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Physical modelling of musical instruments involves studyinonlinear interactions between parts of the
instrument. These can pose severdlidlilties concerning the accuracy and stability of numeragbrithms.

In particular, when the underlying forces are non-analfticctions of the phase-space variables, a stability
proof can only be obtained in limited cases. An approach leas becently presented by the authors, leading
to unconditionally stable simulations for lumped collisimodels. In that study, discretisation of Hamilton’s
equations instead of the usual Newton’s equation of motieldy a numerical scheme that can be proven to be
energy conserving. In this paper, the above approach is@atkto collisions of distributed objects. Namely, the
interaction of an ideal string with a flat barrier is consgtkr The problem is formulated within the Hamiltonian
framework and subsequently discretised. The resultingjmear matrix equation can be shown to possess a unique
solution, that enables the update of the algorithm. Eneomgervation and thus numerical stability follows in a
way similar to the lumped collision model. The existence wfamalytic description of this interaction allows
the validation of the model's accuracy. The proposed meailogy can be used in sound synthesis applications
involving musical instruments where collisions occur eitin a confined (e.g. hammer-string interaction, mallet
impact) or in a distributed region (e.g. string-bridge ardeanouthpiece interaction).

1 Introduction 2 Lagrangian Formulation

Nonlinear phenomena inherently occur during sound Let a stif string of lengtH, simply supported at both ends
generation by musical instruments. Physics-based sound and with given initial displacemem(x) interact with a flat,
synthesis approaches need to take these nonlinearities int rigid barrier located below it at heiglyt. The Lagrangian
account, in order to produce faithful simulations. The density of this system is given by theffdirence between the
presence of nonlinear terms in the equations that describe kinetic energy density
the instrument oscillations pose severdfidulties to both )
analytical and numerical approaches [1]. One common T = pAy)“/2 @)
cause of nonlinearfiects |s the collision b.etwleen parts of  5nd the potential energy density
the instrument. Such collisions can occur in either a lumped
or a distributed manner. In the field of music acoustics, V=YV +Vs+ WV 3)
collisions are usually modelled using a penalty approagh [2

with the collision force given by wherep is the mass density arflthe cross-sectional area of

the string,
f(Ay) = kelAy*] where [Ay] = h(Ay)Ay. (1) Ve = 1(3:9)%/2 )

, . , ) the potential energy due to the string tension
h is the Heaviside step functiony the compression along
the displacement axiy and the forcef is active only Vs = El(0xY)?/2 (5)
for positive compression valuesk, and « are power-law ) _ _
constants depending on the nature of the barrier. Several (h€ potential energy due to stringfitiessEl and
time-s_te_pping methods have been used f(_)r_the _simulation Vo = kol (% — V)™ 11/ (@ + 1) (6)
of collisions, most of which are based on finitéfdiences
[3, 4] or closely related methods such as the trapezoidal the collision potential due to interaction with the barrier
rule [5] or Verlet integration [6]. Proving the stability of ~ Hence the Lagrangian densify= 7 —V is a function of the
the corresponding numerical schemes requires the use of displacement variablgx, t) and its space-time derivatives
energy methods [4, 7] due to the presence of nonlinear il
terms. Energy conserving schemes can thus be formulated L= PA 2 Iyz - EyZ - M 7)
for the simulation of conservative, nonlinear systems [8, 9 2 2% 277 a+l
However, the definition of a numerical energy invariant is and the Lagrangian of the system is given by
not as straightforward for systems involving collisiondes, |
WhICh are n_on-analytlc funct|ons g_f Des_cr_lblng the s_ystem L= f LY, Vi, Yo Vg, %, 1) dX (8)
using Hamilton’s equations and discretising these instéad 0
Newton’s equation of motion yields numerical schemes that

. where the following notation is adopted:
can be shown to conserve energy. This approach has been

recently presented by the authors for the case of lumped Vi = Oy = dy/ot (9a)
collisions [10]. This paper extends it to distributed sysse Y = Oy = Ay/OX (9b)
studying the vibration of a string interacting with a rigid 5 5

barrier. Yxx = Oxy = 0°Y/0X°. (9¢c)

