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Abstract 

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has 

attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment 

of type I galactosemia.  The mechanism of the enzyme is not fully elucidated.  Molecular dynamics 

(MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted 

that two regions (residues 174-179 and 231-240) had different dynamics as a consequence.  

Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-

228.  These three residues were identified as important in catalysis in previous computational studies 

on human galactokinase.  Alteration of Arg-105 to methionine resulted in a modest reduction in 

activity with little change in stability.  When Arg-228 was changed to methionine, the enzyme’s 

interaction with both ATP and galactose was affected.  This variant was significantly less stable than 

the wild-type protein.  Changing Glu-174 to glutamine (but not to aspartate) resulted in no 

detectable activity and a less stable enzyme.  Overall, these combined in silico and in vitro studies 

demonstrate the importance of a negative charge at position 174 and highlight the critical role of the 

dynamics in to key regions of the protein.  We postulate that these regions may be critical for 

mediating the enzyme’s structure and function. 
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Introduction 

Galactokinase (EC 2.7.1.6) catalyses the ATP-dependent site and stereospecific phosphorylation of 

the hexose monosaccharide galactose [1, 2].  This reaction is critical since it forms the first 

committed step of the Leloir pathway of galactose metabolism [3].  This pathway is required for the 

conversion of galactose into the glycolytic intermediate glucose 6-phosphate since hexokinase (EC 

2.7.1.1; the first enzyme of the glycolytic pathway) has negligible activity with galactose [4].  The 

Leloir pathway has particular significance in young mammals since the main sugar present in milk is 

lactose, a disaccharide of glucose and galactose.  Reduced activity of any of the enzymes in the Leloir 

pathway can result in the inherited metabolic disease galactosemia [5].  This disease has a wide 

spectrum of manifestations ranging from alterations in blood chemistry with only mild effects for the 

patients to death in childhood [6].  Mutations in the gene encoding galactokinase (GALK1) can result 

in type II galactosemia in humans and other mammals [7, 8].  This is considered to be the mildest 

form of galactosemia with early onset cataracts being the most important manifestation.  These 

cataracts can be managed by diet or surgery and there appear to be few long-term complications for 

the patients [9].  In more severe forms of the disease (types I and III galactosemia) more significant 

pathology is thought to be linked to the build up of excess galactose 1-phosphate, the product of the 

reaction catalysed by galactokinase [10, 11].  Therefore, considerable efforts have been made to 

identify specific inhibitors of galactokinase in order to block the reaction it catalyses [12-17].  In 

effect, galactokinase inhibition would convert the more severe forms of galactosemia into the more 

manageable type II [9]. 

Galactokinase has also attracted some interest as a potential biocatalyst [18].  The site-specific 

modification of monosaccharides is chemically challenging.  However, galactokinase targets C1-OH for 

phosphorylation [19].  The high specificity of the human and yeast enzymes towards α-D-galactose 

(and some closely related sugars) limits their application in the synthesis of a wider range of sugar 1-

phosphates [19-21].  Consequently, a number of studies have focussed on identifying galactokinases 

with broader specificity or broadening the specificity of the enzyme [22-29].  Many bacterial 

galactokinases have broader specificity than the human or yeast enzymes [30].  For example, the 

Escherichia coli enzyme catalyses the phosphorylation of a range of galactose derivatives, but is 

inactive with D-glucose [26].  Its activity with fluorinated galactose derivatives enabled its use in the 

enzymatic synthesis of the O-fluoroglucoside of N-methylanthranilate and fluorinated Thomsen–

Friedenreich (T) antigens [31, 32].  The promiscuity of the E. coli enzyme has been expanded by 

protein engineering methods to include a wider range of D- and L-sugars [22, 23, 25].  Galactokinase 

from Bifidobacterium infantis is active with D-galacturonic acid and can also use a variety of 



phosphate donors instead of ATP including dATP, GTP, dGTP, ITP and dTTP [33].  This versatility has 

enabled the use of the enzyme in the synthesis of Galacto-N-biose derivatives [34].  Streptococcus 

pneumoniae TIGR4 galactokinase is active with D-glucose, some L-monosaccharides and, unusually, 

with N- acetyl-D-galactosamine [35, 36].  This enzyme has been applied in the synthesis of complex 

oligosaccharides (e.g. globotriose) and UDP-sugars [37-39]. 

The catalytic mechanism of galactokinase is generally accepted to involve the initial removal of a 

proton from the C1-OH and it is believed that this is done by an aspartate residue acting as a base in 

the active site [2, 40].  This generates a highly nucleophilic, negatively charged species which attacks 

the oxygen atom bridging the β- and γ-phosphates of ATP.  The γ-phosphate is thus transferred to the 

galactose molecule and ADP is released.  The initial state of the enzyme is regenerated by loss of the 

proton to water.  This mechanism is not universally accepted [41].  Galactokinase is a member of the 

GHMP kinase family of enzymes (named from some of the enzymes originally assigned to the family:  

galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) [42, 43].  

While the majority of these enzymes have an aspartate (or glutamate) residue in a structurally 

equivalent position to the putative active site base in galactokinase, at least one member does not.  

In homoserine kinase (EC 2.7.1.39) the equivalent residue is an asparagine, a residue which lacks the 

capacity to act as a base in this manner [44, 45].  It has been proposed, based on crystal structures 

and enzyme kinetic analysis, that homoserine kinase catalyzes the reaction partly by stabilizing the 

transition state [44].  It is possible that, in this enzyme, negatively charged oxygens on the γ-

phosphate of ATP abstract the proton from homoserine facilitating a direct transfer of the phosphate 

group [2].  Furthermore, in order to act as a base capable of removing a proton from the 

monosaccharide, the aspartate in galactokinase would need a pKa value considerably higher than 

that of the free amino acid (4.8 [46]) or the pKa of the C1-OH would need to be substantially reduced.  

Such alterations are possible in the interior of proteins.  However, previous computational chemistry 

work suggests that the pKa of this active site aspartate (Asp-186) in human galactokinase is 5.3-6.3 

[47].  While this is displaced from the free solution value, it may not be sufficient to facilitate transfer 

of the proton.  Nevertheless, a number of studies have demonstrated that this aspartate is critical for 

the function of galactokinase from a variety of species [16, 40, 47, 48].  In addition, an adjacent 

arginine residue (Arg-37 in human galactokinase) is also believed to be important and may play a role 

in modifying the pKa of the aspartate or stabilising the negative charge that develops on the sugar as 

it loses the proton [40].  Experiments in which active site residues are altered using site-directed 

mutagenesis are always compounded by the possibility that they may also cause alterations to the 

protein’s structure or stability.  In the case of Asp-186 in human galactokinase, alteration to either 

asparagine or alanine decreased the protein’s resistance to denaturation by urea [47].  Therefore, it 



is difficult to deduce that the loss of enzyme activity resulting from these alterations is caused 

entirely by the loss of chemical functionality at the active site. 

