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Abstract 16 

Studies identifying interactions between biological invasions and other stressors have 17 

generally focussed on quantifying their cumulative effects on mature species assemblages. In 18 

benthic systems, however, early life history processes are key determinants of assemblage 19 

structure and functioning. This study tested whether the presence of an invasive species 20 

affected early life history processes of two common barnacle species and whether this was 21 

affected by a second common stressor, nutrient enrichment. The results of a field experiment 22 

identified and characterised the effects of an invasive oyster, Crassostrea gigas, on the early 23 

life history processes of the two barnacle species under ambient and enriched nutrient 24 

conditions. In the presence C. gigas, the invasive barnacle Austrominius modestus, had a 25 

lower recruitment rate, however, there was no effect of the presence of C. gigas on native 26 

barnacle, Semibalanus balanoides, recruitment. Nutrient enrichment also reduced the 27 

recruitment rate of A. modestus, however, there was no evidence of synergistic or 28 

antagonistic interactions between these stressors, indicating their cumulative effects were 29 

additive. There was no effect of nutrient enrichment on native barnacle recruitment. Our 30 

results show that the presence of an invasive oyster and nutrient enrichment altered the 31 

recruitment of another non-native benthic species. These findings emphasise the importance 32 

of considering early life history processes when assessing effects of multiple stressors on 33 

communities.  34 
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1. Introduction 35 

Identifying and quantifying the impacts of multiple anthropogenic stressors, such as invasive 36 

species and nutrient enrichment, is a research priority in order to understand and predict 37 

potential detrimental effects on ecosystems (Crain et al., 2008; Sutherland et al., 2009; 38 

Strayer, 2012). Interactions between invasive species and other anthropogenic stressors can 39 

lead to cumulative effects that are additive or are greater than (synergistic) or less than 40 

(antagonistic) the sum of the individual effects (Folt et al., 1999; Crain et al., 2008). 41 

Synergistic cumulative effects on communities are thought to be the most common (Sala and 42 

Knowlton, 2006) and their occurrence has been supported by several empirical studies. For 43 

example, Piazzi et al. (2005) showed a decline in percentage cover of erect algal species 44 

when exposed to the invasive green algae Caulerpa racemosa var. cylindracea in increased 45 

sedimentation regimes. Conversely, antagonistic interactions have also been identified, such 46 

as the ability of the invasive freshwater zebra mussel, Dreissena polymorpha, to negate the 47 

effects of nutrient enrichment on algal biomass (Dzialowski and Jessie, 2009), and the 48 

presence of Sargassum muticum, an invasive fucoid algae, mediating the effects of nutrient 49 

enrichment and warming on algal biomass (Vye et al., 2015).  50 

To date, studies have focussed on the context-dependent impacts of biological invasions on 51 

the diversity and functioning of mature communities (e.g. Queiros et al., 2011; Green and 52 

Crowe, 2014). In benthic ecosystems, the structure and functioning of a mature community 53 

can be determined by early life history processes, such as larval settlement and post-54 

settlement mortality (Connell, 1985; Gaines and Roughgarden, 1985; Hunt and Scheibling, 55 

1997; Aguilera and Navarrete, 2012). Settlement, defined as the permanent attachment of 56 

larvae to the substratum (Connell, 1985), is often determined by larval supply and a range of 57 

settlement cues that indicate habitat suitability and resource availability, such as the presence 58 

of free space and biofilm abundance (Strathmann et al., 1981; Rodriguez et al., 1993). Early 59 
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post-settlement mortality may be driven by predation, disturbance or physiological stress 60 

(Menge and Sutherland, 1987). Both settlement and early post-settlement mortality can 61 

constrain recruitment into the adult population and, therefore, are important components of 62 

benthic species population dynamics (Gosselin and Qian, 1997; Delany et al., 2003; Jenkins, 63 