In Section 2 the equations of motion for the vibrating  The variation of the Lagrangian density subject to a virtual
string are derived from a variational principle. In Sect®n displacemendy is

a numerical scheme is formulated based on the above
energetic approach, and the stability and numerical soiuti

of the derived scheme is discussed. Section 4 presents
simulations of a vibrating string colliding with a rigid tréar

and Section 5 evaluates the proposed methodology within

h f hesis.
the context of sound synthesis 6[Ldt=0 . 5f Ldxdt=0. (11)

_ s 0L 00yoL dsyoL 9%y oL
OL =T Gt oy T ax g T 0 By,

and Hamilton’s principle of least action [11] dictates that

(10)



Substituting the expression in Eq. (10) and using integnati
by parts, along with the fact thay vanishes at the integration
boundaries [12], yields

)dx dt=0.

f f 0L 00L 060L,
ot dyr  OXdyx
(12)
The requirement for the integral to be zero for an arbitrary

variation 8y results in the Euler-Lagrange equation for the
given dynamical system

i3 (0f), 2 (08) P (o1
ay  ot\oy) ox\dyx) 0x2\dyx)

P oz
% OYxx

(13)

2.1 Hamilton’s equations

The Hamiltonian density can be obtained by defining
the conjugate momentum

oL
= —_—= A
p Ey PAVE
and taking the Legendre transformation of the Lagrangian
density

(14)

H =yip = L(Y: Yo Yxs yxx) (15a)
1
=3 pA F I+ SEIt i)™ (15b)

= T(p) + Vi (yx) + V(Y + (Vb(Y)~

Equations (13), (14) and (15a) can be combined to formulate
Hamilton’s equations of motion:

(15¢)

ap AH\ 8% (OH\ OH

at ax(ayx) ﬁ(m)‘a—y (162)
oy oH

> _Z 1
ot~ ap (160)

and the Hamiltonian (total energy) of the system is computed
as

|
= f H(Y. P, Yx Yxx) OX. (17)
0

3 Numerical Formulation

For simplicity of presenting the numerical model, and
in order to compare with existing analytic solutions, the
discretisation of Hamilton’s equations will be performead o
an ideal (flexible) string; the string fitness is neglected,
resulting inVs = 0. Mid-point derivative approximations
are employed to derive a numerical scheme, whgke
denotes the value of variableat positionx = mAx and
time t = nAt, Ax being the spatial sampling interval and
fs = 1/At the sampling rate (see Fig.1). Rewriting (16)
using Eq. (15c¢), Hamilton’s equations are approximated by

AR AL
prt — pn B {6_W}m+% B {a_yX}m—%
At - AX
+1) _
_ (Vb(y)rr;nwz ;b(yrr:w) (18&)
m~ ~ Ym
y21+1 - ylr’:j _ T(pn+1) T(pnm) 18b
At - n+1 _ AN ( )
Pm Pm

<—AX —
t=(n+1)At @ ° * . t—.—.
y3+l yTl y2+l At yRIJrl Ntrll
t = nAt ® * * . ‘—0—0
Yo yi Y2 W Wa

Figure 1: The discretised string at timast and (1 + 1)At.

where, for example,

oy b v
T _ 2 ™3
{ dyx }m+% y n+1 yX 3

(19)

approximates the partial derivative ®f. with respect toy.
It is useful here to introduce the forward and backward
space shift operators, through their actionyfnas

PVt RV i SR
Using the following approximations fg#
x“% =06+Ym > yxn’l% =6_Ym (21)

a scheme centred at tinhe= (n + 1/2)At and positionx =
mAX is obtained

pnm+1 B pnm _ I +1
AL - 25A(ypn +Ym)
_y+lya+l ) _ a+l
~ alib . L(yb — Ym )" - ;E]yb Ym) (22a)
+1 1 n+l

whered, = (6+6-). In matrix form this can be written as

oL = D, (' + )

