cases. For both

initial conditions, a gradual development toward having one

sustained precursor per cycle is observed. As explained in

[4], this precursor is a packet of high-frequencies arriving

at the nut before the lower frequencies due to the string

stiffness. The precursor keeps being ‘fed’ once per cycle

with high-frequency components through the non-linear

interaction at the bridge end, which destroys the symmetry of

the force waveform periods. In the case of the plucked finger,

the precursor that originally appears in the other half of the

waveform gradually fades out due to frequency-dependent

losses.

5.3 Influence of the bridge and the thread
Figure 5 shows the spectral evolution of the nut force signal

obtained from the simulation for both initial conditions, and

for three different bridge configurations. For the two plots on

the left, the bridge stiffness per unit length kb is set to zero for

x > xc, where xc = 40mm is the position of the the thread.

This means that the speaking length of the string is free to

vibrate, resulting in independently decaying modes, with no

energy conversion from the fundamental to any of the other

modes.

With the bridge and thread in place (i.e. the full model),

all modes are excited for both initial conditions, and the

precursor can be observed as a formant region with a spectral

centroid that varies over time. For the plucked finger case,

at first the formant frequency decays, then briefly stays

approximately constant, followed by a period of slower

decay. The appearance of these distinct regimes in the

formant centre frequency pattern is in accordance with the

analysis of experimentally obtained nut force signals in [4].

Finally, the two plots on the right-hand side show the

spectral evolution when no cotton thread is present in the

system. In the real instrument, the removal of the thread

or even a small adjustment of its position will result in a

much reduced formant/precursor effect, with the sound being

more similar to that of a string freely vibrating (i.e with no

impactive bridge interaction). However, as seen in the plots,

the model still produces vibrations with a strong formant-

like feature in the spectrum. A possible explanation is that -

unlike in the presented model - the vibrations of a real string

are not restricted to the vertical plane. That is, a level of

coupling between the two transversal polarisations, either at

end points or through distributed non-linear coupling (i.e.

‘string whirling’) is common to all string instruments. The

vertical string motion does not contribute to collisions with

the bridge, so with the added plane of motion, there may

be more tight conditions for triggering a strong javari. In

the light of this notion it is worthwhile noting that Raman’s

studies include photographic evidence of the string deflection

being equally prominent in both planes for string vibrations

with a javari [16].

6 Conclusions
A numerical model for simulation of tanpura string

vibrations has been presented. The results generated

with the simulations are qualitatively in agreement with

measurements and findings from earlier studies, but they

also reveal that the model fails to predict the effect of

removing the thread. Further research could establish which

refinements and extensions would be needed to address

this discrepancy. Examples of nut and bridge force signals

are supplied in audio format on the accompanying website

(www.somasa.qub.ac.uk/˜mvanwalstijn/isma14).
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