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Video Anomaly Detection in Real Time on a
Power-Aware Heterogeneous Platform

Calum G. Blair and Neil M. Robertson, Senior Member, IEEE

Abstract— Field-programmable gate arrays (FPGAs) and
graphics processing units (GPUs) are often used when real-time
performance in video processing is required. An accelerated
processor is chosen based on task-specific priorities (power
consumption, processing time, and detection accuracy), and this
decision is normally made once at design time. All three of the
characteristics are important, particularly in battery-powered
systems. Here, we propose a method for moving selection of
processing platform from a single design-time choice to a contin-
uous run-time one. We implement Histogram of Oriented Gradi-
ents (HOG) for cars and people and Mixture-of-Gaussians motion
detectors running across FPGA, GPU, and central processing unit
in a heterogeneous system. We use this to detect illegally parked
vehicles in urban scenes. Power, time, and accuracy information
for each detector is characterized. An anomaly measure is
assigned to each detected object based on its trajectory and
location compared with learned contextual movement patterns.
This drives processor and implementation selection so that scenes
with high behavioral anomalies are processed with faster but
more power-hungry implementations, but routine or static time
periods are processed with power-optimized and less accurate
slower versions. Real-time performance is evaluated on video data
sets including i-LIDS. Compared with power-optimized static
selection, automatic dynamic implementation mapping is 10%
more accurate, but draws 12-W of extra power in our testbed
desktop system.

Index Terms— Event detection, field-programmable gate
array (FPGA), graphics processing unit (GPU), heterogeneous,
object detection.

I. INTRODUCTION

SURVEILLANCE systems have recently become more
commonplace, more portable, and capable of handling

more complex tasks. The process of selecting or designing
a processing system for any surveillance application involves
meeting some performance constraints (computation time must
be fast enough for real-time performance) and optimizing
others (power consumption should be minimized and algo-
rithm accuracy should be maximized). Improving any one
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Fig. 1. Anomaly detection in an urban scene (BankSt data set). When
an anomalous event (car stopping in an unusual area) is detected, the
detection speed is prioritized and power consumption increases as a result.
(a) Pedestrians and vehicles moving normally. (b) Car parked in a forbidden
location (red square).

of these characteristics will result in tradeoffs in the others.
Here, we propose a real-time video surveillance system for
detecting anomalous behavior in an urban setting and analyze
its performance. In this scenario, our video analysis system
contains a heterogeneous set of processors and its power
supply will be constrained in some way, such as relying on
batteries. The ability to perform timely and accurate detections
with minimized power consumption is important. At different
time periods, power should be prioritized more than speed
(or frame rate), and vice versa, depending on the level of any
perceived threat. This allows a power-constrained real-time
system to quickly react to relevant changes in its environment
while conserving power in periods of inactivity.

A. Motivation

In recent years, algorithms of increasing computational
complexity have been developed, allowing more accurate
detection or classification of objects of interest. In conjunction
with the rise in pixel data volume from higher resolution
imaging devices, this has led to requirements to process
higher volumes of data in a timely fashion—ideally in real
time. Many of these algorithms are embarrassingly parallel,
so two technologies have been employed to allow accelerated
processing of video data, for online and offline real-time
tasks [1], [2]. These devices represent two different approaches
to the problem of parallelization; field-programmable gate
arrays (FPGAs) allow temporal parallelization by building
up long pipelines of simple arithmetic operations specifically
matched to the problem in question and permit spatial
parallelization by duplicating these units as broadly as
possible to process multiple parts of the image at once.
Graphics processing units (GPUs) use thousands of existing
cores optimized for fast arithmetic to massively parallelize the
calculations required by an algorithm. These approaches have
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Fig. 2. Flow diagram of frame processing, anomaly detection, and algorithm mapping loop. Computationally expensive operations are in bold.
Boxes or groups with dotted lines show our contributions: #1—switchable hardware platforms for detection algorithms, #2—behavioral anomaly detection,
and #3—implementation mapping.

tradeoffs; FPGAs have lower power consumption, but require
considerably more time and knowledge to program [3]. They
also have a long history and acceptance of being deployed
in military systems. GPUs are programmed using a more
familiar software design flow and can allow greater numerical
precision due to their native reliance on floating-point
arithmetic, but draw considerably more power.

The choice of platform to deploy an algorithm onto is
typically made at design time, as part of a decision about
how a task should be partitioned onto hardware. Typically,
once a decision to deploy to a specific platform is made, the
consequences (higher power consumption, reduced detection
capability, etc.) remain part of that system and must be
accepted throughout its use. Delaying the choice of processing
architecture until the system is deployed allows the system
to trade off power consumption and frame processing time
on the fly, in response to changes in scene conditions. For
example, when no activity is seen, or no anomaly is present,
we can conserve power at the expense of frame rate and
processing time. If a higher level of anomaly is present
(for example, a pedestrian entering an unusual area, or a car
driving the wrong way down a road or parking in a forbidden
location), any of these anomalous actions could represent a
threat. For vehicle-mounted systems performing a surveillance
task, this may mean a threat to its occupants, so in this
case, we would ideally process data and identify anomalies
more quickly; immediate power consumption is less important.
These priorities dynamically change with scene content.

B. Contributions

In this paper, we describe and analyze the performance
of our heterogeneous system that uses central processing
unit (CPU), FPGA, and GPU to allow real-time detection of
objects and anomalies. It autonomously chooses which set of
processors to run an algorithm or algorithm stage on. This
decision is made dynamically and depends on the level of
anomaly seen in the video stream. We evaluate this on two
video data sets and demonstrate detection of this behavior in
both data sets while reducing the overall power consumption.
Vehicles that park or stop in forbidden or unusual areas are
used to represent anomalous behavior. An example is shown
in Fig. 1(b), where vehicles are forbidden from parking on the

double yellow lines at the roadside. An anomalous vehicle is
denoted by a red box.

Our contributions are as follows.
1) We describe a hardware platform of heterogeneous

processors (FPGA, GPU, and CPU), with multiple
possible implementations of computationally expensive
algorithms that can be run on it. We characterize each
implementation’s power consumption, processing time,
and detection accuracy. Our implementations and their
platforms can be switched between dynamically.

2) We introduce an algorithm for quantizing the level of
behavioral anomaly in a video stream using object and
motion detectors.

3) We use a hardware mapping algorithm that uses anomaly
level to prioritize reduced power consumption or shorter
processing time. This then dynamically selects algorithm
implementations using their performance characteristics.
This set of implementations is used to process subse-
quent video data.

These contributions are shown in the overall system diagram
in Fig. 2.

