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Physical modelling of musical instruments involves studying nonlinear interactions between parts of the
instrument. These can pose several difficulties concerning the accuracy and stability of numericalalgorithms.
In particular, when the underlying forces are non-analyticfunctions of the phase-space variables, a stability
proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading
to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s
equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be
energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the
interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian
framework and subsequently discretised. The resulting nonlinear matrix equation can be shown to possess a unique
solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a
way similar to the lumped collision model. The existence of an analytic description of this interaction allows
the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications
involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet
impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).

1 Introduction

Nonlinear phenomena inherently occur during sound
generation by musical instruments. Physics-based sound
synthesis approaches need to take these nonlinearities into
account, in order to produce faithful simulations. The
presence of nonlinear terms in the equations that describe
the instrument oscillations pose several difficulties to both
analytical and numerical approaches [1]. One common
cause of nonlinear effects is the collision between parts of
the instrument. Such collisions can occur in either a lumped
or a distributed manner. In the field of music acoustics,
collisions are usually modelled using a penalty approach [2],
with the collision force given by

f (∆y) = kb⌊∆yα⌋ where ⌊∆y⌋ = h(∆y)∆y. (1)

h is the Heaviside step function,∆y the compression along
the displacement axisy and the force f is active only
for positive compression values.kb and α are power-law
constants depending on the nature of the barrier. Several
time-stepping methods have been used for the simulation
of collisions, most of which are based on finite differences
[3, 4] or closely related methods such as the trapezoidal
rule [5] or Verlet integration [6]. Proving the stability of
the corresponding numerical schemes requires the use of
energy methods [4, 7] due to the presence of nonlinear
terms. Energy conserving schemes can thus be formulated
for the simulation of conservative, nonlinear systems [8, 9].
However, the definition of a numerical energy invariant is
not as straightforward for systems involving collision forces,
which are non-analytic functions ofy. Describing the system
using Hamilton’s equations and discretising these insteadof
Newton’s equation of motion yields numerical schemes that
can be shown to conserve energy. This approach has been
recently presented by the authors for the case of lumped
collisions [10]. This paper extends it to distributed systems,
studying the vibration of a string interacting with a rigid
barrier.

In Section 2 the equations of motion for the vibrating
string are derived from a variational principle. In Section3
a numerical scheme is formulated based on the above
energetic approach, and the stability and numerical solution
of the derived scheme is discussed. Section 4 presents
simulations of a vibrating string colliding with a rigid barrier
and Section 5 evaluates the proposed methodology within
the context of sound synthesis.

2 Lagrangian Formulation

Let a stiff string of lengthl, simply supported at both ends
and with given initial displacementy(x) interact with a flat,
rigid barrier located below it at heightyb. The Lagrangian
density of this system is given by the difference between the
kinetic energy density

T = ρA(∂ty)2/2 (2)

and the potential energy density

V = Vτ +Vs +Vb (3)

whereρ is the mass density andA the cross-sectional area of
the string,

Vτ = τ(∂xy)2/2 (4)

the potential energy due to the string tensionτ,

Vs = EI(∂xxy)2/2 (5)

the potential energy due to string stiffnessEI and

Vb = kb⌊(yb − y)α+1⌋/(α + 1) (6)

the collision potential due to interaction with the barrier.
Hence the Lagrangian densityL = T −V is a function of the
displacement variabley(x, t) and its space-time derivatives

L =
ρA
2

y2
t −
τ

2
y2

x −
EI
2

y2
xx −

kb⌊(yb − y)α+1⌋

α + 1
(7)

and the Lagrangian of the system is given by

L =
∫ l

0
L(y, yt, yx, yxx; x, t) dx (8)

where the following notation is adopted:

yt = ∂ty = ∂y/∂t (9a)

yx = ∂xy = ∂y/∂x (9b)

yxx = ∂xxy = ∂
2y/∂x2. (9c)

