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SPECTRALLY ISOMETRIC ELEMENTARY OPERATORS

MARTIN MATHIEU AND MATTHEW YOUNG

Dedicated to Professor Richard V. Kadison on the occasion of his 90th birthday.

Abstract. We present criteria for unital elementary operators (of small
length) on unital semisimple Banach algebras to be spectral isometries.
The surjective ones among them turn out to be algebra automorphisms.

1. Introduction

The study of isometries on Banach spaces is a vast and active area of re-

search. See, for example, the proceedings volume [12] for some recent de-

velopments. Many of the results describe (linear, surjective) isometries be-

tween certain types of spaces in considerable detail, often one discovers a

high degree of compatibility with algebraic or order-theoretic structure. For

our purposes, we highlight Kadison’s theorem [13] which states that, when

T : A→ B is a surjective linear isometry between two unital C*-algebras A

and B, then T1 is a unitary in B and the mapping x 7→ (T1)−1Tx, x ∈ A
is a Jordan *-isomorphism (that is, it preserves selfadjoint elements and

squares). A fortiori, if T1 = 1 (that is, T is unital), T preserves invertibil-

ity of elements in both directions; hence the spectrum σ(x) of each x ∈ A
agrees with σ(Tx) and thus the spectral radius r(x) remains unaltered. We

will refer to a linear mapping T with the property r(Tx) = r(x) for all x in

the domain of T as a spectral isometry.

It has been an open question for some time, see [16] and [14], whether the

following non-selfadjoint version of Kadison’s theorem holds: Every unital

surjective spectral isometry between unital C*-algebras is a Jordan isomor-

phism. (It is a fact that a unital surjective linear mapping is an isometry if

and only if it is a selfadjoint spectral isometry.) As it stands, this conjecture

is still open though there has been substantial progress towards it, see, e.g.,

[1], [8], [15], [18] and the references contained therein. The present paper
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2 M. MATHIEU AND M. YOUNG

aims to contribute to these studies but rather than putting additional con-

ditions on the algebras involved, we investigate special spectral isometries

on arbitrary semisimple Banach algebras, that is, we put the constraints on

the operators.

Let A be a complex, unital Banach algebra. A linear mapping S : A→ A

is said to be an elementary operator if there exist a1, . . . , an, b1, . . . , bn ∈ A
such that Sx =

∑n
j=1 ajxbj for all x ∈ A. As such a representation of S is far

from unique, we define the length `(S) of S as follows. For a, b ∈ A, let Ma,b

stand for the two-sided multiplication x 7→ axb. If S = 0 then `(S) = 0. If

S 6= 0 then `(S) is the smallest n ∈ N such that S can be written as a sum

of n two-sided multiplications. We shall denote the algebra of all elementary

operators on A by È (A) and the space of all elementary operators of length

at most n by È n(A).

Elementary operators on Banach algebras have been studied under a va-

riety of aspects for many decades. Recent interest in elementary operators

on C*-algebras has been sparked by the fact that the completely positive

ones describe the quantum channels in Quantum Information Theory. Sev-

eral newer investigations have been compiled in [10]. Elementary operators

that are spectrally bounded , that is, r(Sx) ≤ M r(x) for some M ≥ 0 and

all x ∈ A, are investigated in [4] and [6], extending earlier work in [9], for

instance. General spectrally bounded operators do not allow for a detailed

structure theory; for example, every bounded linear operator from a com-

mutative C*-algebra is spectrally bounded. Nevertheless, there are some

surprisingly strong structural results; once again we refer to [15] for details

and references. Our aim in this paper is to determine when elementary op-

erators are spectrally isometric; this problem does not seem to have been

attacked so far.

Suppose S =
∑n

j=1Maj ,bj for n-tuples a = (a1, . . . , an), b = (b1, . . . , bn) ∈
An. We will abbreviate this fact by S = Sa,b whenever convenient. With

this notation, the two questions we pursue in the following are

(i) Suppose S = Sa,b; which conditions on a and b ensure that S is a

spectral isometry?

(ii) Suppose S is a spectral isometry; can we represent S = Sa,b with

“nice” properties of a and b?

Throughout we will shall make the assumption that S is unital (S1 = 1)

and at times that S is surjective, too. The main results of this paper are

Theorems 4.2 and 4.4 which, somewhat surprisingly, state that conditions

on a and b which imply that S = Sa,b is spectrally bounded together with
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the assumption that S is unital already entail that S is a spectral isome-

try. If, moreover, S is surjective, it turns out to be an inner automorphism.

In Corollary 4.6 we prove that every unital surjective spectrally isometric

S ∈ È 3(A) on a C*-algebra A is an automorphism. On the other hand, we

provide an example (Example 4.7) of a non-surjective spectrally isometric

unital elementary operator of length three which is not a Jordan homomor-

phism.

2. Preliminaries

In the following A and B will denote unital Banach algebras over the com-

plex numbers C. We let rad(A) stand for the Jacobson radical of the alge-

bra A while Z(A) denotes its centre.

The following basic properties of spectral isometries are by now standard;

see, e.g., [16], [18].