C. Paper Layout

This paper is structured as follows. Section II places this
work in context by describing the related work in the areas
of anomaly detection, parallelized algorithm implementations,
and power-aware computing. Section III describes our system
at a high level and details the components used to perform
object and anomaly detection. It also covers our mechanism for
dynamically switching between algorithm implementations.
Section IV describes the video data sets and evaluation pro-
cedure and presents the results. Section V discusses these
in more detail, along with our system’s limitations. Finally,
Section VI restates our results and describes directions for
future work.

II. RELATED WORK

This paper is concerned with algorithms at multiple levels of
abstraction, from feature extraction in images up to behavior
analysis. We aim to process video data in real time, so here
we also describe accelerated processing and how to schedule
or allocate processing tasks to minimize power consumption.
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A. Anomaly Detection

Loy et al. [4] define anomalous events or unusual behavior
in video as being in one of the three categories (those very
different from the training set, those which are ambiguous and
rarely present in the training set, and those with only weak
visual evidence). Humans can fail to detect the latter two types,
especially during longer tasks. Morris and Trivedi [5] consider
surveillance in urban scenes and note that as scenes become
more unstructured, identifying unusual events becomes harder.
Detection in urban scenes, with multiple classes of traffic par-
ticipants and fewer restrictions on directions, is more difficult
than behavior recognition on a highly structured motorway,
particularly when vehicles in urban environments may be
stationary for long time periods. Anomaly detection spans
several levels of abstraction, from individual object detections
that can be grouped into trajectories and then clustered into
common paths in a scene [6]. This produces clear trajectories,
but requires offline analysis. Piciarelli and Foresti [7] describe
a method for online clustering of object locations into trajec-
tories. A sliding temporal window allows tracks to be matched
to clusters; the window expands as the track length increases.
Given a learned set of tracks clustered into trajectory trees,
the likely behavior of a new object can be predicted, as the
most common clusters and parent–child cluster transitions are
known [7]. Morris and Trivedi [8] describe a system for
detecting U-turn events in traffic, but we look here at the
problem of detecting parked vehicles.

Albiol et al. [9] use spatiotemporal maps to identify these
events in the Imagery Library for Intelligent Detection Systems
(i-LIDS) data set. This relies on human operators labeling
regions where parking is forbidden. Regions are evaluated
as belonging to the background or not, and hence distinct
objects are not detected or classified. Lee et al. [10] also
process some events from i-LIDS, using a 1D transformation
to detect vehicles parking illegally, and demonstrate real-time
performance on CPU.

B. Accelerated Object Detection

Work on real-time object detection has attracted much
interest recently, particularly given the possibilities for
detection from embedded systems fitted to vehicles.
A common pedestrian detection algorithm is “histogram
of oriented gradients” (HOG) [11]. HOG is split into
three computationally expensive algorithm stages: 1) image
resizing; 2) feature extraction; and 3) classification. Many
improvements and variations to the overall algorithm are
documented in [12]. Dollár et al. [13] have demonstrated that
performing feature extraction on fewer scales and rescaling
the resulting features are also effective. Current state-of-the-
art detectors are still based on this work; they extract various
color and shape features before classifying these using a
support vector machine (SVM) or boosted classifier. Multiple
hardware implementations of HOG and its derivatives have
been proposed, on various devices including GPU [1], [14],
FPGA [15], and a hybrid system [16], with feature extraction
done on the FPGA and SVM classification handled by
the GPU. A comparison of these platforms in a heterogeneous

system is performed in [17], where the processing time,
detection accuracy, and system power consumption of the
HOG algorithm are all compared. The image resize, feature
extraction, and SVM classification subtasks can be allocated
to GPU, FPGA, or CPU. The algorithm runs fastest when all
tasks are performed on GPU and uses the least power when
CPU and FPGA are used. A mix of GPU and FPGA processing
allows a reasonable tradeoff between power and frame rate.

A car detection algorithm has been built using a similar
approach, using HOG with deformable part models [18].

C. Platform Selection and Power-Aware Computing

FPGAs and GPUs occupy different points in design space.
Allocating tasks (those defined as stages of an algorithm or
algorithms in their entirety) onto processors is a form of
design space exploration. Cope et al. [19] have compared
FPGA and GPU for accelerating low-level image processing
operations such as convolutions and enhancement algorithms.
GPU performance decreases with increasing kernel size, but
there is no single platform that is always most suitable and the
data flow of the desired algorithm must always be considered.
Wu et al. [20] reinforce these conclusions while taking power
into account.

Points in design space are evaluated for optimality using a
Pareto curve [21]. Optimal points dominate nonoptimal ones
if they improve on at least one characteristic. Eventually, a
Pareto front of all the optimal points is formed. Prioritizing
one characteristic over another will move between these points.

Yu and Prasanna [22] explore power-aware resource allo-
cation for static tasks. Quinn et al. [23] explored tradeoffs in
assigning discrete algorithm stages to FPGA or CPU for pixel
processing algorithms. Tradeoffs were expressed in terms of
chip area versus instruction latency, rather than accuracy and
power. However, there is a limited body of work on using
power consumption information to map tasks to processors
in video. The main work we are aware of in this field
is by Llamocca and Pattichis [24]. They perform dynamic
multiobjective optimization in a power–performance–accuracy
space (in this context, performance refers to processing time).
This is done for pixel processing algorithms, including gamma
correction and contrast enhancement, where the design space is
populated by implementations with different clock frequencies
and bit widths. A user-chosen accuracy level drives dynamic
selection, and the selected implementation is loaded via FPGA
dynamic reconfiguration.

Blair and Robertson [25] considered power-aware dynamic
allocation on algorithms operating at a higher level of abstrac-
tion, where multiple heterogeneous accelerators are used.
We expand on this work here by adding another video
evaluation, further algorithm and implementation details, and
additional experimental results, including time taken to switch
between selected implementation mappings.

III. SYSTEM DETAILS

Our system detects objects and motion in a video view of
a scene, uses contextual information obtained from previous
behavior to assign an anomaly level to scene activity, and
uses this to select the optimal algorithm implementations to
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Fig. 3. Hardware implementations of computationally expensive detection algorithms showing all possible mappings. Mnemonics for implementation stages
are referred to in the text; HOG with image resizing on GPU, histogram extraction on FPGA, and classification on GPU is labeled gfg. The bottom half
shows attempted reclassification of regions that are detected as containing only motion. This passes data through the same detectors as above.

process the next incoming frame. We detect both pedestrians
and cars; this allows identification of common traffic partici-
pants and, hence, their behaviors within the environment. The
system processes offline videos, but operates at 25 frames/s
and dynamically calculates the number of frames to drop to
maintain this real-time processing rate. The time to decode
the input video and the time to display or annotate an output
image are not counted within this window (as we assume that
live video would be captured without needing to be decoded,
and the only outputs required are infrequent snapshots of
anomalous events as they occur).