In an attempt to resolve some of these mechanistic issues, we previously conducted a detailed 

quantum mechanics/molecular mechanics (QM-MM) study of galactokinase [49].  This predicted that 

Asp-186 does not, directly, participate in the reaction and that there is direct transfer of the 

phosphate group from ATP to galactose.  Its role may be to polarise and weaken the oxygen-

hydrogen bond in C1-OH facilitating the direct attack by ATP [47, 49].  This study also identified a 

number of other residues which may play a key role in the enzyme’s mechanism.  Arg-105 and Glu-

174 were predicted to cooperate in the formation of a hydrogen bonding network which restricts the 

mobility of ATP in the active site.  Arg-228 may stabilise the transient negative charge which develops 

on the oxygen bridging the β- and γ-phosphates of ATP during bind breakage [49]. 

A greater understanding of this enzyme’s mechanism is important for the development of selective 

inhibitors of galactokinase and the fully exploiting its potential as a biocatalyst.  Catalytically 

important residues could be sterically hindered or modified by drug-like molecules.  The dynamic 

behaviour of enzymes is critical to their functions, including specificity and catalysis [50, 51].  

Knowing the structural and dynamic requirements for catalysis may enable further engineering of 

the enzyme’s specificity.  Therefore, we conducted a combined molecular dynamics (MD) and 

enzymological study to further elucidate the roles of Arg-105, Glu-174 and Arg-228.   

 

Materials and Methods 

Molecular dynamics simulations 

Protein Preparation and Molecular dynamics simulations were carried out as described by Huang et 

al, 2013 [49]. Chain A of the GALK crystal structure (1WUU) was altered using Biovia Discovery studio 

(Dassault Systèmes), Ser230 and Leu231 were added, selenomethionine residues were varied back to 

native methionine, AMP.PNP was altered to ATP and Mg2+ and the two coordinating water molecules 

were added to the active site. Variants were produced using the mutate feature in Biovia Discovery 

studio. Partial and RESP charges of galactose, Mg2+ and ATP were determined as previously described 

using the Gaussian 09 package [52] and antechamber encoded in Amber 10 [53] respectively.  All MD 

simulations were carried out using the Amber 10 package  and the Amber Parm 99 forcefields [54].  

Prior to simulation the protein, ATP and galactose were soaked in a TIP3P water box using tleap 

encoded in Amber 10.  The dimensions of the box for all proteins were 71.071 Å X 80.431 Å X 87.517 



Å and the minimum distance to the boundary of the protein was set to 8 Å.  Sodium ions were added 

to neutralise the system WT. E174D, R37K and R228K required seven ions, E174Q, D186A and D186N 

required 6 ions, both R105M and R228M required eight ions and R37E required nine.  Minimisation 

and simulation steps were carried out as described by Huang et al [49].  The system was subjected to 

1250 steps of first steepest descent minimisation then conjugate gradient minimisation, the latter 

was carried out with a 0.5 kcal mol-1 Å-2 [55].  The system was then heated from 0K to 300K for 50ps 

and with a collision frequency of 5.0 ps-1, using the Langevin dynamics method [56].  Equilibration 

was then carried out using an NVT ensemble, a periodic boundary was applied and the system 

maintained at 300K for 50 ps.  Production simulation was then carried out for 7 ns with a time step of 

1 fs, reference pressure of 1 atm and at 300 K.  A cut-off distance for Van der Waals interactions was 

set at 10 Å and these long range interactions were calculated using the particle mesh Ewald method 

[57].  Hydrogen convalent bonds were constrained via the SHAKE method [58]. 

 

Analysis of simulations  

Simulations were monitored using perl encoded in Amber and resulting graphs produced using 

GraphPad Prism version 5.03 for Windows (GraphPad Software, San Diego California USA) 

(Supplementary Figure S1).  Cluster analysis, secondary structure analysis and RMSF calculations 

were performed using the ptraj command in Amber 10 and structures visualised using Biovia 

Discovery Studio.  VMD software [59] was used to visualise trajectories, the timeline plugin was used 

to visualise secondary structure and Normal mode wizard was used to carry out principal component 

analysis (PCA) both were calculated using 1 ns of equilibrated trajectory, determined by monitoring 

RMSD over time (Supplementary Figure S2) [60]. 

 

Expression and purification of human galactokinase 

Recombinant human galactokinase was expressed in, and purified from, Escherichia coli 

HMS174(DE3) as previously described except that cobalt agarose resin (His-Select, Sigma, Poole, UK) 

was used in place of nickel agarose [47, 61].  Site-directed mutations were carried out by the 

QuikChange method [62] and the mutated DNA sequences were verified (GATC Biotech, London, UK).  

Variant proteins were expressed and purified using the same protocol as used for the wild-type 

protein.  Purified proteins were stored in buffer A (50 mM Hepes-OH, pH 7.5, 150 mM NaCl, 10% 

(v/v) glycerol, 1 mM DTT), frozen at -80 °C in aliquots of 20-100 µl until required. 



 

Steady-state kinetic analysis of galactokinase 

Galactokinase activity was measured by coupling the reaction to those catalysed by pyruvate kinase 

(EC 2.7.1.4) and lactate dehydrogenase (EC 1.1.1.27) [63].  Rates were measured (in triplicate) at 37 

°C in 96 well plates by monitoring the decline in absorbance at 340 nm in a Thermo Scientific 

Multiskan spectrum platereader.  The total reaction volume was 160 µl and each reaction contained 

50 mM Hepes-OH, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.4 mM phosphoenolpyruvate, 1mM NADH, 

10 %(v/v) glycerol.  Reactions were initiated by the addition of enzyme (125-690 nM depending on 

the variant), monitored for 30 min and the linear portion of the reaction extracted by visual 

examination.  Rates were converted to molar units using the extinction coefficient for NADH (6220 l 

mol-1 cm-1 [64]) and a standard curve to correct for the reduced pathlength in the 96 well plate. 

Typically reactions were arrayed in a eight by ten grid in which ATP concentration was varied along 

one axis and galactose along the other [20, 61].  This enabled the extraction of ten datasets with 

varying ATP concentration and constant galactose concentrations along with eight datasets with 

varying galactose concentration and constant ATP concentrations.  For each of these 18 datasets, 

rates were plotted against the variable substrate concentration and these data fitted to the 

Michaelis-Menten equation (1) using non-linear curve fitting as implemented in GraphPad Prism 6.0 

(GraphPad Software, CA, USA) [65, 66]: 

  
           

          
  (1) 

where v is the initial rate, Vmax,app is the apparent maximal rate, Km,app is the apparent Michaelis 

constant and [S] is the concentration of the variable substrate.  Note that these are apparent kinetic 

parameters since the experiment was carried out in sub-saturating concentrations of substrates.  