Lemma 2.1. Let T : A→ B be a surjective spectral isometry. Then

T rad(A) = rad(B).

As a result, if A is semisimple (i.e., rad(A) = 0) then B is semisimple,

and we can without loss of generality always assume that our algebras are

semisimple (in order to avoid formulating the results “modulo the radical”).

Lemma 2.2. Let T : A→ B be a spectral isometry where A is semisimple.

Then T is injective.

Consequently, in this case, a surjective spectral isometry has an inverse

which is also a spectral isometry. Moreover, such a mapping is a linear

topological isomorphism by [2, Theorem 5.5.2].

Lemma 2.3. Let T : A → B be a surjective spectral isometry where A is

semisimple. Then TZ(A) = Z(B).

This result has a number of very neat applications. Since Z(A) is a com-

mutative semisimple Banach algebra whenever A is a semisimple Banach

algebra, we can apply Gelfand theory to it. As norm and spectral radius

coincide for continuous functions on a compact Hausdorff space, a spectral

isometry turns into an isometry (with respect to the spectral norm) when

restricted to the centres. Thus one can apply the very rich theory of isome-

tries which has been successfully exploited in [19]. While it is difficult to

control the behaviour of T1 when T is just a spectrally bounded operator

(see the discussion in [15]), if T is a surjective spectral isometry, then T1
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is central and σ(T1) is always contained in the unit circle T ([19, Proposi-

tion 2.3]). By the afore-mentioned method, this follows immediately from

a description of non-unital isometries on subalgebras of algebras of con-

tinuous functions due to deLeeuw–Rudin–Wermer ([11, Corollary 2.3.16]).

Replacing T by x 7→ (T1)−1Tx, x ∈ A, if necessary, we can henceforth

assume that our spectral isometries are unital. This will turn out to be an

important simplification.

Before we move on to our main theme, we shall illustrate our techniques

by an example of an isometric elementary operator.

Example 2.4. Let A ⊆ B(H) be a unital C*-algebra acting faithfully on a

Hilbert space H. Let s1, s2 be two isometries in A satisfying s1s
∗
1 + s2s

∗
2 = 1

(wherefore they have orthogonal ranges). Let S ∈ È (A) be defined by S =

Ms1,s
∗
1

+ Ms2,s
∗
2
. Then S is unital and completely positive. Moreover, S is

isometric, multiplicative and not surjective. The quickest way to check the

isometric property probably is by observing that∥∥∥(s1 s2
0 0

)(
x 0
0 x

)(
s∗1 0
s∗2 0

)∥∥∥2
=
∥∥∥(s1 s2

0 0

)(
x∗ 0
0 x∗

)(
s∗1 0
s∗2 0

)(
s1 s2
0 0

)(
x 0
0 x

)(
s∗1 0
s∗2 0

)∥∥∥
=
∥∥∥(s1 s2

0 0

)(
x∗x 0
0 x∗x

)(
s∗1 0
s∗2 0

)∥∥∥
=
∥∥∥(x 0

0 x

)(
s∗1 0
s∗2 0

)(
s1 s2
0 0

)(
x∗ 0
0 x∗

)∥∥∥
=
∥∥∥(x∗x 0

0 x∗x

)∥∥∥ =
∥∥∥(x 0

0 x

)∥∥∥2,
since

(
s∗1 0
s∗2 0

)(
s1 s2
0 0

)
=

(
1 0
0 1

)
, and that

‖Sx‖ =
∥∥∥(Sx 0

0 0

)∥∥∥ =
∥∥∥(s1xs∗1 + s2xs

∗
2 0

0 0

)∥∥∥
=
∥∥∥(s1 s2

0 0

)(
x 0
0 x

)(
s∗1 0
s∗2 0

)∥∥∥.
Let x, y ∈ A. Then

(Sx)(Sy) = (s1xs
∗
1 + s2xs

∗
2)(s1ys

∗
1 + s2ys

∗
2)

= s1xs
∗
1s1ys

∗
1 + s2xs

∗
2s1ys

∗
1 + s1xs

∗
1s2ys

∗
2 + s2xs

∗
2s2ys

∗
2

= s1xs
∗
1s1ys

∗
1 + s2xs

∗
2s2ys

∗
2 = S(xy)

so that S is multiplicative.

Finally, suppose S is surjective and thus s1xs
∗
1 + s2xs

∗
2 = s1 for some

x ∈ A. Then x = s∗2s2xs
∗
2s2 = s∗2s1s

∗
2 = 0 which is impossible.
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Similar arguments will be used regularly in the next two sections, with

the norm replaced by the spectral radius.

3. Spectrally bounded elementary operators

Let A be a semisimple unital Banach algebra. The recent papers [4]–[6]

by Boudi and Mathieu contain necessary and sufficient conditions for an

elementary operator S on A to be spectrally bounded; some restrictions on

the length of S had to be imposed too. We shall recall some of these results

below as we will need them in the discussion on spectral isometries in the

next section. However, we will throughout restrict our attention to the unital

case, that is, we assume that S1 = 1. This is justified by the properties of

surjective spectral isometries as explained in the previous section and the

fact that x 7→ uSx, x ∈ A is another elementary operator on A for any

u ∈ A. We shall make this assumption on S even if S is not surjective (and

it will at times help to find out whether S is surjective or not).