The variation of the Lagrangian density subject to a virtual
displacementδy is

δL = δy
∂L

∂y
+
∂δy
∂t
∂L

∂yt
+
∂δy
∂x
∂L

∂yx
+
∂2δy
∂x2

∂L

∂yxx
(10)

and Hamilton’s principle of least action [11] dictates that

δ

∫

L dt = 0 ⇒ δ

"
L dx dt = 0. (11)



Substituting the expression in Eq. (10) and using integration
by parts, along with the fact thatδy vanishes at the integration
boundaries [12], yields
"
δy

(

∂L

∂y
−
∂

∂t
∂L

∂yt
−
∂

∂x
∂L

∂yx
+
∂2

∂x2

∂L

∂yxx

)

dx dt = 0.

(12)
The requirement for the integral to be zero for an arbitrary
variation δy results in the Euler-Lagrange equation for the
given dynamical system

∂L

∂y
=
∂

∂t

(

∂L

∂yt

)

+
∂

∂x

(

∂L

∂yx

)

−
∂2

∂x2

(

∂L

∂yxx

)

. (13)

2.1 Hamilton’s equations

The Hamiltonian densityH can be obtained by defining
the conjugate momentum

p =
∂L

∂yt
= ρAyt (14)

and taking the Legendre transformation of the Lagrangian
density

H = yt p − L(y, yt, yx, yxx) (15a)

=
1
2

p2

ρA
+

1
2
τy2

x +
1
2

EIy2
xx +

kb

α + 1
⌊(yb − y)α+1⌋ (15b)

= T (p) +Vτ(yx) +Vs(yxx) +Vb(y). (15c)

Equations (13), (14) and (15a) can be combined to formulate
Hamilton’s equations of motion:

∂p
∂t
=
∂

∂x

(

∂H

∂yx

)

−
∂2

∂x2

(

∂H

∂yxx

)

−
∂H

∂y
(16a)

∂y
∂t
=
∂H

∂p
(16b)

and the Hamiltonian (total energy) of the system is computed
as

H =
∫ l

0
H(y, p, yx, yxx) dx. (17)

3 Numerical Formulation

For simplicity of presenting the numerical model, and
in order to compare with existing analytic solutions, the
discretisation of Hamilton’s equations will be performed on
an ideal (flexible) string; the string stiffness is neglected,
resulting inVs = 0. Mid-point derivative approximations
are employed to derive a numerical scheme, whereyn

m
denotes the value of variabley at positionx = m∆x and
time t = n∆t, ∆x being the spatial sampling interval and
fs = 1/∆t the sampling rate (see Fig. 1). Rewriting (16)
using Eq. (15c), Hamilton’s equations are approximated by

pn+1
m − pn

m

∆t
=

{

∂Vτ

∂yx

}n+ 1
2

m+ 1
2

−

{

∂Vτ

∂yx

}n+ 1
2

m− 1
2

∆x

−
Vb(yn+1

m ) −Vb(yn
m)

yn+1
m − yn

m
(18a)

yn+1
m − yn

m

∆t
=
T (pn+1

m ) − T (pn
m)

pn+1
m − pn

m
(18b)
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Figure 1: The discretised string at timesn∆t and (n + 1)∆t.

where, for example,

{

∂Vτ

∂yx

}n+ 1
2

m+ 1
2

=

Vτ

(

y n+1
x

m+ 1
2

)

− Vτ

(

y n
x

m+ 1
2

)

y n+1
x

m+ 1
2

− y n
x

m+ 1
2

(19)

approximates the partial derivative ofVτ with respect toyx.
It is useful here to introduce the forward and backward

space shift operators, through their action onyn
m, as

δ+yn
m =

yn
m+1 − yn

m

∆x
, δ−yn

m =
yn

m − yn
m−1

∆x
. (20)