Fig. 2 gives a high-level overview of our system. Where
relevant, we present performance information on aspects of
the system in this section; the overall results for the anomaly
detection task are presented in Section IV.

In Fig. 2, the detection algorithms block processes each
image and generates bounding boxes describing object loca-
tion and classification. These are used by the later algorithm
stages. The detectors run every frame and do not take temporal
information into account. This is instead evaluated at a higher
level by the tracker, which matches new detections to existing
tracks. Computationally expensive implementations of car,
pedestrian, and motion detectors and algorithms run here.
An expanded view of this stage is given in Fig. 3. These
algorithms each had at least one accelerated version available;
these are listed in Table I.

A. Hardware Platform

The platform used contained a host CPU (2.4-GHz dual-
core Intel Xeon), an FPGA (Xilinx ML605 board with an

TABLE I

ALGORITHMS AND IMPLEMENTATIONS USED

TABLE II

TOTAL RESOURCE UTILIZATION ON Xilinx XC6VLX240 FPGA. THIS

INCLUDES PCIe AND DMA LOGIC AND BOTH DETECTORS: THE
HISTOGRAM EXTRACTION STEP FOR CAR-HOG AND THE

HISTOGRAM AND CLASSIFICATION STEPS FOR PED-HOG

XC6VLX240 device), and GPU (NVidia GeForce 560Ti). Data
could be transferred via direct memory access (DMA) between
each processor over PCI express (PCIe), as shown in Fig. 4. In
the FPGA, the DMA and PCIe transfer logic ran at 250 MHz
and the image processing application was clocked at 160 MHz.
The resource use is given in Table II. Table II shows the
total FPGA resources used to implement the PED-HOG and
CAR-HOG detectors and the interface logic.
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Fig. 4. Desktop PC system with heterogeneous processors. Each processor
is connected over PCI express and can access the host’s main memory. The
FPGA and GPU each have private on-card memory.

TABLE III

FRAME PROCESSING TIME tproc FOR FRAME n USING THE HOG
IMPLEMENTATION LISTED, WHERE THE PREVIOUS FRAME

(n − 1) WAS PROCESSED WITH THE SAME (COLUMN 2) OR

DIFFERENT (COLUMN 3) IMPLEMENTATION. COLUMN 4
SHOWS TIMES FOR DIFFERENT tproc AS A PERCENTAGE

OF THE SAME tproc . THE IMAGE SIZE IS

1024 × 768. IMPLEMENTATION ACRONYMS

ARE DEFINED IN SECTION III-B

Application logic for each algorithm was autogenerated
from Xilinx System Generator software. There was suffi-
cient capacity within the FPGA to hold the implementations
in Fig. 3; because of this, partial dynamic reconfiguration was
not required. Further platform details are given in [17].

B. Pedestrian Detection (PED-HOG)

The accelerated versions of the HOG pedestrian detector
described in [11] are used. These are split into three tasks:
1) image resizing or scaling; 2) generation of gradient his-
tograms in local cells; and 3) block histogram generation,
normalization, and SVM classification. These correspond to
stages in the original algorithm [11]. A note on mnemonics:
xyz refers, in general, to scaling on platform x, histograms on y,
and SVM classification on z. For example, an implementation
that rescales the image on the GPU, generates histograms
on the FPGA, and classifies on the GPU is given the gfg
mnemonic. Similarly, ccc means an implementation where
scaling, histograms, and classification are done on the host
CPU. This is illustrated in Fig. 3, where the arrows on the
left show the paths that can be taken through the algorithm.
As Table III shows, the different implementations could be
dynamically switched between frames with no loss of perfor-
mance. Each version was trained on the INRIA pedestrians
data set [11]. Measurements of power, processing time, and
accuracy for each implementation when tested on the test
portion of this data set are given in Table IV. The detection
accuracy for each version is shown in Fig. 5 and is comparable
with the original algorithm.

TABLE IV

PERFORMANCE DETAILS FOR ALGORITHM IMPLEMENTATIONS ON
770 × 578 VIDEO. THE PROCESSING TIME (ms), OVERALL

SYSTEM POWER CONSUMPTION (W), AND DETECTION

ACCURACY [LOG-AVERAGE MISS RATE (%)]
ARE SHOWN. THE BASELINE POWER

CONSUMPTION WAS 147 W

Fig. 5. Detection error tradeoff curve for PED-HOG detector, showing false
positives per image against miss rate.

While existing accelerated implementations of HOG
are available, they do not take partitioning into account
(i.e., do all the work on GPU) or use static partitioning [16].
In addition to writing new implementations where necessary,
our modification efforts for existing platforms (CPU and GPU)
were focused on profiling (to identify the most appropriate
stages to partition an algorithm and transfer intermediate data
between processors) and interoperability, i.e., ensuring that
cell histograms generated on FPGA could be transferred and
classified on GPU and that this produced acceptable results.

C. Car Detection (CAR-HOG)

Given that we had existing real-time implementations of
HOG running on multiple architectures, these were modified to
detect cars. The CPU and GPU versions of the HOG OpenCV
code were modified using the parameters given in [26] for
vehicle detection. Similarly, the cfc and gfg implementations
from [17] were modified to detect cars. In all cases, detection
was performed at multiple scales in real time. While this
results in a reduction in accuracy when compared with more
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Fig. 6. Training the CAR-HOG algorithm. (a) Composite image of all training
samples. (b) Final oriented-gradient SVM car model.

Fig. 7. Detection error tradeoff curve showing false positives per
image (FPPI) for CAR-HOG.

sophisticated detectors, the implementation time required to
produce multiple implementations of a different algorithm
would have been prohibitive.

The car detector was trained using images from the
2012 Pattern Analysis, Statistical Modelling and Compu-
tational Learning (PASCAL) visual object classes chal-
lenge [27]. Image windows containing cars were extracted
and resized so that each car was 48 pixels high. Cars were
selected if they were not marked as occluded, truncated, or
difficult in the ground truth and were originally ≥40 pixels
high. A total of 212 images were used, made up of original
and horizontally flipped copies of 106 cars. The SVM model
was trained as described in [11]. Fig. 6(a) shows a composite
model of all positive training samples, and Fig. 6(b) shows
the learned oriented-gradient model. Strong gradients on the
vertical pillars are visible. Fig. 7 shows detector accuracy as
a false positives per image (FPPI) curve. This is less accurate
than the pedestrian version; we speculate that this is due to
the reduced set of training images and the wide variations in
appearance of cars being viewed head-on and side-on. During
testing, vans and lorries were also capable of being detected.