To begin with, the simple identity r(Ma,bx) = r(bax) = r(Mba,1x) to-

gether with Pták’s description of spectrally bounded one-sided multipli-

cations ([21], see also [9] for an alternative proof) tells us that Ma,b is

spectrally bounded if and only if ba ∈ Z(A). Now if ab = Ma,b1 = 1

then ba = baab = abab = 1 too. As a result, b = a−1 and we find that

Ma,b = Ma,a−1 is an inner automorphism of A, thus a surjective spectral

isometry. In this way, we obtain our first observation.

Proposition 3.1. Let A be a unital semisimple Banach algebra and let

a, b ∈ A. The following conditions are equivalent.

(a) Ma,b is unital and spectrally bounded;

(b) Ma,b is a unital spectral isometry;

(c) a is invertible with b = a−1.

In each case, Ma,b is automatically surjective.

When the length of the elementary operator is bigger than 1, the situ-

ation becomes of course more involved. This is due to the different choices

for the coefficients representing the same elementary operator we may have.

From [6, Corollary 2.6] we immediately obtain the following result.

Proposition 3.2. Let A be a semisimple unital Banach algebra. Let S ∈
È n(A) be unital. Suppose that S = Sa,b with biai ∈ Z(A) for all 1 ≤ i ≤ n

and biaj = 0 for all i < j. Then S is a spectral contraction, that is, r(Sx) ≤
r(x) for all x ∈ A.
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Proof. Note that the different convention “i < j” we use here simply amounts

to a re-enumeration of the coefficient n-tuples in comparison with [6, Corol-

lary 2.6]. From
∑n

i=1 aibi = 1 we obtain bk =
∑n

i=1 bkaibi =
∑k

i=1 bkaibi

for each 1 ≤ k ≤ n. Hence bkak =
∑k

i=1 bkaibiak = (bkak)
2 so that each

ek = bkak is a central idempotent in A. Moreover, b1 = b1e1 and an = anen.

In particular, for each 1 ≤ i ≤ n, r(Mai,bix) ≤ r(x) for all x ∈ A. Following

the argument in the proof of [6, Corollary 2.6], see also the end of the proof

of [6, Proposition 2.5], we find that r(Sx) ≤ r(x) for all x ∈ A. �

It was shown in [4, Proposition 2.3] that S = Ma,b + Mc,d is spectrally

bounded if ba, dc ∈ Z(A) and bc = 0. Note that this condition is however not

necessary as Ma,1+M1,d is spectrally bounded if and only if a, d ∈ Z(A) ([9,

Theorem B]). Under the assumption that S is unital, we obtain a stronger

result.

Corollary 3.3. Let A be a semisimple unital Banach algebra. Suppose S =

Ma,b +Mc,d is unital and e = ba, f = dc ∈ Z(A) and bc = 0. Then S is an

injective spectral contraction, and S is surjective if and only if e+f = 1. In

the latter case, there is an invertible element w ∈ A such that S = Mw,w−1.

Proof. From the above proposition we know that both e and f are central

idempotents and that S is a spectral contraction. Moreover, b = be and

c = cf .

Take x ∈ A with axb + cxd = 0. Then 0 = cxdc = cxf = cx and hence

fx = 0. Substituting this back yields 0 = baxb = exb = xb and hence

xe = 0. From S1 = 1 we conclude that x = (ab + cd)x = abex + cdfx = 0

and thus S is injective.

Suppose that e + f = 1. From ef = 0 we obtain cxb = cfxbe = 0 for

all x and thus, setting w = ae + c, it is straightforward to check that w is

invertible with inverse b+ fd. Since

wxw−1 = (ae+ c)x(b+ fd) = axb+ cxb+ aexfd+ cxfd

= axb+ cxd = Sx
(3.1)

for all x ∈ A, we find that S is an inner automorphism, in particular sur-

jective.

Suppose that e + f 6= 1. Then there must be a primitive ideal P in A

such that eP + fP 6= 1P (where xP = x + P denotes the coset in A/P ). As

Z(A/P ) = C1P this implies that eP = fP = 1P (eP = fP = 0 is ruled out

by S1 = 1). From

(3.2) dPaP = dP (aP bP + cPdP )aP = (eP + fP )dPaP = 2 dPaP
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we obtain dPaP = 0. If x ∈ A satisfies aPxP bP + cPxPdP = aP then xP =

dP cPxPdP cP = dPaP cP = 0 which is impossible since eP = bPaP = 1.

Therefore S cannot be surjective. �

4. Spectrally isometric elementary operators

In Example 2.4 we determined that a certain unital elementary operator of

length 2 is isometric and multiplicative while not surjective. Using similar

ideas, we will now obtain a more general result for spectral isometries which

strengthens Corollary 3.3 above.