Since human galactokinase has an ordered ternary complex mechanism [61], the steady state 

constants were estimated by plotting the Vmax,app values obtained for the various constant 

concentrations of ATP against these ATP concentrations and fitting these data to equation (2) [67, 

68]: 

         
         

            
 (2) 

where Km,ATP is the Michaelis constant for ATP.  A similar process was used to determine Km,gal, the 

Michaelis constant for galactose. 



 

Analytical methods 

Differential scanning fluorimetry (DSF) was used to estimate the thermal unfolding temperature (or 

“melting” temperature, Tm) essentially as previously described [69].  Galactokinase (6.8 µM) was 

mixed with Sypro Orange (Sigma; 5 ×; manufacturer’s concentration definition) in a total volume of 

20 µl.  Fluorescence was monitored as a function of temperature (25 °C to 90 °C 1°C per step, 5 

seconds each step) using a RotorGeneQ qPCR machine (Qiagen).  Data were analysed using 

RotorGeneQ software. 

Native gel electrophoresis was used to show the resistance of the protein to denaturation by the 

chaotropic compound urea.  A discrete band represents folded protein which becomes less discrete 

and more smeared as the urea concentration increases.  The protocol was based on that of Megarity 

et al [47]. Protein (2.55 μM) was incubated with increasing concentrations of Urea (0-2 M) in 10 mM 

HEPES-OH, pH 7.0 and in the presence of native loading buffer (125 mM Tris-HCl, pH8.8, 20%(v/v) 

glycerol, 1%(w/v) DTT and 0.0002%(w/v) bromophenol blue) for 30 min at 37 °C.  Samples were then 

immediately loaded onto 15% native polyacrylamide gels (378 mM Tris-HCl, pH 8.8) and 

electrophoresed for 3 h at 20 mA.  Gels were then stained using 0.25% (w/v) Coomassie Blue R250, 

10% (v/v) acetic acid and 45% (v/v) ethanol and destained in 5% (v/v) ethanol, 7.5% (v/v) acetic acid. 

Protein concentrations were estimated using Bradford’s method with BSA as a standard [70]. 

 

Results and Discussion 

Previously characterised active site variants have altered MD in key regions 

Previous studies have shown that Arg-37 and Asp-186 (and the equivalent residues in galactokinase 

from other species) are critical to human galactokinase’s function.  However, this could be due to loss 

of key functionality in the active site or destabilisation of the protein.  To gain further insight into 

this, we conducted molecular dynamics studies on R37K, R37E, D186N and D186A (variants 

previously characterised biochemically and shown to have reduced activity [47]). 

All of the active site variants studied showed a propensity for change in two regions adjacent to the 

active site (residues 174-179 and 231-240).  This indicates that these regions are susceptible to 

change when wild type (WT) human galactokinase is altered at the active site. In WT the 231-240 



region occurs primarily as alpha helix (65%) but in R37E, R37K and D186A the region exists for the 

highest percentage of time as a 310 helix (88%, 68% and 50% respectively) and D186N primarily as a 

turn (90.7%) (Figure 2a).  All variants show an increase in the presence of a turn in region 174-179 

(Figure 2b).  The proximity of these two regions to the catalytically important residues Glu-174 and 

Arg-228 is particularly interesting. The distance between Glu-174 and Mg2+ increases from 4.3 Å in 

most prevalent WT structure to approximately 6.4 Å in the presence of the turn (in the region 174-

179). The distance between Arg-228 and the Mg2+ increases from 4.8 Å to 5.4 Å when the adjacent 

region is a turn or decreases to 4.5 Å if the same region is a 310 helix (Figure 2c,d). 

These predicted structural and dynamic changes in galactokinase strongly suggest that alteration of 

either R37 or D186 results in more than changes to active site chemistry.  This is consistent with 

previous data that showed that alteration of these residues resulted in proteins that were less stable 

to denaturation by urea [47].  The MD simulation also suggests that the two regions identified here 

may be important in catalysis and for maintaining wild-type structure and dynamics. 

 

Arginine 105 is implicated in ATP binding 

Alteration of Arg-105 to methionine reduced the turnover number (kcat) approximately twofold (Table 

1; Supplementary Figure S3) and increased Km,ATP by approximately the same factor.  Consequently, 

the specificity constant (kcat/Km,ATP) was also reduced.  However, Km,gal was relatively unaffected.  This 

suggests that this residue has a role in the initial interaction between the enzyme and ATP, consistent 

with the predictions from previous computational studies [49].  The removal of the positive charge at 

this position has no major changes on the overall, predicted dynamics of the protein (Figure 3).  DSF 

indicated no significant alteration of Tm (55.4±0.2 °C) compared to WT (55.7±0.3 °C) indicating that 

stability towards thermal denaturation was not altered by this variation (Table 2; Supplementary 

Figure S4).  R105M also showed similar resistance to denaturation by urea to the wild-type 

(Supplementary Figure S5). 

Arg-105 was previously shown to form an electrostatic interaction with Glu-174 in a molecular 

dynamics simulation [49].  The simulation of the neutral alteration from arginine to methionine at 

this position predicted that this variant would cause drifting of all ligands and eventual covalent 

bonding of Glu-174 to Mg2+ [49].  MD carried out in this study indicated that region 231-240 has 

similar structural propensities to WT whereas the presence of a turn between 174-179 increased by 

60% (Figure 3a,b).  This was reflected by increased root mean square fluctuation (RMSF) and 

increased RMSD of normal modes in these two regions (Figure 3c,d), however increased or 



decreased flexibility in these two regions does not affect stability of the protein.  The MD simulation 

carried out for this study provided no evidence for an electrostatic interaction between Arg-105 and 

Glu-174 suggesting the effects on ATP binding are not due to interaction with Glu-174 (Figure 3e). 