D. Motion Detection (MoG)

The Mixture-of-Gaussians (MoG) algorithm was used to
perform background subtraction, thus segmenting foreground
objects [28]. There were several motivations behind this; this
technique allowed detection and then classification of small or
distant objects, below the minimum size of the HOG detectors,
and also detection of moving objects close together. The
alternative to this would have been running both HOGs on a
magnified version of the entire image, which would have not
been possible with real-time processing. The OpenCV GPU
implementation was used [29].

Fig. 8. MoG motion detection algorithm on GPU. (a) Motion bounding
boxes successfully identified. (b) False positives due to illumination changes
and camera shake.

This was then morphologically opened (as both these steps
were computationally expensive) before transferring to the
host, where contour detection was performed and bounding
boxes were produced. Every foreground region that was not
yet classified was passed to additional pedestrian and vehicle
detectors (as shown in the bottom half of Fig. 3), so early iden-
tification of overlaps led to reduced processing at a later stage.
An overlap criterion was used to compare bounding boxes; for
pairs with ≥90% intersection, the smaller one was removed.
Bounding boxes are defined as B = {x1 . . . x2, y1 . . . y2} and
area(B) = (x2−x1)×(y2−y1). Thus, Bi and B j are compared
and Bi is discarded if

Bi ∩ B j

area(B j )
≥ 0.9 & area(Bi ) < area(B j ) . (1)

This performed well, as shown in Fig. 8(a). Automatic gain
correction or shake from the camera would occasionally
incorrectly detect motion, as shown in Fig. 8(b). In this case,
all motion detection for that frame was discarded.

E. Detection Fusion and Object Tracking

The system had two sources of object detections: classified
bounding boxes generated directly by CAR-HOG or
PED-HOG, or unclassified regions of interest generated by
the motion detector. Regions from the latter algorithm were
extracted and magnified, and then passed to each HOG
algorithm again. This allowed most objects to be classified
as human or vehicle, rather than simply an object in motion.
As we expect humans and vehicles to move at different speeds
and frequent different regions in the scene, this allowed more
accurate contextual scene information to be gathered than if
we had simply detected moving objects without attempting
to classify them.

To normalize inter-object distances and speeds, all detec-
tions were projected via an affine transform onto a base plane
and then smoothed with a constant-velocity Kalman filter,
as shown in Fig. 9. This also matched per-frame detections
to persistent trackers for each object; an elliptical distance
measure was used to select a tracker to match a detection to,
where the long axis of the ellipse pointed in the direction of
travel of the tracker. When a tracked object was stationary,
this became the Euclidean distance measure. This approach
allowed unclassified detections to be matched to existing
classified tracks. From this algorithm stage onward, the volume
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Fig. 9. Transformed base plane image showing the bottom part of the
i-LIDS scene, including, car (green circle) and pedestrian (blue circle) object
trackers.

of data to be processed was low enough that acceleration was
no longer required, and all further processing was done on the
host CPU.

F. Clustering Trajectories

To cluster tracked points into trees of trajectories,
we reimplement a clustering algorithm described by
Piciarelli and Foresti [7], who used it for detecting anomalies
in traffic flow. The original work looked at a motorway
junction where fast moving vehicles can take a small number
of routes through the scene, but the scenes we apply this to
are less structured. We consider urban scenes with two types
of traffic participants, multiple entrances and exits, and areas
where objects stop moving for long periods and may be
considered part of the background. Our objective is to assign a
trajectory T to one of a set of clusters C = {C1, C2, . . . , Cn}.
Each trajectory Ti = (t0, t1, . . . , tn) represents tracked detec-
tions over several frames, where each ti = (xi , yi ). Each
cluster Ck = (c0, c1, . . . , cn) is a vector of points c j =
(x j , y j , σ

2
j ) with location and variance. Clusters are arranged

in a tree structure and have zero or more children. A tree
(starting with a root cluster) describes a single point of entry
to a scene from one of the edges, and all observed paths
taken through it from that point. Given a new (unmatched)
trajectory Tu , all root clusters and their children are searched to
a given depth. Tu is assigned to the closest Ck if the distance D
is below a threshold. This is done via

D(Tu , Ci ) = min

⎡
⎣d(ti , c j )√

σ 2
j

⎤
⎦, j ∈ {�(1−δ)i� . . .�(1+δ)i�}

(2)

where d(ti , c j ) is the Euclidean distance between ti in
Tu and c j in Ck , and j defines the range in Ck to search
over. The lower and upper search bounds of the cluster points
in Ck are governed by δ = 0.4. Thus, when matching
long trajectories to longer clusters, more possible matches
are allowed. This takes account of subsequent objects in one
cluster not moving in exactly the same manner. Once a point

Fig. 10. Object tracks grouped into trajectory clusters and retransformed
onto the camera plane. Green, blue, and orange tracks show cars, pedestrians,
and undetermined (motion-only) objects, respectively.

Fig. 11. Presence intensity maps for (a) cars and (b) pedestrians in the PV3
data set. The color bar shows the average occupation rate of that pixel, and
the x and y axes relate to the base plane projection of the scene (partly shown
in Fig. 9).

is matched to a cluster, the corresponding cluster element c j

is updated by ti with a learning factor α = 0.05.
If no matching clusters are found, a new root cluster is

created. As trajectories matched to a cluster are updated with
new points, the points can be updated, the cluster can be
extended, or new child clusters split off as points begin to
diverge. Fig. 10 shows this approach on real data; several
clusters representing pedestrian and vehicle motion can be
seen.

G. Contextual Location Data

Contextual knowledge makes use of known information
about the normal or common actions of participants within
a scene. Simple features such as position and motion data
can capture various anomalous behaviors including vehicles
parked in an unusual location or those moving the wrong way
down a road. Here we use unsupervised learning to learn scene
context. We use the classified bounding boxes from the object
and motion detectors during training sequences to build up 2D
per-pixel base plane heatmaps of object position or presence;
these are shown in Fig. 11.