We first need to have a look at the behaviour of an elementary operator

with respect to primitive quotients. Let A be a semisimple unital Banach

algebra and let P ⊆ A be a primitive ideal in A. Let S be an elementary

operator on A with `(S) = n > 0. As SP ⊆ P we obtain an induced

elementary operator SP ∈ È n(A/P ) via SPxP = (Sx)P , where xP = x+ P

denotes the coset of x ∈ A. Clearly, if S = Sa,b then SP = SaP ,bP , and S is

unital if and only if SP is unital for every primitive ideal P .

Denote by Prim(A) the set of all primitive ideals of A. If SP is spectrally

bounded for each P ∈ Prim(A), say r(SPxP ) ≤MP r(xP ) for some MP ≥ 0

and all x ∈ A, and if M = supP MP < ∞, then S is spectrally bounded

with r(Sx) ≤M r(x) for all x ∈ A. However, assuming that S is spectrally

bounded, we cannot conclude that each SP is spectrally bounded in general.

From Theorem 3.5 in [4], see also [6, Corollary 3.7], we can deduce the

following characterisation for spectral boundedness of a unital elementary

operator S ∈ È 2(A). Note that the exceptional case pointed out in [6,

Corollary 3.7] cannot occur if S1 = 1.

Lemma 4.1. Let A be a semisimple unital Banach algebra. Let S ∈ È 2(A)

be unital. Then S is spectrally bounded if and only if, for each P ∈ Prim(A),

there exist aP , bP , cP , dP ∈ A/P such that SP = MaP ,bP + McP ,dP and

eP = bPaP , fP = dP cP are central idempotents in A/P and bP cP = 0.

In particular, S is a spectral contraction.

Proof. By Corollary 3.3, the conditions on the coefficients imply that each

SP is a spectral contraction. Hence so is S which proves the “if”-part.

To obtain the “only if”-part suppose that S = Mu,v + Ms,t for some

u, v, s, t ∈ A is unital and spectrally bounded. Let P ∈ Prim(A). By [4,

Theorem 3.5], there is βP ∈ C such that

(vP + βP tP )uP ∈ C1P and tP (sP − βPuP ) ∈ C1P
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and either (vP +βP tP )(sP −βPuP ) = 0 or βP = 0 and tPuP = 0. In the first

case, we put bP = vP + βP tP , aP = uP , cP = sP − βPuP and dP = tP . Then

MaP ,bP +McP ,dP = MuP ,vP+βP tP +MsP−βPuP ,tP = MuP ,vP +MsP ,tP = SP

and bP cP = 0. From SP1P = 1P it follows as in Corollary 3.3 that eP = bPaP

and fP = dP cP are central idempotents in A/P .

In the second case, put aP = sP , bP = tP , cP = uP and dP = vP . Clearly,

SP = MaP ,bP +McP ,dP and the other conditions are satisfied as well.

In either case, each SP , P ∈ Prim(A) is a spectral contraction, so S is

too. �

Theorem 4.2. Let A be a semisimple unital Banach algebra. Suppose S ∈
È 2(A) is unital. The following conditions are equivalent.

(a) S is spectrally bounded;

(b) S is spectrally isometric;

(c) S is multiplicative.

Proof. If S is multiplicative and unital then σ(Sx) ⊆ σ(x) for all x ∈ A;

hence S is a spectral contraction which proves (c) ⇒ (a). Evidently (b) ⇒
(a). We now show (a)⇒ (b) and (a)⇒ (c) simultaneously.

Let P ∈ Prim(A) and choose aP , bP , cP , dP ∈ A/P such that SP =

MaP ,bP + McP ,dP and the other conditions in Lemma 4.1 are satisfied. As

eP = bPaP and fP = dP cP are central idempotents in A/P they can only

be either 0 or 1P . We distinguish the following four cases.

Case 1: eP = fP = 0. From aP bP + cPdP = 1P we obtain cPdP cP = cP and

bPaP bP = bP , that is,

(4.1) cPfP = cP and bP eP = bP .

In the case under consideration this would imply cP = bP = 0 which con-

tradicts SP1P = 1P ; so this case cannot occur.

Case 2: eP = 1, fP = 0. From (4.1) we obtain SP = MaP ,bP which is a

spectral isometry as bPaP = 1P . In fact, bP = a−1P , cf. Proposition 3.1, hence

SP is an inner automorphism in this case.

Case 3: eP = 0, fP = 1. This case is treated analogously to the previous

one, and SP = McP ,c
−1
P

.
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Case 4: eP = fP = 1. From (3.2) we get dPaP = 0 and a straightforward

computation shows that SP is multiplicative in this case. Moreover,

r(SPxP ) = r
((

SPxP 0
0 0

))
= r
((

aP cP
0 0

)(
xP 0
0 xP

)(
bP 0
dP 0

))
= r
((

bP 0
dP 0

)(
aP cP
0 0

)(
xP 0
0 xP

))
= r
((

bPaP 0
0 dP cP

)(
xP 0
0 xP

))
= r
((

xP 0
0 xP

))
= r(xP )

for all x ∈ A.

We conclude that SP is a spectral isometry in each case and therefore,

r(Sx) = sup
P
r(SPxP ) = sup

P
r(xP ) = r(x)

for all x. The fact that SP is multiplicative for all P completes the argument.