2005). The relative importance of these early life history processes in structuring 64 

communities can be context specific. Early post-settlement mortality is generally more 65 

important in determining population structure in species with high recruitment rates, such as 66 

barnacles (Connell, 1961a; Gosselin and Qian, 1996), whereas populations of species with a 67 

lower larval supply, such as some species of corals (Hughes et al., 2000), crustaceans (Wahle 68 

and Incze, 1997) and echinoderms (Balch and Scheibling, 2000), are more likely to be 69 

affected by differences in settlement rates (Connell, 1961a). Invasive species, in combination 70 

with other stressors, such as nutrient enrichment or warming, may drive changes in settlement 71 

and post-settlement mortality by altering physical conditions, such as substratum type and 72 

hydrological regimes, and biological interactions, such as competition and predation 73 

(Gutierrez et al., 2003; Wilkie et al., 2013).  74 

In coastal ecosystems, bivalve molluscs are common invasive species. Outside of its native 75 

range, the Pacific oyster, Crassostrea gigas, has wide-ranging and context-dependent effects 76 

on recipient communities, including driving shifts in native species assemblage structures 77 

(Kochmann et al., 2008), differences in ecosystem functioning rates (Green et al., 2012), and 78 

the co-introduction and facilitation of other invaders (Ruesink et al., 2005). Often the impacts 79 

of C. gigas increase in intensity as invasion progresses and the density of the oysters 80 

increases (Yokomizo et al., 2009; Green and Crowe, 2013). Although the impacts of C. gigas 81 

on mature communities are well documented (e.g., Padilla, 2010), little is known about the 82 

potential interactions between C. gigas and native or invasive species at early life history 83 

stages (Wilkie et al., 2012).  84 
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C. gigas forms feral populations in inlets and estuaries, where eutrophication is a common 85 

co-occurring stressor that can affect the impacts of biological invasions on recipient 86 

communities (Lotze et al., 2006; Gennaro and Piazzi, 2011; Vaz-Pinto et al., 2013). Thus, 87 

testing whether the presence and density of C. gigas interacts with nutrient enrichment to 88 

affect settlement and recruitment processes is a realistic scenario from which to identify the 89 

context-dependent effects of invasive species. A field experiment was designed to test for the 90 

separate and cumulative effects of the presence of C. gigas and nutrient enrichment on 91 

benthic species settlement and recruitment rates. Specifically, the hypothesis tested were: (1) 92 

the presence of invasive C. gigas and nutrient enrichment will affect the identity and 93 

abundance of other benthic species settlers and recruits; (2) these putative effects will 94 

interact, such that the effect of the presence of the invasive oyster on other benthic species 95 

settlement and recruitment will differ between ambient and enriched nutrient conditions; (3) 96 

the cumulative effects of the presence of the invasive oyster and nutrient enrichment on other 97 

benthic species will be determined by oyster density. 98 

2. Material and methods 99 

2.1. Study site 100 

The field experiment ran from February through to August 2013 at Ballygreen, a sheltered 101 

intertidal sedimentary shore on the south western shore of Lough Swilly, Co. Donegal, 102 

Ireland (55° 2’ 31.54” N, 7° 33’ 36.06”W). At this site, boulders are common and scattered 103 

on sediment comprised of sandy mud, pebbles and shell fragments. Tides are semi-diurnal 104 

and have a maximal range of approximately 4.5 m. The study was conducted at mid shore 105 

where boulders were colonised primarily by the native barnacle Semibalanus balanoides and 106 

the non-native barnacle Austrominius modestus (formerly Elminius modestus), the fucoid 107 

algae Fucus vesiculosis, the honeycomb worm Sabellaria alveolata and the keel worm, 108 
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Pomatoceros triqueter. Austrominius modestus has spread rapidly since its introduction to the 109 

UK and Ireland in the 1940s and may compete with native barnacle species (Bishop, 1947; 110 