In a similar manner, Fig. 12 shows motion maps for
pedestrians and vehicles in x and y. Velocity data were
obtained from object trackers observed during the learning
clips. For an object moving at v = (vx , vy) and occupying
(x1, . . . , x2, y1, . . . , y2), the map v̄ representing average per-
pixel velocity is updated

v̄(x1,...,x2,y1,...,y2) = (1 − α)v̄(x1,...,x2,y1,...,y2) + αv (3)



2116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 11, NOVEMBER 2016

Fig. 12. Base plane motion maps built using learned movement from different
object classes in PV3. (b) On-road vertical motion away from (blue region)
and toward the camera (red region) is distinct and clearly defined. The color
bar denotes the average velocity at that pixel in pixels/frame. The x and y
axes correspond to the base plane image of the scene from Fig. 9. (a) Car vx .
(b) Car vy . (c) Ped vx . (d) Ped vy .

where α = 0.0002. Fig. 12 shows motion maps for pedestrians
and vehicles in x and y. This approach works well for most
conceivable traffic actions. However, this does not capture
more complex interactions between traffic participants. As this
is unsupervised learning, errors from the object detectors will
propagate to the heatmaps.

H. Detecting Anomalies

Using the algorithm in Sections III-F and III-G, we can
define an anomalous object as one that is present in an
unexpected area or present in an expected area but moves in an
unexpected manner. It follows that these objects will relate to
events that are not present or underrepresented in the training
data and not representative of normal traffic flow. We use a
Bayesian approach to determine if an object’s velocity in the
x and y directions should be marked as anomalous, based on
the average velocity v̄ .

First, we define an object anomaly measure UO as the
probability of a pixel being associated with an anomaly
p(A|D), given a detection at that pixel

UO = p(A|D) = p(D|A)p(A)

p(D|A)p(A) + p(D| Ā)p( Ā)
(4)

where p(A) and p(D|A) are constants (given that the proba-
bility of detecting an anomaly at any point within the image
is a constant and the likelihood of detecting an object at any
anomalous pixel is also constant). We set p( Ā) = 1 − p(A),
and we can, however, vary p(D| Ā), which is based on the
similarity between the observed motion v and the learned mean
per-pixel motion v̄, and is in the range (0.01, 0.99). First, we
find dv , a distance measure between v̄ and v. This is separately
done for vx and vy

if sign(v̄) == sign(v) & |v| > |v̄|
dv = sign(v̄) × max(W × |v̄|, |v̄ | + W )

otherwise, dv = sign(v̄) × min(−0.5 × |v̄ |, |v̄| − w)

where W and w are forward and reverse directional constants.
We perform linear regression, obtaining a line gradient

Fig. 13. Flow diagram of contribution #2: anomaly detection process.
Using tracked object locations identified by the detection algorithms, learned
cluster, position, and velocity information is used to assign anomaly levels
to individual objects. Finally, an overall per-frame behavior anomaly level is
quantified.

of a = (0.01−0.99)/(dv − v̄). We then obtain an intermediate
value k, which is substituted into p(D| Ā)

k = av + b (5)

p(D| Ā) = max(0.01, min(0.99, k)) (6)

and b is calculated in a manner similar to a. Finally, (4) is
used to obtain UOx . This is repeated for UOy .

We combine this with UC , an anomaly measure describ-
ing information about the abnormality of the current cluster
associated with an object. UC is based on one of the two
measures: transits and transitions. When an object moves from
one cluster to any of its children or leaves the field of view,
the number of transits through that cluster is incremented. For
a parent cluster Cp with children Cc1 and Cc2, the number
of trajectory transitions between the parent node and each
of its children is also recorded. This builds up a frequency
distribution between all children of any cluster. Anomalous
trajectories can thus be identified. These metrics are combined;
if Ci is a root node

UC(Ci ) = 1

1 + transits(Ci )
(7)

otherwise if Ci is one of the n child nodes of Cp

UC (Ci ) = 1 − transitions(Cp → Ci )∑n
j=1 transitions(Cp → C j )

. (8)

The anomaly measure Ui for object i with an age of τ
frames can then be given

Ui = wo
�

τi
1 UOx

τi
+ wo

�
τi
1 UOy

τi
+ wcUC (Ci ). (9)

Weights wo and wc are set such that two out of three
anomaly indicators are needed to flag an object as anomalous.
UOx and UOy are running totals averaged over τ . For every
frame, the overall anomaly measure is then Umax = max(Ui ).
This process is shown in Fig. 13. Taken together, objects
that stop in areas where the normal behavior is to move at
speed in a particular direction are detected by both the object
anomaly and the cluster trajectory algorithms (as a stationary
object will still advance in time out of the frequently transited
parent cluster and ultimately into a child cluster of its own).
If an object is flagged as anomalous for a minimum time
threshold tA, its location and classification are logged and a
snapshot of the video frame is saved.
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Fig. 14. Flow diagram of contribution #3: hardware mapping process. Using
a dynamic anomaly level as input, the lowest cost mapping is found using
stored performance characteristics and then used to process the next frame.

Fig. 15. User- or algorithm-driven priority selection. Moving a slider to the
right represents increased weight given to that performance characteristic.
Other sliders are automatically moved to the left to compensate. See the
supplementary material for videos of this process.

I. Dynamic Algorithm Mapping

By this stage, we have reduced a video frame to Umax,
a single scalar describing the anomaly level in that frame.
We now use this to choose a mapping or set of algorithm
implementations M to process the next frame with. This
process is shown in Fig. 14. M is recalculated every time a
frame is processed, so new implementations can be selected in
response to changing scene characteristics. Any mapping Mi

must include one implementation of PED-HOG, CAR-HOG,
and MoG (mped, mcar, and mmog) and can be any combination
of the paths shown in Fig. 3. If a frame takes longer to process
than real time, subsequent frames are skipped to maintain
real-time performance. Time spent processing every part of
the algorithm in Fig. 2 is counted and used when calculating
the number of frames that should be skipped. This includes
time spent attempting to reclassify small unclassified regions
as shown in the bottom half of Fig. 2.

We assume that a higher level of anomaly in the scene
should be responded to with increased processing resources to
allow inference in a more timely fashion and at the expense of
power consumption. Time periods with low or zero anomaly
levels will cause power to be reduced, resulting in longer
processing times, lower accuracy, and more frames being
dropped. We define R = {wp, wt , wε} as the current prioriti-
zation setting, with each w being individual prioritizations for
time, power, and miss rate. Ten credits are allocated between
the three weights; the use of integer weights was a limitation
of the user interface library. R is set by assigning a given
fraction of credits to each weight. This can be done manually
(by always assigning the maximum weight possible to speed
or power; see Fig. 15 for an example) or automatically, by
maximizing speed when Umax is above a threshold or power
when below. (Some hysteresis is built in using two separate
thresholds.)