�

Note that Theorem 4.2 entails in particular that a unital spectrally

bounded elementary operator of length at most two is injective. To de-

termine when such an operator is surjective we employ a similar criterion

as in Corollary 3.3; however, since we do not have a global condition on the

coefficients, the argument is slightly more involved.

Following the notation used in [6], for S ∈ È n(A), S = Sa,b, we write S∗

for the elementary operator S∗ = Sb,a.

Proposition 4.3. Let A be a semisimple unital Banach algebra. Suppose

S ∈ È 2(A) is unital and spectrally bounded. Then S is surjective if and only

if S∗1 = 1.

Proof. We first note the following. If S = Mu,v + Ms,t with u, v, s, t ∈ A

then S∗ = Mv,u +Mt,s and therefore

(S∗)P = MvP ,uP +MtP ,sP = (SP )∗;

thus it is legitimate to simply write S∗P . As A is semisimple, S∗1 = 1 if and

only if S∗P1P = 1P for all P ∈ Prim(A). Continuing to use the notation in

the proof of Lemma 4.1,

S∗P1P = vPuP + tP sP = bPaP + dP cP = eP + fP

with bP cP = 0 and bP eP = bP (where eP = bPaP ) and cPfP = cP (where

fP = dP cP ) whichever case for P ∈ Prim(A) occurs in this lemma.
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Suppose now that S∗1 6= 1. Pick P ∈ Prim(A) such that S∗P1P 6= 1P

and write SP = MaP ,bP +McP ,dP in a representation as in Lemma 4.1. Then

eP + fP = S∗P1P 6= 1P and, since both eP , fP are central idempotents in

A/P , we must have eP = fP = 1. It follows from (3.2) and the subsequent

argument that dPaP = 0 and SP is not surjective. As a result, S is not

surjective.

Assuming on the other hand that S∗1 = 1, which means eP + fP =

S∗P1P = 1P for all P ∈ Prim(A), we can follow the argument in the proof of

Corollary 3.3 to show that SP is an inner automorphism of A/P in this case.

Indeed, setting wP = aP eP + cP we find that wP is invertible with inverse

bP + fPdP , because ePfP = 0. The same calculation as in identity (3.1)

entails that SP = MwP ,w
−1
P

.

Define T : A→ A by (Tx)P = Mw−1
P ,wP

xP for x ∈ A. Since A is semisim-

ple, it is easily verified that T is well defined and that TS = ST = idA.

Consequently, T = S−1, in particular, S is surjective. �

Next we extend this condition for surjectivity to elementary operators of

arbitrary length. However, in the absence of an if-and-only-if condition for

spectral boundedness we have to use the slightly stronger assumptions of

Proposition 3.2 instead which in fact implies that the operator is spectrally

isometric, thus extending Corollary 3.3 and part of Theorem 4.2.

Theorem 4.4. Let A be a semisimple unital Banach algebra. Let S ∈ È n(A)

be unital. Suppose that S = Sa,b with ei = biai ∈ Z(A) for all 1 ≤ i ≤ n

and biaj = 0 for all i < j. Then S is a spectral isometry. Moreover, the

following are equivalent.

(a) S is surjective;

(b)
∑n

i=1 ei = 1;

(c) S = Mw,w−1 for an invertible element w ∈ A.

Proof. First recall from the proof of Proposition 3.2 that each ei = biai is

a central idempotent in A and that b1 = b1e1, an = anen. We shall obtain

more complicated relations for the other coefficients of S below.

By Proposition 3.2, r(Sx) ≤ r(x) for all x ∈ A so it suffices to show that

r(Sx) ≥ r(xP ) for all x ∈ A and P ∈ Prim(A) (where we now changed the

notation to xP = x + P in order to avoid the conflict with subscripts). We

accomplish this by induction on n. The cases n = 1 and n = 2 are Proposi-

tion 3.1 and Theorem 4.2, respectively. Thus suppose that S =
∑n+1

j=1 Maj ,bj

with n ≥ 2 and ei = biai ∈ Z(A) and biaj = 0 for all 1 ≤ i < j ≤ n+ 1 and

that the statement holds for elementary operators of length at most n. Let
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a = (a1, . . . , an+1), b = (b1, . . . , bn+1) and x = diag(x, . . . , x). Then, with bt

denoting the obvious column, we have

Sx = axbt

and hence

r(Sx) = r
(
btax

)
= r
(

b1a1 0 . . . 0
b2a1 b2a2 . . . 0

...
...

...
bn+1a1 bn+1a2 . . . bn+1an+1



x 0 . . . 0
0 x . . . 0
...

. . .
...

0 0 . . . x

).
Applying the same reasoning in the primitive quotient A/P we have

r(SPx
P ) = r

(
eP1 0 . . . 0

(b2a1)
P eP2 . . . 0

...
...

...
(bn+1a1)

P (bn+1a2)
P . . . ePn+1



xP 0 . . . 0
0 xP . . . 0
...

. . .
...