 

Alteration of arginine 228 impacts on substrate interactions 

When Arg-228 was altered to either lysine or methionine there was a modest increase in turnover 

number and an increase in Km,ATP (Table 1; Supplementary Figure S3).  In the case of R228M, there 

was a substantial increase in Km,gal, however, the Michaelis constant for this substrate remains 

essentially unchanged in R228K. Both variants are significantly destabilised compared to the wild-

type (Table 2; Supplementary Figure S4, S5).  Similar to the Arg-105 mutants, the presence of the 

turn from 174-179 showed an increase to around 80% in both Arg228 variants (Figure 4a).  The 

region 231-240 is of particular note in R228K where the percentage of time as a turn increases to 

93% for residues 233 and 234.  However, there is a large increase in the percentage of time, during 

which the residues 235 and 236 form no secondary structure. This may partly explain to the 

significant decrease in Tm (Figure 4b; Table 2).  Another factor which may contribute to the decrease 

in Tm (particularly for R228M) is the increase in flexibility of multiple regions i.e. around residues 100 

and 350 (Figure 4c). 

 

A negative charge at position 174 is critical for catalysis 

Alteration of Glu-174 to aspartate resulted in an enzyme with steady state kinetic parameters very 

similar to the wild-type (Table 1, Supplementary Figure S3).  However, when the residue was altered 

to asparagine there was no detectable activity.  This suggests that the presence of the negative 

charge at this position is critical to the function of the enzyme.  However, the exact distance of this 

charge from the backbone is less critical (aspartate has a shorter side chain, compared to glutamate).  

E174D was not significantly destabilised compared to the wild-type; however, E174Q became 

unstable (Table 2; Supplementary Figure S4, S5). 

Despite being very similar to the wild-type, MD simulations of E174D indicated that this alteration 

introduces α-helix into the region 174-179 (Figure 5a).  The significant thermal destabilisation of 

E174Q is not explained by RMSF, which is generally similar to WT enzyme (figure 5c) but may be 

explained by the loss of structure in the 231-240 region:  approximately 99.6% of the time this region 



formed no defined secondary structure compared to 0% in the WT simulation (Figure 5b). Despite 

alteration in the propensity of secondary structures in the 231-240 and the 174-179 regions and 

alteration to RMSF per residue, E174D is not significantly different to WT in terms of kinetics or Tm 

which suggests that as long as the 231-240 region remains mostly structured the enzyme is stable. 

 

Conclusions 

These data demonstrate the critical role of Glu-174 in catalysis by galactokinase, supporting the 

predictions made in our previous computational chemistry study.  Our findings are consistent with 

both the active site base and direct attack mechanisms of catalysis.  However, they do highlight the 

fact that active site residues hypothesised to be involved in the active site base mechanism are also 

required for wild-type protein stability.  Therefore, loss of activity on alteration of these residues is 

insufficient evidence that they are vital for catalysis. 

Our findings further highlight the importance of the conformational dynamics of two regions in 

controlling the activity of this enzyme.  This knowledge may be important in the design of novel 

galactokinase inhibitors and engineered forms of the enzyme with novel specificities.  Compounds 

which induce structural and dynamic transitions similar to those seen in the more unstable forms of 

the protein are more likely to be successful inhibitors of the enzyme.  Manipulation of the dynamics 

of these regions may result in altered activity or specificity.  One previous observation is that 

increased promiscuity of human galactokinase is generally accompanied by reduced activity [27].  

Ensuring that the structural and dynamic behaviour of these regions remains close to wild-type 

(perhaps by introducing compensatory changes) may enable the identification of variant enzymes 

with broad specificity and high activity. 
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Figures 

Figure 1:  Residues considered in this study are part of, or close to, the active site:  Arg-37, Red; Arg- 

105 blue; Glu-174; yellow; Asp-186 purple and Arg-228 green. 

 

Figure 2:  Molecular dynamics simulations of five galactokinase variants previously shown to have 

reduced activity.  (a) Secondary structure of residues 231-240 showing percentage time during the 1 

ns of the stable trajectory (as determined from RMSD values) each secondary structure feature 

occurs. (b) Secondary structure of residues 174-179 (which are adjacent to active site) showing 

percentage time during the 1 ns of the stable trajectory (as determined from RMSD values) each 

secondary structure feature occurs. (c) Structures representing changes observed in residues 174-

179 (red) and 231-240 (yellow) and the distance from Glu-174 and Arg-228 to the Mg2+ ion. (i) The 

unstructured region at 174-179 and alpha helix at 231-240. (ii) Turn at 174-179 and 231-240. (iii) Turn 

at 174-179 and 310 helix at 231-240. 

 

Figure 3:  Molecular dynamics simulation of galactokinase R105M. (a) and (b) The secondary 

structures of residues 174-179 and 231-240 respectively. (c) RMSF of R105M by residue compared to 

the WT enzyme.  (d) RMSD by residue (calculated using NMWiz plugin of VMD) Normal modes 

calculated by the principle component method and subtracted from values obtained for Wild-Type 

enzyme under the same conditions to allow easy comparison.  (e) The distance from Arg-105 to Glu-

174 throughout the MM trajectory for the Wild-type enzyme. 

 

Figure 4:  Molecular dynamics simulation of galactokinase R228K and R228M. (a) and (b) The 

secondary structured of residues 174-179 and 231-240 respectively. (c) RMSF by residue for R228K 

and R228M compared to WT galactokinase. 

 

Figure 5:  Molecular dynamics simulation of galactokinase E174D and E174Q. (a) and (b) The 

secondary structures for residues 174-179 and 231-240 respectively. (c) RMSF by residue for E174D 

and E174Q compared to WT galactokinase. 
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Abstract 

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has 

attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment 

of type I galactosemia.  The mechanism of the enzyme is not fully elucidated.  Molecular dynamics 

(MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted 

that two regions (residues 174-179 and 231-240) had different dynamics as a consequence.  

Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-

228.  These three residues were identified as important in catalysis in previous computational studies 

on human galactokinase.  Alteration of Arg-105 to methionine resulted in a modest reduction in 

activity with little change in stability.  When Arg-228 was changed to methionine, the enzyme’s 

interaction with both ATP and galactose was affected.  This variant was significantly less stable than 

the wild-type protein.  Changing Glu-174 to glutamine (but not to aspartate) resulted in no 

detectable activity and a less stable enzyme.  Overall, these combined in silico and in vitro studies 

demonstrate the importance of a negative charge at position 174 and highlight the critical role of the 

dynamics in to key regions of the protein.  We postulate that these regions may be critical for 

mediating the enzyme’s structure and function. 