Using the calculated priorities and set of desired algorithms,
implementation mapping is then run. M is selected by choos-
ing the lowest cost implementation. For a given mapping Mi ,
a cost function is used as

Ci = wp Pi + wt ti + wεεi . (10)

Fig. 16. Design space exploration of power consumption versus processing
time for every car, pedestrian, and motion detector implementation. All points
include motion detection on GPU.

Fig. 17. Power and time plots of all possible solutions, where each solution
consists of one CAR-HOG, PED-HOG, and MoG detector, as described in IV.
A greener dot represents a solution with most operations mapped to FPGA,
while the bluer and redder dots represent those with most operations mapped
to CPU or GPU, respectively.

Here, the implementation performance characteristics P , t ,
and ε represent system power consumption, frame processing
time, and detection accuracy expressed as miss rate. These
costs are incurred while processing a frame, that is, running
mped, mcar, and mmog in Mi . These are calculated from the
values shown in Table IV. ti is the sum of the processing time
of Mi . Pi is the average power consumed while processing
mped, mcar , and mmog [i.e., (Pcar tcar + Ppedtped + Pmogtmog)/ti ].
εi is a ranked measure of the miss rate of mcar and mped.
An M with ped-ggg, car-ggg, mog-gpu would have ti = 60 ms,
Pi = 225 W, and εi as a ranked accuracy measure. The
points in Fig. 16 show discrete ti and Pi calculations for every
possible mapping.

Normalization of the P, t, and ε values in Table III is not
required. The calculated values can be used directly, as any
decision on normalization is ultimately application specific and
represents the relative priority designers or users would assign
to longevity of operation of any system versus fast detection
capability. The normalization approach used (including the use
of integer weights for R) balances all of these factors and
ensures that multiple mappings are used where appropriate.

This tradeoff is graphically shown in Fig. 17, where points
in stronger red, green, or blue signify the majority of algorithm
stages being mapped to FPGA, GPU, or CPU, respectively.
The lowest cost mapping is then selected and used to process
the next frame and generate new detections.
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Fig. 18. Examples of video quality and effect on detection ability.
In (a) BankSt, classification of most objects as either pedestrian (blue circles)
or car (green circles) is possible. In (b) i-LIDS, many tracks remain as
unclassified moving objects (orange circles).

IV. METHODOLOGY AND RESULTS

Having described the system and the parameters of interest
(namely, R and its effect on M), we now test its ability to
detect parked vehicles on two video data sets of scenarios.
These are described here, followed by our methodology.

A. Scenarios

We use two representative scenarios of anomalous behavior
in an urban environment, both gathered from a static camera.
The BankSt scenario involves a static camera monitoring
a busy four-way crossroads in daylight, at 720 × 400 and
30 frames/s with little camera shake present [see Fig. 1(b)].
Vehicles are often stationary for extended periods while wait-
ing at the traffic lights in both directions. BankSt has an
18-min training and a 4-min test video. The training data
contain no parked vehicles, only normal traffic patterns. The
testing data contain one event where a vehicle parks in a
forbidden location.

The i-LIDS data set [30] is a U.K. government video data
set of various indoor and outdoor scenarios, used for the
evaluation of anomaly detection algorithms. We use a parked
vehicle detection scenario, PV3, for real-time evaluation. This
consists of 5.5 hours each of training and testing footage of a
scene as shown in Fig. 18(b). Ground truth of every event is
provided as a time-stamped description. The video is in color
visible light range and is 720×576 at 25 frames/s. It overlooks
an urban road; several turnings are present on the left and
right, and traffic often queues to enter a roundabout beneath
the frame. Video clips from several months apart, in various
weather conditions, and at different times of day or night are
provided. Strong shadows, camera shake, camera movement
in between clips, videotape artifacts, and noise interfere with
reliable scene analysis. PV3 is poorer quality and considerably
more challenging than our BankSt data. This is apparent in the
comparison shown in Fig. 18. It is, however, instructive as an
example of the data that anomaly detection algorithms may
have to work within real-world tasks.

B. Methodology

The processing platform described in [17] was first eval-
uated to ensure that no substantial delay was present when
differing implementations were selected. Frame process-
ing times were recorded when either maintaining constant
mappings or switching them between subsequent frames.

Switching between different mappings involved changes on up
to three platforms. FPGA implementation switching involved
setting or clearing bits to select a different processing pipeline;
this was done as part of the command to start a DMA transfer
and involved no reconfiguration or overhead. CPU and GPU
implementation switching involved taking different software
branches while a frame was being processed. This is included
in the processing time, so any switching costs were thus negli-
gible. As shown in Table III, the time difference when switch-
ing mappings was always under 4% of the nonswitching time.
This ensured that (10) did not need to include a switching cost.

In each test we performed, we compare the performance of
three prioritization methods with the following labels.

Speed: Speed manually prioritized, auto prioritization OFF.
Power: Power manually prioritized, auto prioritization OFF.
Auto: auto prioritization ON, controlled by anomaly level.
For both data sets, we manually register points in the camera

image onto a base plane for a homography transform. Unlike
in [9], this is the only manual intervention required; we do
not restrict the detection of anomalies to a known area in the
image through masking, but allow them to occur anywhere.
This also allows expansion to multiple scenarios.

The clusters and heatmaps are then learned by running a
training clip containing no anomalous behavior, 17–20 min
in length. The same clusters and heatmaps were used for all
tests. Following Loy’s approach [4], we define an anomalous
event as observed behavior that is absent or rarely present in
the training data. Thus, vehicles parking in forbidden areas
are used as anomalous events; we define these as objects that
have Ui over a set threshold for a time period tA.

We first test our system on BankSt to demonstrate
extensibility to a variety of surveillance scenarios, and then
perform a complete evaluation on i-LIDS. The single event
in the 4-min BankSt test clip was detected using all three
prioritization modes [as shown in Fig. 1(b)], along with one
false positive, in each case caused by stationary vehicles at
the traffic lights. More analysis is performed on i-LIDS as it
is a larger and more challenging scenario. It is also an open
data set that has benchmarks and results already reported
in the literature. The default i-LIDS criteria require that an
anomaly event must persist for 60 s before it can be logged,
and then it must be recorded within 10 s following this to
count as a true positive. As our algorithm needs only 10–15 s
to detect events, events are treated as true positives if the
recorded start time is within 70 or 75 s after the ground-truth
time recorded when the vehicle actually parks. However, we
require anomalous events to be localized to the object that is
parked wrongly; this is more discriminative than the original
i-LIDS criteria, which require only a binary alarm signal in
the presence of an anomaly. We evaluate with the anomaly
detection window tA set to 10 and 15 s, log detected events,
and compare them with ground-truth event data.