@S (L - Y™™ - L - y)™)  (233)
o(y"™ - y") = P+ p (23b)
whereS = diagy™! — y") is a diagonal matrix,
_TAt o AL A
"o T arr U A (24)

andy", yp" andp" are column vectors holding displacement,
barrier profile and momentum values. Under the assumption
of simply supported boundary conditions on both ends of the
system, these vectors hold the valuedNahterior nodes on
the string (i.e. fromy; to yn), and D, then is anN x N
tridiagonal matrix:

-2 1 0

D,=| 1 (25)
.. .. 1
0 1 -2

which implements the second spatial derivative of the gtrin
state. It is convenient to rewrite the scheme using a scaled



momentum variablg" = p"/o:

g™t - " = B2D (Y™ + ") (26a)
=S (Lo = Y™ = L(yb — Y)**)
yH-y =gt (26b)
whereB; = ¢/0 andl = w/0. Now setting
s=y" -y =g+ (27)
yields the nonlinear system of equations
F=(1-B2D2)s-2(B2D2y" + q) 28)

+ S — Y = 9" = LYo — y)*) = O.

3.1 Conservation of energy

The total energy of the system can be calculated by
integrating the energy densities along the length of the
string, i.e.

N+1
HD = Z (TP + V1) Ax (29)
m=0
V(- +V.(6
where7 1=7(pp,) andVy = (0¥ ( +ynm)+‘Vb(yPn)

represent kinetic and potential energy densities, reigdet
In matrix form the numerical Hamiltonian is given by

H" = b{q'q — B2y Doy + {1 (Yo — ¥)**]]

with 1 = (1,..., 1) andb = 20AAx/At?. Multiplying the left
hand side of Eq. (26a) withg{*! + g")' and the right hand
side with (/"1 — y")t, which are equivalent by (26b), yields

(@™ + g™ + ") = Ba(y™ — ) D2y + YY)

(30)

(31)
=L =y (L0 = YT = Ly — y)™ )
which, given thatD, is symmetric, can be written as

(qn+l)tqn+l _IBZ(ynJrl)t DzynJrl + é«lt (I_(yb _ yn+l)Ja+l) (32)

= (0)'a" = Ba(y") Doy + 1 (L(yo — y)I*Y).

Now multiplying by b and using the definition of the
numerical energy in (30), it follows that
H™! = H" (33)

and the total energy of the system is conserved.

3.2 Numerical solution

Equation (28) can be solved feusing the multidimensional
Newton method, which requires forming the Jacobiaf of

J=1-8D+C (34)
whereC is a diagonal matrix with elements
Ats Vi +8) = VoY + s) + Vo(Y))
il =— (35)

0 g

which, in accordance with the case of lumped collisions
[10], can be shown to be positive definite. Hevg signifies
taking the derivative ofV},, with respect to displacement.

From the energy expression (30) it follows th# D, is also
positive definite hencd is positive definite, which ensures
the uniqueness of a root of Eq. (28) [13]. Singularities in
both F and its Jacobian can be handled as in the case of
lumped collisions presented in [10], by using the limitdof
andJ whens — 0. The update equation = s— J7F,
where instead of forming the inverse matrix it is more
efficient to solve a tridiagonal system. Global convergence
of the Newton method is guaranteed for the componentwise
convex functionF, since the Jacobian is ai-matrix [14].
Convergence is typically achieved in fewer than 20 iteratio
steps, by using the previous valuesds a starting point.

4 Numerical Smulations

The simulation of an ideal string bouncing on a flat
barrier is depicted in Figure 2. The top plot shows the
displacement of the mid-point of the string. To verify the
correct behaviour of the model, reference is made to an
analytical result that compares the frequency of an impeded
string to that of a free, flexible vibrating string [15]. This
states that if a straight obstacle is placed halfway aciuess t
amplitude of the string vibration, the period of the impeded
string will be 1.5 times the period of the free vibratingsgri
[16]. This result is reproduced by a numerical simulation
using scheme (26) for a 0.7m long string, settigg= 10’
in order to simulate a rigid obstacle witlh = 1. For
comparison, the simulation was repeated with 20 times
oversampling and using, = 10°, which results in a very
close approximation to the theoretical period ratio.