 

Keywords:  active site; molecular dynamics; protein flexibility; biocatalysis; galactosemia; GALK1 



Introduction 

Galactokinase (EC 2.7.1.6) catalyses the ATP-dependent site and stereospecific phosphorylation of 

the hexose monosaccharide galactose [1, 2].  This reaction is critical since it forms the first 

committed step of the Leloir pathway of galactose metabolism [3].  This pathway is required for the 

conversion of galactose into the glycolytic intermediate glucose 6-phosphate since hexokinase (EC 

2.7.1.1; the first enzyme of the glycolytic pathway) has negligible activity with galactose [4].  The 

Leloir pathway has particular significance in young mammals since the main sugar present in milk is 

lactose, a disaccharide of glucose and galactose.  Reduced activity of any of the enzymes in the Leloir 

pathway can result in the inherited metabolic disease galactosemia [5].  This disease has a wide 

spectrum of manifestations ranging from alterations in blood chemistry with only mild effects for the 

patients to death in childhood [6].  Mutations in the gene encoding galactokinase (GALK1) can result 

in type II galactosemia in humans and other mammals [7, 8].  This is considered to be the mildest 

form of galactosemia with early onset cataracts being the most important manifestation.  These 

cataracts can be managed by diet or surgery and there appear to be few long-term complications for 

the patients [9].  In more severe forms of the disease (types I and III galactosemia) more significant 

pathology is thought to be linked to the build up of excess galactose 1-phosphate, the product of the 

reaction catalysed by galactokinase [10, 11].  Therefore, considerable efforts have been made to 

identify specific inhibitors of galactokinase in order to block the reaction it catalyses [12-17].  In 

effect, galactokinase inhibition would convert the more severe forms of galactosemia into the more 

manageable type II [9]. 

Galactokinase has also attracted some interest as a potential biocatalyst [18].  The site-specific 

modification of monosaccharides is chemically challenging.  However, galactokinase targets C1-OH for 

phosphorylation [19].  The high specificity of the human and yeast enzymes towards α-D-galactose 

(and some closely related sugars) limits their application in the synthesis of a wider range of sugar 1-

phosphates [19-21].  Consequently, a number of studies have focussed on identifying galactokinases 

with broader specificity or broadening the specificity of the enzyme [22-29].  Many bacterial 

galactokinases have broader specificity than the human or yeast enzymes [30].  For example, the 

Escherichia coli enzyme catalyses the phosphorylation of a range of galactose derivatives, but is 

inactive with D-glucose [26].  Its activity with fluorinated galactose derivatives enabled its use in the 

enzymatic synthesis of the O-fluoroglucoside of N-methylanthranilate and fluorinated Thomsen–

Friedenreich (T) antigens [31, 32].  The promiscuity of the E. coli enzyme has been expanded by 

protein engineering methods to include a wider range of D- and L-sugars [22, 23, 25].  Galactokinase 

from Bifidobacterium infantis is active with D-galacturonic acid and can also use a variety of 



phosphate donors instead of ATP including dATP, GTP, dGTP, ITP and dTTP [33].  This versatility has 

enabled the use of the enzyme in the synthesis of Galacto-N-biose derivatives [34].  Streptococcus 

pneumoniae TIGR4 galactokinase is active with D-glucose, some L-monosaccharides and, unusually, 

with N- acetyl-D-galactosamine [35, 36].  This enzyme has been applied in the synthesis of complex 

oligosaccharides (e.g. globotriose) and UDP-sugars [37-39]. 

The catalytic mechanism of galactokinase is generally accepted to involve the initial removal of a 

proton from the C1-OH and it is believed that this is done by an aspartate residue acting as a base in 

the active site [2, 40].  This generates a highly nucleophilic, negatively charged species which attacks 

the oxygen atom bridging the β- and γ-phosphates of ATP.  The γ-phosphate is thus transferred to the 

galactose molecule and ADP is released.  The initial state of the enzyme is regenerated by loss of the 

proton to water.  This mechanism is not universally accepted [41].  Galactokinase is a member of the 

GHMP kinase family of enzymes (named from some of the enzymes originally assigned to the family:  

galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) [42, 43].  

While the majority of these enzymes have an aspartate (or glutamate) residue in a structurally 

equivalent position to the putative active site base in galactokinase, at least one member does not.  

In homoserine kinase (EC 2.7.1.39) the equivalent residue is an asparagine, a residue which lacks the 

capacity to act as a base in this manner [44, 45].  It has been proposed, based on crystal structures 

and enzyme kinetic analysis, that homoserine kinase catalyzes the reaction partly by stabilizing the 

transition state [44].  It is possible that, in this enzyme, negatively charged oxygens on the γ-

phosphate of ATP abstract the proton from homoserine facilitating a direct transfer of the phosphate 

group [2].  Furthermore, in order to act as a base capable of removing a proton from the 

monosaccharide, the aspartate in galactokinase would need a pKa value considerably higher than 

that of the free amino acid (4.8 [46]) or the pKa of the C1-OH would need to be substantially reduced.  

Such alterations are possible in the interior of proteins.  However, previous computational chemistry 

work suggests that the pKa of this active site aspartate (Asp-186) in human galactokinase is 5.3-6.3 

[47].  While this is displaced from the free solution value, it may not be sufficient to facilitate transfer 

of the proton.  Nevertheless, a number of studies have demonstrated that this aspartate is critical for 

the function of galactokinase from a variety of species [16, 40, 47, 48].  In addition, an adjacent 

arginine residue (Arg-37 in human galactokinase) is also believed to be important and may play a role 

in modifying the pKa of the aspartate or stabilising the negative charge that develops on the sugar as 

it loses the proton [40].  Experiments in which active site residues are altered using site-directed 

mutagenesis are always compounded by the possibility that they may also cause alterations to the 

protein’s structure or stability.  In the case of Asp-186 in human galactokinase, alteration to either 

asparagine or alanine decreased the protein’s resistance to denaturation by urea [47].  Therefore, it 



is difficult to deduce that the loss of enzyme activity resulting from these alterations is caused 

entirely by the loss of chemical functionality at the active site. 

In an attempt to resolve some of these mechanistic issues, we previously conducted a detailed 

quantum mechanics/molecular mechanics (QM-MM) study of galactokinase [49].  This predicted that 

Asp-186 does not, directly, participate in the reaction and that there is direct transfer of the 

phosphate group from ATP to galactose.  Its role may be to polarise and weaken the oxygen-

hydrogen bond in C1-OH facilitating the direct attack by ATP [47, 49].  This study also identified a 

number of other residues which may play a key role in the enzyme’s mechanism.  Arg-105 and Glu-

174 were predicted to cooperate in the formation of a hydrogen bonding network which restricts the 

mobility of ATP in the active site.  Arg-228 may stabilise the transient negative charge which develops 

on the oxygen bridging the β- and γ-phosphates of ATP during bind breakage [49]. 

A greater understanding of this enzyme’s mechanism is important for the development of selective 

inhibitors of galactokinase and the fully exploiting its potential as a biocatalyst.  Catalytically 

important residues could be sterically hindered or modified by drug-like molecules.  The dynamic 

behaviour of enzymes is critical to their functions, including specificity and catalysis [50, 51].  