C. Results

We first summarize object detection performance by
considering each measurement (power, speed, and accuracy)
separately. This allows us to gather data on the individual
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implementation performance characteristics required for
generating M . We then discuss anomaly detection on i-LIDS.

1) Object Detection Performance Characteristics: The
performance for object detection is given in Table IV. Here, the
pedestrian detectors are always more accurate than the car ver-
sions. The GPU-based detectors are faster and consume more
power, while implementations that perform more processing
on FPGA have reduced power consumption and accuracy.

There are several causes of the accuracy differences seen
in the final column of Table IV; these are due to algo-
rithm and platform differences between processors. Our FPGA
implementation is most inaccurate, due to numerical and
algorithm simplifications. Fixed-point arithmetic must be used
on FPGA, as this results in significantly lower resource use.
This causes errors in precision to accumulate when compared
with single-precision floating-point versions seen on CPU and
GPU. The FPGA histogram generation step omits the Gaussian
weighting of pixel blocks at a slight cost in accuracy. The
FPGA classification stage also uses a simplified block nor-
malization step compared with the software implementations
(L1 normalization followed by a square root, compared with
two-stage L2 normalization present in the original algorithm;
see [26]). Both of these decisions were taken to reduce the
FPGA resource use and minimize expensive calculations such
as division operations. Discrepancies between the CPU and
GPU accuracy measurements are caused by the execution
of floating-point operations in a different order to achieve
maximum parallelization and slight differences in the pixel
cell generation code. These per-platform differences, when
combined, account for the variations seen in miss rate. More
details are given in [17].

Power and time data were obtained while playing a
770 × 578 video, and the detection accuracy figures refer to
the testing portion of the data set used for training (either
INRIA or PASCAL). Power measurements in Table IV were
gathered using a plug-in meter that recorded total system
power consumption. We plot this power–time tradeoff in
Figs. 16 (showing the exact placement of each mapping
solution) and 17 (showing the proportion of each work carried
out on a particular processor). Here the solutions form a Pareto
curve, stretching from {ped-ggg, car-ggg, mog-gpu} at the
top left via {ped-gff, car-gfg, mog-gpu} to {ped-cfc, car-cfc,
mog-gpu} in the bottom center, with other points shadowed.
If a single mapping was both lowest power and fastest, it would
overshadow all other mappings and always be the optimal
mapping to use in all situations; this is not the case.

Due to the design choices made when producing implemen-
tations for each platform, the ranking of accuracy measure-
ments between implementations is fixed and does not depend
on the choice of data set used to train or test the individual
detectors; there will be no data set where, e.g., gff is more
accurate than ggg. The cost function expresses the tradeoff of
choosing a less accurate implementation of the same algorithm
evaluated on the same data set over the one that uses more
power; thus, the performance information in Table IV is not
data dependent. In support of this conclusion, Dollár et al.
showed that ranking of object detector performance remains
relatively consistent between different data sets [12].

TABLE V

DETECTION OF PARKED VEHICLE EVENTS ON i-LIDS PV3 FOR EACH
PRIORITIZATION MODE. TRUE POSITIVES (TPs), FALSE POSITIVES

AND NEGATIVES (FPs AND FNs), PRECISION (p), AND

RECALL (r) ARE SHOWN. F1-SCORES ARE SHOWN

FOR OPERATIONAL AWARENESS (OA)
AND EVENT LOGGING (EL)

2) Anomaly Detection Performance Characteristics: All
detected anomalous events are logged and a snapshot is taken.
We compare this with the ground truth using both precision
p = TP/(TP + FP) and recall r = TP/(TP + FN) measures,
where TP, FP, and FN are true positives, false positives, and
false negatives, respectively. The F1-score is also calculated

F1 = (α + 1)r p/(r + α p) (11)

where α is a recall bias measure, set to 0.55 for real-time
operational awareness (so that false alarm rate is reduced and
operator confidence is maintained) or 60 for event logging (so
that all plausible events are logged), giving F1,OA and F1,EL,
respectively. The details of these are given in Table V for both
tA measures, for the two manual and one automatic prioritiza-
tion modes. There are no ground-truth events in the night clips,
but these generate a large proportion of false positives, so we
also show the results for daylight-only clips (those labeled day
or dusk). From Table V, prioritizing for speed always improves
accuracy, but prioritizing reduced power consumption reduces
accuracy. Automatic prioritization provides a compromise
between these two extremes. Extending the tA to 15 s allows
a significant reduction in the number of false positives.

In Table VI, we show the performance details for all pri-
oritization modes. The tall column shows per-frame execution
time including overheads as a percentage of the time available
per video frame, tsrc = 40 ms. The processing time column
twork does not include overheads (i.e., assumes that a raw
frame is already in memory and annotated per-frame output is
not needed so that only events are logged). The system runs
faster than real time here. When running individually, some
implementation mappings are able to process every frame in
real time, as shown by the processing times in Table IV.
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TABLE VI

PROCESSING PERFORMANCE FOR POWER, SPEED, AND TIME
PRIORITIZATIONS. FRAME SKIP PERCENTAGE ( f skip),
PROCESSING TIME WITH AND WITHOUT OVERHEADS

(tall AND twork ) COMPARED WITH SOURCE FRAME

TIME (tsrc), AND TOTAL ESTIMATED AND MEAN
ESTIMATED POWER ABOVE THE BASELINE (P∗

work )
ARE SHOWN. THE BASELINE (IDLE) POWER

CONSUMPTION WAS 147 W. F1 ACCURACY
SCORES ARE ALSO SHOWN

Algorithms are run sequentially, so for 40-ms frames, we can
run one or two of the detection algorithms for every frame, but
not all three. The overall system is, however, able to process a
video stream in real time by skipping a proportion of frames.

The percentage of skipped frames is in the f ski p column;
as expected, when we optimize for speed, then frames are
processed faster, so fewer frames are dropped. From Table IV,
power prioritization reduces the overall power consumption
while speed increases it, showing that the prioritization modes
have some effect and behave as expected. The power row
in Table VI maps most processing to FPGA, so here 75%
of frames are skipped. When speed is prioritized, the speed
prioritization maps everything to GPU, so when all work is
done on GPU, then only 59% of frames are skipped. For
auto, the implementations used vary, so an average frameskip
value is shown. Fast algorithms that skip fewer frames have
higher accuracy, as shown by the relationship between the
f ski p and F1 values in Table VI.