Using the following approximations foryx

y n
x

m+ 1
2

= δ+yn
m , y n

x
m− 1

2

= δ−y
n
m (21)

a scheme centred at timet = (n + 1/2)∆t and positionx =
m∆x is obtained

pn+1
m − pn

m

∆t
=
τ

2
δ∆(yn+1

m + yn
m)

−
kb

α + 1

⌊(yb − yn+1
m )α+1⌋ − ⌊(yb − yn

m)α+1⌋

yn+1
m − yn

m
(22a)

yn+1
m − yn

m

∆t
=

1
ρA

pn+1
m + pn

m

2
(22b)

whereδ∆ = (δ+δ−). In matrix form this can be written as

pn+1 − pn = φD2

(

yn+1 + yn
)

−̟S−1
(

⌊(yb − yn+1)α+1⌋ − ⌊(yb − yn)α+1⌋
)

(23a)

θ
(

yn+1 − yn
)

= pn+1 + pn. (23b)

whereS = diag(yn+1 − yn) is a diagonal matrix,

φ =
τ∆t

2∆x2
, ̟ =

kb∆t
α + 1

, θ =
2ρA
∆t

(24)

andyn, yb
n andpn are column vectors holding displacement,

barrier profile and momentum values. Under the assumption
of simply supported boundary conditions on both ends of the
system, these vectors hold the values ofN interior nodes on
the string (i.e. fromy1 to yN), and D2 then is anN × N
tridiagonal matrix:

D2 =
























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













−2 1 0

1
. . .

. . .

. . .
. . . 1

0 1 −2









































(25)

which implements the second spatial derivative of the string
state. It is convenient to rewrite the scheme using a scaled



momentum variableqn = pn/θ:

qn+1 − qn = β2D2

(

yn+1 + yn
)

(26a)

− ζS−1
(

⌊(yb − yn+1)α+1⌋ − ⌊(yb − yn)α+1⌋
)

yn+1 − yn = qn+1 + qn (26b)

whereβ2 = φ/θ andζ = ̟/θ. Now setting

s = yn+1 − yn = qn+1 + qn (27)

yields the nonlinear system of equations

F = (I − β2D2) s − 2(β2D2yn + qn)

+ ζS−1
(

⌊(yb − yn − s)α+1⌋ − ⌊(yb − yn)α+1⌋
)

= 0.
(28)

3.1 Conservation of energy

The total energy of the system can be calculated by
integrating the energy densities along the length of the
string, i.e.

Hn =

N+1
∑

m=0

(

T n
m +V

n
m
)

∆x (29)

whereT n
m=T (pn

m) andVn
m=
Vτ(δ−yn

m) +Vτ(δ+yn
m)

2
+Vb(yn

m)

represent kinetic and potential energy densities, respectively.
In matrix form the numerical Hamiltonian is given by

Hn = b
[

qt q − β2yt D2y + ζ1t⌊(yb − y)α+1⌋
]

(30)

with 1 = (1, . . . , 1)t andb = 2ρA∆x/∆t2. Multiplying the left
hand side of Eq. (26a) with (qn+1 + qn)t and the right hand
side with (yn+1 − yn)t, which are equivalent by (26b), yields

(qn+1 + qn)t(qn+1 + qn) = β2(yn+1 − yn)t D2(yn+1 + yn)

− ζ(yn+1 − yn)tS−1
(

⌊(yb − yn+1)α+1⌋ − ⌊(yb − yn)α+1⌋
) (31)

which, given thatD2 is symmetric, can be written as

(qn+1)t qn+1 − β2(yn+1)t D2yn+1 + ζ1t
(

⌊(yb − yn+1)⌋α+1
)

= (qn)t qn − β2(yn)t D2yn + ζ1t
(

⌊(yb − yn)⌋α+1
)

.
(32)

Now multiplying by b and using the definition of the
numerical energy in (30), it follows that

Hn+1 = Hn (33)

and the total energy of the system is conserved.