Crisp, 1958; Lawson et al., 2004). Lough Swilly is a relatively unpolluted estuary compared 111 

to other more densely populated coastal areas of Ireland that have been classified as eutrophic 112 

in assessments of water quality (Bradley et al., 2015).  113 

2.2. Experimental design and set up 114 

To quantify benthic species recruitment under manipulated conditions, forty grey opaque 115 

Perspex® settlement plates (210 mm x 148 mm x 5 mm) were attached to the side of boulders 116 

(one per boulder), which had been selected randomly along approximately 40 m x 10 m of 117 

mid shore dominated by barnacles and Fucus vesiculosis. Grey Perspex® was chosen to 118 

represent natural conditions based on the colour of the bedrock to minimise any differences in 119 

thermal regime between the settlement plates and boulders (Lathlean and Minchinton, 2012). 120 

Each plate was sanded for thirty seconds using coarse sand paper to ensure suitable rugosity 121 

for settlement (Jara et al., 2006). Plates were attached to boulders at least two metres apart 122 

using stainless steel screws (Stachowicz et al., 2002; Canning-Clode et al., 2008). 123 

An orthogonal experimental design included two fixed factors: (i) presence of the invasive C. 124 

gigas at four levels: absent, 1 individual (ind.) per plate, 4 ind. or 8 ind. (equivalent to 125 

approximately 0, 32, 129, and 515 individuals per m2); and (ii) nutrient enrichment at two 126 

levels: ambient conditions and nutrient enriched. Each treatment was replicated five times, 127 

yielding 40 experimental units. Settlement plates were allocated randomly to treatments. 128 

Non-reproductive triploid oysters (Guo and Allen, 1994) from a local aquaculture facility 129 

were used to minimise effects on the feral oyster population. Juvenile oysters (spat) were 130 

used in the experiment and were six months old and 36 ± 0.5mm in length, similar to the age 131 

and size of naturally settled spat at the time the experiment commenced. Spat were attached 132 
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to the front surface of the settlement plates using Milliput® epoxy putty (Dolgellau, Wales). 133 

Previous work showed that there were no differences in assemblages associated with C. gigas 134 

attached using this method compared to those with C. gigas attached naturally (Vye, 135 

unpublished results). 136 

Localised nutrient enrichment was achieved by attaching nutrient diffusers (drilled 50 ml 137 

sample tubes) to each plate. Diffusers were filled with 140g of Everris Osmocote® Exact 138 

(Geldermalsen, Netherlands) slow release fertilizer pellets (11N:11P:18K) similar to previous 139 

studies (e.g., Hall et al., 2000; Minchinton and McKenzie, 2008; O’Connor and Donohue, 140 

2013). Ambient treatments had diffusers filled with shell fragments to limit potential 141 

experimental artefacts. Analysis of water samples from within a 15 cm radius of experimental 142 

plates 8 weeks after the addition of fertiliser pellets using the same method indicated that 143 

nutrient enrichment was effective (ambient total oxidised nitrogen (mean ± S.E.): 10.54 ± 144 

0.81 µm l-1, enriched total oxidised nitrogen: 14.24 ± 1.44 µm l-1, ANOVA: F1, 14 = 5.014, P 145 

= 0.042). 146 

The top surface of each plate was monitored every two to four weeks to ensure treatments 147 

were maintained and photographed at eight weeks and 24 weeks (Fig. 1). Abundance of all 148 

species on each plate was estimated from photos, as the new community was mono-layered 149 

and this method was more accurate than estimating percentage cover using grid quadrats and 150 

the point intercept method (Foster, 1991; Meese, 1992). During the experiment, the plates 151 

were colonised by the native barnacle, S. balanoides, and the non-native barnacle, A. 152 

modestus. A matrix of sediment and juvenile fucoid (< 2cm) was present on four out of the 153 

forty plates after twenty four weeks but these plates were distributed evenly among 154 

treatments and this was not considered in our analysis. Total abundance of all barnacles and 155 

abundance of each species were estimated using the Cell Counter plugin in ImageJ photo 156 

processing software (Schneider et al., 2012). At eight weeks, barnacle settlement had 157 
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occurred and cyprid larvae and recently metamorphosed juvenile barnacles were present on 158 

the plates. These were grouped under the term ‘settlers’ because it was not possible to 159 

distinguish between cyprid and juvenile barnacles accurately (Caffey, 1985; Jenkins et al., 160 