0 0 . . . xP

),
where ePi ∈ {0, 1P}, 1 ≤ i ≤ n + 1. If ePn+1 = 0 then aPn+1 = aPn+1e

P
n+1 = 0

and therefore `(SP ) ≤ n so that we can apply the induction hypothesis to

get r(Sx) ≥ r(xP ). Otherwise, for λ ∈ C and y ∈ A,

(
λ−


eP1 0 . . . 0

(b2a1)
P eP2 . . . 0

...
...

. . .
...

(bn+1a1)
P (bn+1a2)

P . . . 1P



xP 0 . . . 0
0 xP . . . 0
...

. . .
...

0 0 . . . xP

)


0
0
...
yP



=


λ− eP1 xP 0 . . . 0
−(b2a1)

PxP λ− eP2 xP . . . 0
...

...
. . .

...
−(bn+1a1)

PxP −(bn+1a2)
PxP . . . λ− xP




0
0
...
yP



=


0
0
...

(λ− xP )yP

 .

Let λ ∈ σ(xP ) be such that |λ| = r(xP ). Then λ belongs to the left approxi-

mate point spectrum of xP and thus we can take a sequence (yPn )n∈N of unit

elements in A/P with the property (λ − xP )yPn → 0 (n → ∞). The above

calculations show that r(SPx
P ) ≥ |λ| = r(xP ).

Since this argument yields that r(Sx) ≥ r(xP ) for every primitive ideal P ,

we conclude that S is a spectral isometry.

Turning to the equivalence of the three conditions listed, evidently (c)⇒
(a). In order to establish (a)⇒ (b), let us suppose that

∑n
i=1 ei 6= 1. Then

there is P ∈ Prim(A) such that
∑n

i=1 e
P
i 6= 1P . As Z(A/P ) = C1P this
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entails that there are k, ` ∈ {1, . . . , n}, k < ` such that ePk = eP` = 1P . (It is

easy to verify that the assumption S1 = 1 rules out the possibility that all

ePi = 0, 1 ≤ i ≤ n.) Take x ∈ A. Upon multiplying the identity

SPx
P =

n∑
j=1

aPj x
P bPj

first on the left by bPk and then on the right by aPk and noting that bPi a
P
j = 0

for all i < j we obtain in succession

bPk (SPx
P ) =

k−1∑
j=1

bPk a
P
j x

P bPj + bPk a
P
k x

P bPk ,

bPk (SPx
P )aPk = ePk x

P ePk = xP .

Consequently no x ∈ A can satisfy SPx
P = aP` as the last identity on the left

hand side yields bPk a
P
` a

P
k = 0 but xP = 0 is incompatible with bP` a

P
` = 1P .

We conclude that SP cannot be surjective wherefore S cannot be surjective

either.

Finally, to show (b) ⇒ (c) we note first that
∑n

i=1 ei = 1 implies that

all ei’s are mutually orthogonal (which follows at once from the fact that

Z(A) is a commutative semisimple Banach algebra or purely algebraically).

Consequently, any sum of the form
∑

i∈I
∑

j∈J eiej with I, J ⊆ {1, . . . , n}
reduces to

∑
k∈I∩J ek (which we interpret as 0 if I ∩ J = ∅). This fact will

be used repeatedly in the sequel.

From S1 =
∑n

j=1 ajbj = 1 we obtain

(4.2) bk = bk

n∑
j=1

ajbj = bk

(k−1∑
j=1

ajbj + ek

)
and

(4.3) ak =
n∑
j=1

ajbj ak =
( n∑
j=k+1

ajbj + ek

)
ak

for each 1 ≤ k ≤ n. Our next claim is that

(4.4) bk = bk

k∑
j=1

ej and ak = ak

n∑
j=k

ej (1 ≤ k ≤ n)

which we shall prove by induction and “induction from the top”, respec-

tively. We have b1 = b1e1 and thus assume that b` = b`
∑`

j=1 ej for all

1 ≤ ` < k. This entails

b` = b`
∑̀
j=1

ej = b`
∑̀
j=1

ej

k∑
i=1

ei = b`

k∑
i=1

ei.
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Putting this identity together with (4.2) we find that

bk

k∑
i=1

ei = bk

(k−1∑
`=1

a`b` + ek

) k∑
i=1

ei

= bk

(k−1∑
`=1

a`
(
b`

k∑
i=1

ei
)

+ ek

)
= bk

(k−1∑
`=1

a`b` + ek

)
= bk

which proves the claim for the bk. We also know that an = anen and thus

assume that a` = a`
∑n

j=` ej for all k < ` ≤ n. It follows that

a` = a`

n∑
j=`

ej = a`

n∑
j=`

ej

n∑
i=k

ei = a`

n∑
i=k

ei.

Putting this identity together with (4.3) we find that

ak

n∑
i=k

ei =
( n∑
`=k+1

a`b` + ek

)
ak

n∑
i=k

ei

=
( n∑
`=k+1

(
a`

n∑
i=k

ei
)
b` + ek

)
ak

=
( n∑
`=k+1

a`b` + ek

)
ak = ak

proving the second half of our claim.

The identities in (4.4) immediately yield the following information on

the Mak,bk :

(4.5) Mak,bk =
n∑
i=k

k∑
j=1

eiejMak,bk = ekMak,bk (1 ≤ k ≤ n).