Example detections, logged after tA seconds, are given
in Fig. 19. While true positives are detected in a variety of
conditions (including at dusk), even in the best case, only
up to 50% of events are detected. There are also many false
positives and negatives, mainly due to shortcomings in the
object or motion detectors. False positives can be caused by the
MoG algorithm flagging patches of empty road as foreground
[Fig. 19(g)], but mitigating this may cause slow-moving or
stationary traffic in that region to be ignored. Errors can also
be caused by limitations of the HOG implementations (such as
in Fig. 20) or failure to detect occluded objects [Fig. 19(h)].
Video quality has an impact here too; as shown in Fig. 18,
higher quality video allows more reliable classification (into
pedestrian and car classes) of moving objects. Other limita-
tions such as in Fig. 19(i) are also apparent; as we have failed
to associate the anomalous event with the object causing it,
this incident counts as two errors (FN and FP).

V. ANALYSIS

Here we concentrate on the most significant results from
these experiments and compare them with existing work.

Fig. 19. Examples of positive detections and failure modes of anomaly
detector on i-LIDS. Anomalies are marked by red boxes. (a)–(d) True positives
of various objects in different locations in quiet and busy surroundings.
(e)–(g) False positives from slow-moving traffic, an object moving off-screen,
and incorrect background subtraction, respectively. (h) Car is occluded behind
the road sign on the right; this is treated as a false negative. (i) False negative
and a false positive: the anomaly detector identifies the car on the left instead
of the van parked beside it. (j) Anomaly identified outside the allowed time
window, so counts as a false negative and false positive.

Fig. 20. Failure mode of object detection stage, showing a false positive
(blue rectangle representing a pedestrian). These affected the measured
accuracy, both directly and through the cluster and object abnormality
measures.

Considering the tradeoffs between power consumption,
accuracy, and time, we note that in this case, we are con-
strained by the real-time processing requirement. Power and
accuracy are therefore the main characteristics we can vary,
as we have limited flexibility over the time requirement.

The key results are found in Tables V and VI. From
Table VI, there is a 29-W range in average power consump-
tion above the baseline. The platform used was based on
a desktop PC, and hence was not optimized for low power
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Fig. 21. Error rate versus power consumption: F1 operational awareness
scores (α = 0.55) against power consumption for various time thresholds for
various lighting conditions.

consumption (hence the relatively high 147-W idle power).
With the system run with speed prioritized and the FPGA dis-
connected, the power consumption Pavg was 208 W, or 62 W
above the baseline. Pavg consumed under auto prioritization
with FPGA enabled was 61.9 W, but this is specific to this
data set; video data sets with fewer moving objects or longer
idle periods would have a considerably lower Pavg than this.
This is also because of the lack of gff and cff implementations
for CAR-HOG, which would reduce Pavg further.

We consider Pavg versus accuracy in Fig. 21. Using auto
prioritization allows a 10% increase in accuracy over the
power-optimized option, at a cost of 12 W extra in Pavg.
A further 17% improvement in F1-score (moving from auto to
speed) costs an extra 17 W. When compared with speed, the
12-W power reduction moving to auto reduces the accuracy
by 45% of the baseline, while the fully optimized power
option loses 72% accuracy for 32% in power savings from
the best case. This is most apparent for longer detection win-
dows, on daylight-only clips with higher levels of anomalous
behavior. These measurements and Fig. 21 itself show a clear
relationship between power consumption and overall detection
accuracy.

A. Comparison With State-of-the-Art Work

Following other researchers’ definitions of anomalous
events (events not present in and different to the training
data) [4], we argue here that the detection of parked vehicles
is a reasonable representation of the more general task of
detecting anomalous events in video. The only previous work
to perform parked vehicle detection on the full i-LIDS PV3
data set has been by Albiol et al. [9]. They used spatiotemporal
maps and manually applied lane masks in each clip to signify
which scene regions could have valid detections. Using this
approach, they reached p− and r− values of 100% in some
clips. Performance information is not given, but video frames
are downscaled to 320 × 240 to decrease the evaluation time.
They note that, as an approach for detecting slow-moving
and stationary vehicles, background subtraction has various
limitations. They also encountered similar difficulties as those
shown in Fig. 18. Lee et al. [10] perform illegal parked vehicle
detection on short clips extracted from the i-LIDS set; they

achieve close-to-real-time performance at the original
resolution and detect all events in the clips with no false
positives. Thus, if we take into account only accuracy
measurements, we are unable to improve on these existing
results. Here, however, we consider a novel and different
problem: that of automated power-aware anomaly detection
rather than monitoring lane occlusion in a manually masked
region. The only manual intervention we required in these
experiments was to register points in each camera viewpoint
to perform an affine transform onto the base plane. In the
future, this step could be done automatically.

The detection algorithms in this paper are the most time-
and power-intensive components of this system. Accuracy in
these could be improved by implementing more sophisticated
algorithms on one or more accelerated platforms. However,
this would require considerable development time if each
version were to be implemented. As shown in [12], many of
the current most accurate pedestrian detectors are based on
HOG, so the hardware acceleration techniques documented in
this paper and the overall conclusions would apply if more
accurate versions were substituted in the future. As the Pareto
curve in Fig. 17 shows, any such implementation with known
accuracy would always involve a compromise between power
and speed too; each measurement may become a priority at
any point in time.

The other work concerning power-aware resource allocation
in video is by Llamocca and Pattichis [24]. This paper is
concerned with tasks at higher levels of abstraction than their
work, but we are able to use the calculated anomaly level
to dynamically drive selection of the optimal mapping, rather
than relying on a user-selected accuracy level. This results
in a fully automated system. We are thus able to tie low-level
performance constraints such as power or energy consumption
to high-level accuracy of detected behavioral events.

VI. CONCLUSION

We have described a real-time system that performs parked
vehicle detection along with classification of humans and cars.
This can select between various algorithm implementations
on a mixture of FPGA, GPU, and CPU, each of which has
different power consumption, implementation runtime, and
algorithm accuracy characteristics. These are dynamically
selected based on a feedback loop driven by the number of
objects in a video perceived to be behaving anomalously
(in this case, parking in forbidden areas). This allows us to
dynamically trade off power consumption against detection
accuracy and shows benefits when compared with fixed power-
or speed-optimized versions. We evaluated this on a smaller
data set and performed a full characterization on the larger
i-LIDS PV3 data set. This shows a clear link between
processing power consumption and event detection accuracy;
compared with power-prioritized selection, automatic
anomaly-driven mapping is 10% more accurate, but draws
12-W more power.
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