3.2 Numerical solution

Equation (28) can be solved fors using the multidimensional
Newton method, which requires forming the Jacobian ofF

J = I − β2D2 + C (34)

whereC is a diagonal matrix with elements

{ci,i} =
∆t
θ

siV
′
b(yn

i + si) − Vb(yn
i + si) +Vb(yn

i )

s2
i

(35)

which, in accordance with the case of lumped collisions
[10], can be shown to be positive definite. HereV′b signifies
taking the derivative ofVb with respect to displacement.

From the energy expression (30) it follows that−β2D2 is also
positive definite henceJ is positive definite, which ensures
the uniqueness of a root of Eq. (28) [13]. Singularities in
both F and its Jacobian can be handled as in the case of
lumped collisions presented in [10], by using the limits ofF
and J when s → 0. The update equation iss = s − J−1F,
where instead of forming the inverse matrix it is more
efficient to solve a tridiagonal system. Global convergence
of the Newton method is guaranteed for the componentwise
convex functionF, since the Jacobian is anM-matrix [14].
Convergence is typically achieved in fewer than 20 iteration
steps, by using the previous value ofs as a starting point.

4 Numerical Simulations

The simulation of an ideal string bouncing on a flat
barrier is depicted in Figure 2. The top plot shows the
displacement of the mid-point of the string. To verify the
correct behaviour of the model, reference is made to an
analytical result that compares the frequency of an impeded
string to that of a free, flexible vibrating string [15]. This
states that if a straight obstacle is placed halfway across the
amplitude of the string vibration, the period of the impeded
string will be 1.5 times the period of the free vibrating string
[16]. This result is reproduced by a numerical simulation
using scheme (26) for a 0.7 m long string, settingkb = 107

in order to simulate a rigid obstacle withα = 1. For
comparison, the simulation was repeated with 20 times
oversampling and usingkb = 109, which results in a very
close approximation to the theoretical period ratio.

The bottom plot in Figure 2 shows the error in the
conservation of the numerical energy of the system. Despite
the proof of conservation of energy the Hamiltonian can
be preserved only to machine precision in implementations
on digital processors, due to quantisation in finite-precision
arithmetic. The resulting energy error, expressed in termsof
the deviation ofHn = H(yn, qn) from the initial energyH0,
reads (in normalized form)

en = (Hn − H0)/H0. (36)
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Figure 2: Simulation of an ideal string being free to vibrate
or bouncing on a rigid obstacle, for the initial condition
y(x, 0) = 0.002 sin(πx/l), with ρA = 0.001 kg/m, τ = 100 N
and ∆x = 0.007 m. Top: mid-point string displacement.
Bottom: numerical energy error.
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Figure 3: (a) Snapshots of a flexible string bouncing on a curved obstacle simulated usingfs = 44.1 kHz, (b) the energy
components (c) the collision force due to string-obstacle interaction and (d) the energy erroren.

It is worth noting here that quantisation generally resultsinto
a random-like signalen which, if zero mean, will not cause
an energy shift over time.

A more interesting setting for music acoustics and sound
synthesis applications is that of a string interacting witha
curved barrier located at one of its ends. Such configurations
can be encountered in some Asian instruments, where the
string terminates on a relatively flat bridge. Fig. 3(a) shows
the vibration of a flexible string in a similar setting. The
string properties are taken from the previous experiment and
a 15 mm long, curved barrier with profileyb = −0.01x2/l2

is rigidly placed below the string. The contact of the string
with this surface is characterised bykb = 1013 andα = 2.5.
The nonlinear behaviour of this system can be observed in
the irregular exchange between the kinetic and the potential
energy in Fig. 3(b). The total energy of the system remains
constant to machine precision, as shown in Fig. 3(d).
Fig. 3(c) reveals that the interaction between the string and
the barrier involves multiple impacts during contact periods,
which result in the generation of high-frequency vibrations
that are characteristic of string instruments with flat bridges.
For example, the buzzing sound of a sitar is understood to
stem from such multiple impacts [17].