Put w =
∑n

k=1 akek and v =
∑n

j=1 bjej. Then

wv =
n∑
k=1

n∑
j=1

ekejakbj =
n∑
k=1

ek akbk =
n∑
k=1

akbk = 1

and

vw =
n∑
j=1

n∑
k=1

ejekbjak =
n∑
j=1

ej = 1.

Therefore w is invertible with w−1 = v. Finally, from (4.5),

Mw,w−1 =
n∑
k=1

n∑
j=1

ekejMak,bj =
n∑
k=1

ekMak,bk = S

which completes the proof. �
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In the remainder of this paper we shall discuss the state of our knowl-

edge concerning the gap between a full description of spectrally isometric

elementary operators of length (at most) two (Theorem 4.2) and the some-

what more restricted conclusion in the general case (Theorem 4.4).

In contrast to length two elementary operators there is (at present) no

necessary condition for spectral boundedness of a length three elementary

operator, such as in Lemma 4.1, without further assumptions. Firstly, start-

ing with a spectrally bounded elementary operator S, the induced operator

SP may or may not be spectrally bounded. Even if it is, we only have a

complete description for SP ∈ È 3(A/P ) under the assumption that the

representation space has dimension at least 4. We can slightly improve this

description, which was obtained in [6, Theorem 4.3], under the hypothesis

that SP1P = 1P , which we record here for completeness.

Proposition 4.5. Let A be a unital Banach algebra acting irreducibly as

bounded linear operators on a Banach space E of dimension at least 4. Let

S ∈ È 3(A) be unital. Then S is spectrally bounded if and only if there exist

a = (a1, a2, a3) and b = (b1, b2, b3) in L (E) 3 such that S = Sa,b, ei = biai,

1 ≤ i ≤ 3 are central idempotents and biaj = 0 for 1 ≤ i < j ≤ 3. In this

case, S is in fact a spectral contraction.

Proof. Clearly we can extend S : A → A to an elementary operator on

L (E), the algebra of all bounded linear operators on E, by the same for-

mula. The conditions on the coefficients imply that the extended operator

is spectrally bounded, indeed a spectral contraction, by Proposition 3.2. As

the spectral radius of an element is independent of the surrounding Banach

algebra, it follows that S : A→ A is a spectral contraction. This proves the

“if”-part.

For the “only if”-part we only have to deal with the exceptional cases that

are listed in [6, Theorem 4.3], as this result will then imply the statement.

By hypothesis, if S is not already represented as claimed in the above result,

then cases (ii) and (iii) in [6, Theorem 4.3] can be summarised as follows:

(4.6) S =
3∑
j=1

Muj ,vj where (viuj)1≤i,j≤3 =

λ r 0
s λ r
0 −s λ


for some λ ∈ C and rank one operators r, s ∈ L (E). We can read off the

following identities

v1u3 = v3u1 = 0, v1u2 = v2u3 and v2u1 = −v3u2.
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Upon multiplying S1 = 1 on the left by v1 and on the right by u3 and

using v1u3 = 0 we find that v1u2v2u3 = 0. As v1u2 = v2u3 it follows that

the rank one operator r = v2u3 has square zero and therefore must be zero.

We conclude that viuj = 0 whenever i < j as desired. Finally multiplying

S1 = 1 simply on the right by u3 yields u3v3u3 = u3, thus (λ− 1)u3 = 0 so

λ = 1 which finishes the argument. �

A Banach algebra A is called an SR-algebra if the spectral radius formula

holds in every quotient of A; that is, if I is a closed ideal of A then, for each

x ∈ A, r(x+ I) = infy∈I r(x+ y). Every C*-algebra has this property.

Corollary 4.6. Let A be a unital semisimple SR-algebra. Then every unital

surjective S ∈ È 3(A) which is spectrally isometric is an algebra automor-

phism of A.

Proof. Let P ∈ Prim(A). By assumption and as SP ⊆ P , SP ∈ È 3(A/P ) is

unital, surjective and a spectral contraction, by [6, Proposition 2.2] or [17,

Proposition 9], and is spectrally isometric if SP = P . Suppose first that

dimA/P < ∞. Take y ∈ P and write y = Sx for a (unique) x ∈ A. Then

0 = Sx + P = SP (x + P ) and therefore x + P = 0 as SP is injective (it is

surjective on the finite-dimensional space A/P ). Consequently, x ∈ P and

hence P = SP . Since A/P ∼= Mn(C) for some n ∈ N, we conclude that SP

is a Jordan automorphism by [3, Proposition 2]; see also [7, Corollary 1.4]

and [15, Example 5.4] for independent proofs.

It is well known that every Jordan automorphism of Mn(C), n > 1 is

either of the form x 7→ wxw−1 or x 7→ wxtw−1 for some invertible w ∈
Mn(C), where xt denotes the transpose of x; see, e.g., [20, Corollary 1.4].