Knowing the structural and dynamic requirements for catalysis may enable further engineering of 

the enzyme’s specificity.  Therefore, we conducted a combined molecular dynamics (MD) and 

enzymological study to further elucidate the roles of Arg-105, Glu-174 and Arg-228.   

 

Materials and Methods 

Molecular dynamics simulations 

Protein Preparation and Molecular dynamics simulations were carried out as described by Huang et 

al, 2013 [49]. Chain A of the GALK crystal structure (1WUU) was altered using Biovia Discovery studio 

(Dassault Systèmes), Ser230 and Leu231 were added, selenomethionine residues were varied back to 

native methionine, AMP.PNP was altered to ATP and Mg2+ and the two coordinating water molecules 

were added to the active site. Variants were produced using the mutate feature in Biovia Discovery 

studio. Partial and RESP charges of galactose, Mg2+ and ATP were determined as previously described 

using the Gaussian 09 package [52] and antechamber encoded in Amber 10 [53] respectively.  All MD 

simulations were carried out using the Amber 10 package  and the Amber Parm 99 forcefields [54].  

Prior to simulation the protein, ATP and galactose were soaked in a TIP3P water box using tleap 

encoded in Amber 10.  The dimensions of the box for all proteins were 71.071 Å X 80.431 Å X 87.517 



Å and the minimum distance to the boundary of the protein was set to 8 Å.  Sodium ions were added 

to neutralise the system WT. E174D, R37K and R228K required seven ions, E174Q, D186A and D186N 

required 6 ions, both R105M and R228M required eight ions and R37E required nine.  Minimisation 

and simulation steps were carried out as described by Huang et al [49].  The system was subjected to 

1250 steps of first steepest descent minimisation then conjugate gradient minimisation, the latter 

was carried out with a 0.5 kcal mol-1 Å-2 [55].  The system was then heated from 0K to 300K for 50ps 

and with a collision frequency of 5.0 ps-1, using the Langevin dynamics method [56].  Equilibration 

was then carried out using an NVT ensemble, a periodic boundary was applied and the system 

maintained at 300K for 50 ps.  Production simulation was then carried out for 7 ns with a time step of 

1 fs, reference pressure of 1 atm and at 300 K.  A cut-off distance for Van der Waals interactions was 

set at 10 Å and these long range interactions were calculated using the particle mesh Ewald method 

[57].  Hydrogen convalent bonds were constrained via the SHAKE method [58]. 

 

Analysis of simulations  

Simulations were monitored using perl encoded in Amber and resulting graphs produced using 

GraphPad Prism version 5.03 for Windows (GraphPad Software, San Diego California USA) 

(Supplementary Figure S1).  Cluster analysis, secondary structure analysis and RMSF calculations 

were performed using the ptraj command in Amber 10 and structures visualised using Biovia 

Discovery Studio.  VMD software [59] was used to visualise trajectories, the timeline plugin was used 

to visualise secondary structure and Normal mode wizard was used to carry out principal component 

analysis (PCA) both were calculated using 1 ns of equilibrated trajectory, determined by monitoring 

RMSD over time (Supplementary Figure S2) [60]. 

 

Expression and purification of human galactokinase 

Recombinant human galactokinase was expressed in, and purified from, Escherichia coli 

HMS174(DE3) as previously described except that cobalt agarose resin (His-Select, Sigma, Poole, UK) 

was used in place of nickel agarose [47, 61].  Site-directed mutations were carried out by the 

QuikChange method [62] and the mutated DNA sequences were verified (GATC Biotech, London, UK).  

Variant proteins were expressed and purified using the same protocol as used for the wild-type 

protein.  Purified proteins were stored in buffer A (50 mM Hepes-OH, pH 7.5, 150 mM NaCl, 10% 

(v/v) glycerol, 1 mM DTT), frozen at -80 °C in aliquots of 20-100 µl until required. 



 

Steady-state kinetic analysis of galactokinase 

Galactokinase activity was measured by coupling the reaction to those catalysed by pyruvate kinase 

(EC 2.7.1.4) and lactate dehydrogenase (EC 1.1.1.27) [63].  Rates were measured (in triplicate) at 37 

°C in 96 well plates by monitoring the decline in absorbance at 340 nm in a Thermo Scientific 

Multiskan spectrum platereader.  The total reaction volume was 160 µl and each reaction contained 

50 mM Hepes-OH, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.4 mM phosphoenolpyruvate, 1mM NADH, 

10 %(v/v) glycerol.  Reactions were initiated by the addition of enzyme (125-690 nM depending on 

the variant), monitored for 30 min and the linear portion of the reaction extracted by visual 

examination.  Rates were converted to molar units using the extinction coefficient for NADH (6220 l 

mol-1 cm-1 [64]) and a standard curve to correct for the reduced pathlength in the 96 well plate. 

Typically reactions were arrayed in a eight by ten grid in which ATP concentration was varied along 

one axis and galactose along the other [20, 61].  This enabled the extraction of ten datasets with 

varying ATP concentration and constant galactose concentrations along with eight datasets with 

varying galactose concentration and constant ATP concentrations.  For each of these 18 datasets, 

rates were plotted against the variable substrate concentration and these data fitted to the 

Michaelis-Menten equation (1) using non-linear curve fitting as implemented in GraphPad Prism 6.0 

(GraphPad Software, CA, USA) [65, 66]: 

  
           

          
  (1) 

where v is the initial rate, Vmax,app is the apparent maximal rate, Km,app is the apparent Michaelis 

constant and [S] is the concentration of the variable substrate.  Note that these are apparent kinetic 

parameters since the experiment was carried out in sub-saturating concentrations of substrates.  

Since human galactokinase has an ordered ternary complex mechanism [61], the steady state 

constants were estimated by plotting the Vmax,app values obtained for the various constant 

concentrations of ATP against these ATP concentrations and fitting these data to equation (2) [67, 

68]: 

         
         

            
 (2) 

where Km,ATP is the Michaelis constant for ATP.  A similar process was used to determine Km,gal, the 

Michaelis constant for galactose. 



 

Analytical methods 

Differential scanning fluorimetry (DSF) was used to estimate the thermal unfolding temperature (or 

“melting” temperature, Tm) essentially as previously described [69].  Galactokinase (6.8 µM) was 

mixed with Sypro Orange (Sigma; 5 ×; manufacturer’s concentration definition) in a total volume of 

20 µl.  Fluorescence was monitored as a function of temperature (25 °C to 90 °C 1°C per step, 5 

seconds each step) using a RotorGeneQ qPCR machine (Qiagen).  Data were analysed using 

RotorGeneQ software. 