The bottom plot in Figure 2 shows the error in the
conservation of the numerical energy of the system. Despite
the proof of conservation of energy the Hamiltonian can
be preserved only to machine precision in implementations
on digital processors, due to quantisation in finite-ptienis
arithmetic. The resulting energy error, expressed in tarins
the deviation ofH" = H(y", ") from the initial energyH°,
reads (in normalized form)

& = (H" - Ho)/HC.

(36)

0 2 4 6 8 10 12
time [ms]

free (882kHz) collision (882kHz) « free (44.1kHz) = = collision (44A1kHz)‘
T T T T T T

2+ « free (44.1kHz)
o collision (44.1kHz)

time [ms]

Figure 2: Simulation of an ideal string being free to vibrate
or bouncing on a rigid obstacle, for the initial condition
y(x,0) = 0.002 singx/1), with pA = 0.001 kgm, T = 100N
and Ax = 0.007m. Top: mid-point string displacement.
Bottom: numerical energy error.
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N

time [ms]

It is worth noting here that quantisation generally resuilts
a random-like signa¢” which, if zero mean, will not cause
an energy shift over time.

A more interesting setting for music acoustics and sound
synthesis applications is that of a string interacting véth
curved barrier located at one of its ends. Such configuration
can be encountered in some Asian instruments, where the
string terminates on a relatively flat bridge. Fig. 3(a) show
the vibration of a flexible string in a similar setting. The
string properties are taken from the previous experimedit an
a 15mm long, curved barrier with profilg = —0.01x?/I?
is rigidly placed below the string. The contact of the string
with this surface is characterised ky = 10** anda = 2.5.

The nonlinear behaviour of this system can be observed in
the irregular exchange between the kinetic and the potentia
energy in Fig. 3(b). The total energy of the system remains
constant to machine precision, as shown in Fig.3(d).
Fig. 3(c) reveals that the interaction between the strirdy an
the barrier involves multiple impacts during contact pdsio
which result in the generation of high-frequency vibrasion
that are characteristic of string instruments with flat oeisl.

For example, the buzzing sound of a sitar is understood to
stem from such multiple impacts [17].

4.1 Application to a stiff, lossy string

In the previous section, the fitiess of the string has been
neglected in order to simplify the discretisation process.
However, precise modelling of stringed instruments rezgiir
one to include the féect of string stifness. This involves
higher order derivatives in Eq. (16), due to a nonzero
potentialVs(yxx). Furthermore, in order to produce realistic
sounds the damping of the string needs to be considered. It
has been neglected so far, since the stability of the derived
scheme has been established by virtue of the conservation
of energy. Internal damping;), due to the nature of the
vibrating string, and external damping)( due to interaction
with the surrounding fluid, can be included in the model
using Kelvin-Voigt and resistive terms, as outlined in [3].

Using a discretisation procedure similar to that explained
in Section 3 for the ideal string and including both damping

T —
b
3 1t 1
>
o
2
S 0.5¢
—— kinetic — potential - - -total
0 I n n
0 5 10 15
time [ms]
L X10 s
(d)
OF= s ETTE
s ot —-.. LT
© el Al vl
-1r T LT mTumor 1
_2 L L !
0 5 10 15
time [ms]

and string stiness, leads to the following equations

(&) 5]

yAt
2

n+1

~q'=-D -y

(37a)

At
=S (L0 = YD = L — Y H)

yn+l _ yn — qn+l

with D = B4D4 — B2D», whereB, = El At/ (20 Ax*) and
D4 = D,D,. As previously, the system is solved by finding
the roots of a nonlinear function

At 21

(1+ > )I +(1+AI)D s+2(Dy"-q")
+ S (Lo — Y = 9™ = Ly — Y *).

An example of such a sfisystem is given in Figure 4, using

El = 0.012Nn%, y = 100s* andn = 10°°s, the remaining
parameters being identical to the case of the flexible string
A damped system behaviour is confirmed and, even though
an energy preservation check does not apply, stability may
be observed in thatH/ot < 0 at all times.