4.1 Application to a stiff, lossy string

In the previous section, the stiffness of the string has been
neglected in order to simplify the discretisation process.
However, precise modelling of stringed instruments requires
one to include the effect of string stiffness. This involves
higher order derivatives in Eq. (16), due to a nonzero
potentialVs(yxx). Furthermore, in order to produce realistic
sounds the damping of the string needs to be considered. It
has been neglected so far, since the stability of the derived
scheme has been established by virtue of the conservation
of energy. Internal damping (η), due to the nature of the
vibrating string, and external damping (γ), due to interaction
with the surrounding fluid, can be included in the model
using Kelvin-Voigt and resistive terms, as outlined in [3].

Using a discretisation procedure similar to that explained
in Section 3 for the ideal string and including both damping

and string stiffness, leads to the following equations

qn+1− qn = −D
[(

1+
2η
∆t

)

yn+1+

(

1−
2η
∆t

)

yn

]

−
γ∆t
2

(yn+1− yn)

− ζS−1
(

⌊(yb − yn+1)α+1⌋ − ⌊(yb − yn)α+1⌋
)

(37a)

yn+1 − yn = qn+1 + qn (37b)

with D = β4D4 − β2D2, whereβ4 = EI ∆t / (2θ∆x4) and
D4 = D2 D2. As previously, the system is solved by finding
the roots of a nonlinear function

F1 =

[(

1+
γ∆t
2

)

I +
(

1+
2η
∆t

)

D
]

s + 2(Dyn − qn)

+ ζS−1
(

⌊(yb − yn − s)α+1⌋ − ⌊(yb − yn)α+1⌋
)

.

(38)

An example of such a stiff system is given in Figure 4, using
EI = 0.012 Nm2, γ = 100 s−1 andη = 10−5 s, the remaining
parameters being identical to the case of the flexible string.
A damped system behaviour is confirmed and, even though
an energy preservation check does not apply, stability may
be observed in that∂H/∂t ≤ 0 at all times.
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Figure 4: Simulation of a stiff, lossy string bouncing on
a curved obstacle. Top: mid-point string displacement.
Bottom: the energy components.



5 Conclusions

A method has been proposed to derive stable algorithms
for the simulation of nonlinear distributed systems. The
discretisation of the system is carried out after the model
equations are derived using a variational approach. Deriving
the numerical scheme starting from Hamilton’s equations,
rather than Newton’s equations of motion, leads to an
unconditional stability, which can be shown using the
conservation of the system energy. The update of the scheme
requires the solution of a set of nonlinear equations that
can be shown to posses a unique root. Furthermore, global
convergence of the Newton method can be established for
the numerical solution of these equations.

The proposed methodology can be used to formulate
time-domain models with improved robustness in
comparison to methods previously applied to the simulation
of contact-driven musical instruments. That is, unlike
schemes derived by discretising a Newtonian description,
the simulations do not suffer from energy jumps during
the decoupling of the impacting objects. As a result,
implementations require neither the energy corrections
employed in various other formulations [6, 18] nor the
monitoring of energy flows common to wave digital filter
models [19]. In comparison to the digital waveguide model
used in [20], the proposed approach has the advantage that
the elasticity and damping properties of the contact can
be specified. Damping phenomena during the impact may
also be modelled, e.g. as proposed by Hunt and Crossley
[21]. Such a formulation can be directly included in the
proposed numerical scheme, as outlined elsewhere in these
proceedings [22]. This may be necessary for the simulation
of systems, where the nature of the impactive interaction is
critical for the sound generation, such as in a tanpura or a
sitar. Other impactive interactions of musical interest that
the proposed schemes can be directly applied to include
reed beating in woodwind instruments [23], string-bridge
coupling in pianos [20], and braypin-string collisions in
early harps.
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