Native gel electrophoresis was used to show the resistance of the protein to denaturation by the 

chaotropic compound urea.  A discrete band represents folded protein which becomes less discrete 

and more smeared as the urea concentration increases.  The protocol was based on that of Megarity 

et al [47]. Protein (2.55 μM) was incubated with increasing concentrations of Urea (0-2 M) in 10 mM 

HEPES-OH, pH 7.0 and in the presence of native loading buffer (125 mM Tris-HCl, pH8.8, 20%(v/v) 

glycerol, 1%(w/v) DTT and 0.0002%(w/v) bromophenol blue) for 30 min at 37 °C.  Samples were then 

immediately loaded onto 15% native polyacrylamide gels (378 mM Tris-HCl, pH 8.8) and 

electrophoresed for 3 h at 20 mA.  Gels were then stained using 0.25% (w/v) Coomassie Blue R250, 

10% (v/v) acetic acid and 45% (v/v) ethanol and destained in 5% (v/v) ethanol, 7.5% (v/v) acetic acid. 

Protein concentrations were estimated using Bradford’s method with BSA as a standard [70]. 

 

Results and Discussion 

Previously characterised active site variants have altered MD in key regions 

Previous studies have shown that Arg-37 and Asp-186 (and the equivalent residues in galactokinase 

from other species) are critical to human galactokinase’s function.  However, this could be due to loss 

of key functionality in the active site or destabilisation of the protein.  To gain further insight into 

this, we conducted molecular dynamics studies on R37K, R37E, D186N and D186A (variants 

previously characterised biochemically and shown to have reduced activity [47]). 

All of the active site variants studied showed a propensity for change in two regions adjacent to the 

active site (residues 174-179 and 231-240).  This indicates that these regions are susceptible to 

change when wild type (WT) human galactokinase is altered at the active site. In WT the 231-240 



region occurs primarily as alpha helix (65%) but in R37E, R37K and D186A the region exists for the 

highest percentage of time as a 310 helix (88%, 68% and 50% respectively) and D186N primarily as a 

turn (90.7%) (Figure 2a).  All variants show an increase in the presence of a turn in region 174-179 

(Figure 2b).  The proximity of these two regions to the catalytically important residues Glu-174 and 

Arg-228 is particularly interesting. The distance between Glu-174 and Mg2+ increases from 4.3 Å in 

most prevalent WT structure to approximately 6.4 Å in the presence of the turn (in the region 174-

179). The distance between Arg-228 and the Mg2+ increases from 4.8 Å to 5.4 Å when the adjacent 

region is a turn or decreases to 4.5 Å if the same region is a 310 helix (Figure 2c,d). 

These predicted structural and dynamic changes in galactokinase strongly suggest that alteration of 

either R37 or D186 results in more than changes to active site chemistry.  This is consistent with 

previous data that showed that alteration of these residues resulted in proteins that were less stable 

to denaturation by urea [47].  The MD simulation also suggests that the two regions identified here 

may be important in catalysis and for maintaining wild-type structure and dynamics. 

 

Arginine 105 is implicated in ATP binding 

Alteration of Arg-105 to methionine reduced the turnover number (kcat) approximately twofold (Table 

1; Supplementary Figure S3) and increased Km,ATP by approximately the same factor.  Consequently, 

the specificity constant (kcat/Km,ATP) was also reduced.  However, Km,gal was relatively unaffected.  This 

suggests that this residue has a role in the initial interaction between the enzyme and ATP, consistent 

with the predictions from previous computational studies [49].  The removal of the positive charge at 

this position has no major changes on the overall, predicted dynamics of the protein (Figure 3).  DSF 

indicated no significant alteration of Tm (55.4±0.2 °C) compared to WT (55.7±0.3 °C) indicating that 

stability towards thermal denaturation was not altered by this variation (Table 2; Supplementary 

Figure S4).  R105M also showed similar resistance to denaturation by urea to the wild-type 

(Supplementary Figure S5). 

Arg-105 was previously shown to form an electrostatic interaction with Glu-174 in a molecular 

dynamics simulation [49].  The simulation of the neutral alteration from arginine to methionine at 

this position predicted that this variant would cause drifting of all ligands and eventual covalent 

bonding of Glu-174 to Mg2+ [49].  MD carried out in this study indicated that region 231-240 has 

similar structural propensities to WT whereas the presence of a turn between 174-179 increased by 

60% (Figure 3a,b).  This was reflected by increased root mean square fluctuation (RMSF) and 

increased RMSD of normal modes in these two regions (Figure 3c,d), however increased or 



decreased flexibility in these two regions does not affect stability of the protein.  The MD simulation 

carried out for this study provided no evidence for an electrostatic interaction between Arg-105 and 

Glu-174 suggesting the effects on ATP binding are not due to interaction with Glu-174 (Figure 3e). 

 

Alteration of arginine 228 impacts on substrate interactions 

When Arg-228 was altered to either lysine or methionine there was a modest increase in turnover 

number and an increase in Km,ATP (Table 1; Supplementary Figure S3).  In the case of R228M, there 

was a substantial increase in Km,gal, however, the Michaelis constant for this substrate remains 

essentially unchanged in R228K. Both variants are significantly destabilised compared to the wild-

type (Table 2; Supplementary Figure S4, S5).  Similar to the Arg-105 mutants, the presence of the 

turn from 174-179 showed an increase to around 80% in both Arg228 variants (Figure 4a).  The 

region 231-240 is of particular note in R228K where the percentage of time as a turn increases to 

93% for residues 233 and 234.  However, there is a large increase in the percentage of time, during 

which the residues 235 and 236 form no secondary structure. This may partly explain to the 

significant decrease in Tm (Figure 4b; Table 2).  Another factor which may contribute to the decrease 

in Tm (particularly for R228M) is the increase in flexibility of multiple regions i.e. around residues 100 

and 350 (Figure 4c). 

 

A negative charge at position 174 is critical for catalysis 

Alteration of Glu-174 to aspartate resulted in an enzyme with steady state kinetic parameters very 

similar to the wild-type (Table 1, Supplementary Figure S3).  However, when the residue was altered 

to asparagine there was no detectable activity.  This suggests that the presence of the negative 

charge at this position is critical to the function of the enzyme.  However, the exact distance of this 

charge from the backbone is less critical (aspartate has a shorter side chain, compared to glutamate).  

E174D was not significantly destabilised compared to the wild-type; however, E174Q became 

unstable (Table 2; Supplementary Figure S4, S5). 