Note that x 7→ xt is the elementary operator T =
∑n

i,j=1Meji,eji , where eij,

1 ≤ i, j ≤ n denotes the usual set of matrix units. As this set is linearly

independent, `(T ) = n2. Since {weji | 1 ≤ i, j ≤ n} and {ejiw−1 | 1 ≤
i, j ≤ n} are linearly independent too, whenever w ∈ Mn(C) is invertible,

`(Mw,w−1T ) = n2 > 3 for all n > 1. Hence, S 6= T and therefore, S is

multiplicative.

Suppose next that dimA/P = ∞. Applying Proposition 4.5 together

with Theorem 4.4 to SP (and its extension to L (E)) we find that SP is

an inner automorphism. As a result, SP is multiplicative in either case and

therefore S is an algebra automorphism of A. �

We will now discuss an example illustrating that Theorem 4.2 cannot be

entirely extended to length three elementary operators.
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Example 4.7. Let A = L (E) for an infinite-dimensional Banach space E.

Let S ∈ È (A) with S1 = 1 and `(S) = 3. Suppose S is a spectral isom-

etry. By the results above, there exist two linearly independent subsets

{a1, a2, a3} and {b1, b2, b3} of A such that S =
∑3

j=1Maj ,bj , ei = biai ∈
{0, 1}, 1 ≤ i ≤ 3 and biaj = 0 for 1 ≤ i < j ≤ 3. Suppose that e1 = e3 = 1

and e2 = 0 (and thus S is non-surjective by Theorem 4.4). For a concrete

realisation of this situation, we can, e.g., take the isometries s1, s2 from Ex-

ample 2.4 and a non-zero operator z ∈ L (E) with z2 = 0 and put a1 = s1,

a2 = s2z, a3 = s2, b1 = s∗1, b2 = zs∗1 and b3 = s∗2. It is easily verified that

these choices satisfy the above conditions. We claim that S is not a Jordan

homomorphism.

To this end, we first observe that neither {1, b2a1} nor {1, b3a2} can be

linearly dependent. For example, using a1b1+a2b2+a3b3 = 1 and multiplying

this identity on the left by b2 yields b2a1b1 = b2, thus, if b2a1 = λ1 for

some λ ∈ C, we obtain λb1 = b2 violating the above assumption of linear

independence. Similarly, linear dependence of {1, b3a2} would result in linear

dependence of {a2, a3}.
We can therefore find ζ, η ∈ E such that {ζ, b2a1ζ} and {η, b3a2η} are

linearly independent. Since ζ = b1a1ζ, setting ξ = a1ζ, we have {b1ξ, b2ξ}
is linearly independent, and since η = b3a3η, it follows that {a3η, a2η} is

linearly independent too. Take x ∈ A such that xb1ξ = 0 and xb2ξ = η. If

η ∈ lin{b1ξ, b2ξ} then xη = βη for some β ∈ C. If b3a2η ∈ lin{b1ξ, b2ξ} then

xb3a2η = β′η for some β′ ∈ C. Suppose both cases occur together and that

β = β′ = 0. Then η = αb1ξ and b3a2η = α′b1ξ for some α, α′ ∈ C \ {0}.
However, this violates the linear independence of {η, b3a2η}, thus this cannot

happen. Consequently, if both cases occur together, we have

xη = βη and xb3a2η = β′η with |β|2 + |β′|2 6= 0.

In the case when {b1ξ, b2ξ, η} is linearly independent, we can also require of

x that xη = η, and in the case when {b1ξ, b2ξ, b3a2η} is linearly independent,

we can additionally require that xb3a2η = η. It follows that, in any of the

cases, we have x ∈ A satisfying

(4.7)

xb1ξ = 0, xb2ξ = η, xη = βη and xb3a2η = β′η with |β|2 + |β′|2 6= 0.

We will complete the argument by showing that, for this x, (Sx)2 6= S(x2)

wherefore S is not a Jordan homomorphism.

The initial assumptions on the coefficients of S reduce the left hand side

in the first line below to the right hand side, and then we apply the special
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choice of x as given in (4.7).(
(Sx)2 − S(x2)

)
ξ = a2xb2a1xb1ξ + a3xb3a1xb1ξ + a3xb3a2xb2ξ − a2x2b2ξ

= a3xb3a2η − a2xη

= β′a3η − βa2η

with |β|2 + |β′|2 6= 0. As {a3η, a2η} is linearly independent, it follows that(
(Sx)2 − S(x2)

)
ξ 6= 0 , as desired.

We conclude this paper by noting that a unital spectrally bounded ele-

mentary operator of length four and above which is not surjective need not

be a spectral isometry. As an example the trace on M2(C) can serve which

can be represented as

x 7→ 1

2

4∑
j=1

eijxeji

where eij denotes the standard matrix units.
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[20] P. Šemrl, Maps on matrix spaces, Linear Alg. Appl. 413 (2006), 364–393.
[21] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978),

355–362.

Pure Mathematics Research Centre, Queen’s University Belfast, Bel-
fast BT7 1NN, Northern Ireland

E-mail address: m.m@qub.ac.uk

Pure Mathematics Research Centre, Queen’s University Belfast, Bel-
fast BT7 1NN, Northern Ireland

E-mail address: myoung14@qub.ac.uk