+q" (37b)

Fi=

(38)

g
ool i
2l
=
z;a 1k 4
2 . . ,
0 5 10 15
time [ms]
-3
x 10
1.5 T ; :
S ‘ —— kinetic — potential - - - total
= S
— l, ~ o 4
> -
= ~ AT~
2 o5/ O ]
o AR - =
O L L -
0 5 10 15
time [ms]

Figure 4: Simulation of a dfi lossy string bouncing on
a curved obstacle. Top: mid-point string displacement.
Bottom: the energy components.



5 Conclusions [7] R. Richtmyer and K. Morton.Difference Methods for

Initial-Value Problems. Wiley, New York, 1967.
A method has been proposed to derive stable algorithms

for the simulation of nonlinear distributed systems. The [8] S.Bilbao. Time domain simulation and sound synthesis

discretisation of the system is carried out after the model for the snare drum.J. Acoust. Soc. Am., 131(1):914~
equations are derived using a variational approach. Deyivi 925, 2012.

the numerical scheme starting from Hamilton’s equations, [9] J. Chabassier, A. Chaigne, and P. Joly. Modeling and
rather than Newton’s equations of motion, leads to an simulation of a grand piano.J. Acoust. Soc. Am.,
unconditional stability, which can be shown using the 134(1):648-665, 2013.

conservation of the system energy. The update of the scheme B )
requires the solution of a set of nonlinear equations that [10] V. Chatziioannou and M. van Walstijn. An energy

can be shown to posses a unique root. Furthermore, global conserving finite dference scheme for simulation of
convergence of the Newton method can be established for collisions.  In Proc. Sound and Music Computing
the numerical solution of these equations. (SMAC-SMC 2013), pages 584-591, Stockholm, 2013.

The proposed methodology can be used to formulate [11] V. Arnold.
time-domain models with improved robustness in
comparison to methods previously applied to the simulation
of contact-driven musical instruments. That is, unlike [12] C. Lanczos.The variational principles of mechanics,
schemes derived by discretising a Newtonian description, volume 4. Courier Dover Publications, 1970.
the simulations do not sier from energy jumps during
the decoupling of the impacting objects. As a result,
implementations require neither the energy corrections
employed in various other formulations [6, 18] nor the
monitoring of energy flows common to wave digital filter  [14] J. Ortega and W. Rheinboldt.Iterative Solution of
models [19]. In comparison to the digital waveguide model Nonlinear Equationsin Several Variables, volume 30.
used in [20], the proposed approach has the advantage that SIAM, New York, 1970.
the elasticity and damping properties of the contact can
be specified. Damping phenomena during the impact may
also be modelled, e.g. as proposeq by HL_mt and C_Zrossley Nonlinear Analysis, Theory, Methods and Applications,
[21]. Such a formulation can be directly included in the )

. . . 7:129-141, 1983.
proposed numerical scheme, as outlined elsewhere in these
proceedings [22]. This may be necessary for the simulation [16] S. Han and M. Grosenbaugh. Non-linear free vibration
of systems, where the nature of the impactive interaction is of a cable against a straight obstacleurnal of Sound
critical for the sound generation, such as in a tanpura or a and Vibration, 273:337-361, 2004.
sitar. Other impactive interactions of musical interesttth
the proposed schemes can be directly applied to include
reed beating in woodwind instruments [23], string-bridge
coupling in pianos [20], and braypin-string collisions in
early harps.

Mathematical methods of classical
mechanics, volume 60. Springer, New York, 1978.

[13] P. Deuflhard Newton methods for nonlinear problems:
Affine invariance and adaptive algorithms. Springer,
Berlin, 2004.

[15] A. Haraux and H. Cabannes. Almost periodic motion
of a string vibrating against a straight fixed obstacle.

[17] C. Vyasarayani, S. Birkett, and J. McPhee. Modeling
the dynamics of a vibrating string with a finite
distributed unilateral constraint: Application to the
sitar. J. Acoust. Soc. Am., 125(6):3673-3682, 2009.

[18] L. Trautmann and R. Rabenstein. Multirate simulations
of string vibrations including nonlinear fret-string
interactions using the functional transformation
method.Appl. Sgnal Processing, (7):949-963, 2004.
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