Despite being very similar to the wild-type, MD simulations of E174D indicated that this alteration 

introduces α-helix into the region 174-179 (Figure 5a).  The significant thermal destabilisation of 

E174Q is not explained by RMSF, which is generally similar to WT enzyme (figure 5c) but may be 

explained by the loss of structure in the 231-240 region:  approximately 99.6% of the time this region 



formed no defined secondary structure compared to 0% in the WT simulation (Figure 5b). Despite 

alteration in the propensity of secondary structures in the 231-240 and the 174-179 regions and 

alteration to RMSF per residue, E174D is not significantly different to WT in terms of kinetics or Tm 

which suggests that as long as the 231-240 region remains mostly structured the enzyme is stable. 

 

Conclusions 

These data demonstrate the critical role of Glu-174 in catalysis by galactokinase, supporting the 

predictions made in our previous computational chemistry study.  Our findings are consistent with 

both the active site base and direct attack mechanisms of catalysis.  However, they do highlight the 

fact that active site residues hypothesised to be involved in the active site base mechanism are also 

required for wild-type protein stability.  Therefore, loss of activity on alteration of these residues is 

insufficient evidence that they are vital for catalysis. 

Our findings further highlight the importance of the conformational dynamics of two regions in 

controlling the activity of this enzyme.  This knowledge may be important in the design of novel 

galactokinase inhibitors and engineered forms of the enzyme with novel specificities.  Compounds 

which induce structural and dynamic transitions similar to those seen in the more unstable forms of 

the protein are more likely to be successful inhibitors of the enzyme.  Manipulation of the dynamics 

of these regions may result in altered activity or specificity.  One previous observation is that 

increased promiscuity of human galactokinase is generally accompanied by reduced activity [27].  

Ensuring that the structural and dynamic behaviour of these regions remains close to wild-type 

(perhaps by introducing compensatory changes) may enable the identification of variant enzymes 

with broad specificity and high activity. 
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Figures 

Figure 1:  Residues considered in this study are part of, or close to, the active site:  Arg-37, Red; Arg- 

105 blue; Glu-174; yellow; Asp-186 purple and Arg-228 green. 

 

Figure 2:  Molecular dynamics simulations of five galactokinase variants previously shown to have 

reduced activity.  (a) Secondary structure of residues 231-240 showing percentage time during the 1 

ns of the stable trajectory (as determined from RMSD values) each secondary structure feature 

occurs. (b) Secondary structure of residues 174-179 (which are adjacent to active site) showing 

percentage time during the 1 ns of the stable trajectory (as determined from RMSD values) each 

secondary structure feature occurs. (c) Structures representing changes observed in residues 174-

179 (red) and 231-240 (yellow) and the distance from Glu-174 and Arg-228 to the Mg2+ ion. (i) The 

unstructured region at 174-179 and alpha helix at 231-240. (ii) Turn at 174-179 and 231-240. (iii) Turn 

at 174-179 and 310 helix at 231-240. 

 

Figure 3:  Molecular dynamics simulation of galactokinase R105M. (a) and (b) The secondary 

structures of residues 174-179 and 231-240 respectively. (c) RMSF of R105M by residue compared to 

the WT enzyme.  (d) RMSD by residue (calculated using NMWiz plugin of VMD) Normal modes 

calculated by the principle component method and subtracted from values obtained for Wild-Type 

enzyme under the same conditions to allow easy comparison.  (e) The distance from Arg-105 to Glu-

174 throughout the MM trajectory for the Wild-type enzyme. 

 

Figure 4:  Molecular dynamics simulation of galactokinase R228K and R228M. (a) and (b) The 

secondary structured of residues 174-179 and 231-240 respectively. (c) RMSF by residue for R228K 

and R228M compared to WT galactokinase. 

 

Figure 5:  Molecular dynamics simulation of galactokinase E174D and E174Q. (a) and (b) The 

secondary structures for residues 174-179 and 231-240 respectively. (c) RMSF by residue for E174D 

and E174Q compared to WT galactokinase. 
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Table 1:  Steady-state kinetic parameters of human galactokinase and variants.  For experimental 
conditions, see Materials and Methods. 

Protein Km,ATP (µM) Km,Gal (µM) kcat (s
-1) kcat/Km,ATP (s-1 mM-1) kcat/Km,Gal (s

-1 mM-1) 

Wild-type 4.0 ± 1.1 330 ± 70 1.7 ± 0.1 430 ± 110 10.1 ± 1.2 

E174D 3.9 ± 1.1 220 ± 70 1.6 ± 0.1 340± 74 7.6 ± 1.9 

R228M 9.4 ± 1.3 670 ± 130 2.3 ± 0.1 240 ± 30 3.3 ± 0.4 

R228K 14.9 ± 2.8 310 ± 100 3.7 ± 0.1 250 ± 40 19.6 ± 2.9 

R105M 8.3 ± 0.1 260 ± 130 0.7 ± 0.1 98 ± 9 2.7 ± 1.1 

 
Values are shown ± the standard error as determined by the fitting procedure.Table 2:  Thermal 
stability of human galactokinase and variants.  Tm values were determined using differential 
scanning fluorimetry.  Statistical significance was determined by ANOVA.

Protein Tm (°C) 

Wild-type 55.72 ± 0.34 

R105M 55.42 ± 0.15ns 

E174D 55.13 ± 0.35ns 

E174Q 52.50 ± 0.76*** 

R228K 51.30 ± 0.23*** 

R228M 51.68 ± 1.33*** 

 

Values are the mean of three determinations and are shown ± the standard errors of these means.  
One-way ANOVA was used to determine if Tm was significantly different from that determined for 
the wild-type enzyme.  ns, not significant (p>0.05); *** significant p<0.01. 
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Supplementary Figure S1:  Energy calculated per picosecond of simulation using the perl command in AmberTools. 
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Supplementary Figure S2:  Root mean square deviation (rmsd) measured throughout the trajectory compared to the initial 
minimised structure. 
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Supplementary Figure S3:  Steady state kinetics for wild-type human galactokinase and each of the variants studied here.  
Points are the mean of three determinations and error bars the standard errors of these means.  The lines were obtained 
by non-linear curve fitting as described in Materials and Methods. 
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Supplementary Figure S4: First derivative of differential scanning flourimetry data for human galactokinase and the 
variants studied here.  Values for Tm are reported in Table 2. 

 

Supplementary Figure S4
Click here to download Supplementary Material (for online publication): Suppl Figure S4 DSF.docx

http://ees.elsevier.com/bbapro/download.aspx?id=270118&guid=2acac359-7ddc-45d6-b0d4-9a11deca08f3&scheme=1


 

[Urea] (M) 

[Urea] (M) 

Supplementary Figure S4:  Native PAGE with increasing concentration of urea.  For details of conditions etc, please see Materials and 
Methods 
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