1999; O’Riordan et al., 2004; Cruz et al., 2005; Power et al., 2006). It was also not possible 161 

to identify barnacles to species level at 8 weeks and, therefore, total barnacle abundance was 162 

used in analysis. At 24 weeks, barnacles were large enough to distinguish between species, 163 

allowing individual estimates of the abundance and mean size of S. balanoides and A. 164 

modestus per plate to be quantified. Estimates of percentage cover of each species relative to 165 

the free space available to them were used for the analysis. S. balanoides individuals were 166 

larger (mean ± S.E.: 19.13 ± 0.95 mm2) than A. modestus (mean ± S.E.: 15.40 ± 0.79 mm2) 167 

and thus occupied a greater area of space than S. balanoides even when species abundances 168 

were similar. Focussing on percentage cover of each species, rather than abundance, is 169 

therefore more meaningful when comparing benthic recruitment rates in communities where 170 

settling space is a limiting resource, such as rocky shore communities (Dayton, 1971).  In 171 

addition, we tested whether barnacle density differed between oysters shell and experimental 172 

plates to assess whether preferential settlement on oysters occurred. An oyster was selected 173 

haphazardly from plates with C. gigas (from treatments with 4 & 8 individuals/ plate) and 174 

barnacle density on the oysters was estimated (individuals cm-1) and compared to barnacle 175 

density on the plates and was shown not to differ significantly (t = 1.279, df = 18, P = 0.216). 176 

 2.3. Data analysis 177 

Analysis of variance (ANOVA) was used to test all hypotheses with density of C. gigas (four 178 

levels) and nutrient enrichment (two levels) as fixed factors. Data were tested for assumptions 179 

of homogeneity of variances using Levene’s test and normality was examined using Q-Q 180 

plots and Shapiro-Wilk tests. Total abundance of settlers and recruits at 8 weeks and 24 181 

weeks were log transformed. Percentage data were arcsine square root transformed (Sokal 182 
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and Rohlf, 1995). Student-Newman-Keuls tests were used to make post-hoc comparisons 183 

among levels of significant terms. All statistical analyses were carried out in R 2.15.3 (R 184 

Development Core Team, 2011).  185 

3. Results 186 

At eight weeks, there was no significant interaction between the presence of C. gigas and 187 

nutrient enrichment (F 3, 31 = 0.773, P = 0.518, Fig. 2A) on the total abundance of settled 188 

barnacles on the experimental plates. The presence of C. gigas did not affect the total 189 

abundance of settled barnacles on the experimental plates significantly even at the greatest 190 

oyster density level (F 3, 31 = 1.348, P = 0.277, Fig. 2A). There was no significant effect of 191 

nutrient enrichment on the total abundance of settled barnacles (F 1, 31 = 0.228, P = 0.636; 192 

Fig. 2A). At 24 weeks, there was no significant interaction between the presence of C. gigas 193 

and nutrient enrichment (F 3, 31 = 1.719, P = 0.183, Fig. 2B) on total barnacle abundance. 194 

There was a significantly greater total abundance of barnacles on settlement plates where C. 195 

gigas was absent compared to all treatments with C. gigas, regardless of oyster density (F 3, 31 196 

= 3.279, P = 0.034, Fig. 2B and Fig. 2B(i)). However, there was no significant effect of 197 

nutrient enrichment on total barnacle abundance (F 1, 31 = 2.104, P = 0.183, Fig. 2B). 198 

At 24 weeks, when barnacle species could be distinguished, the native S. balanoides 199 

constituted 26 ± 2 % (mean ± S.E.) of the total abundance of barnacles with the remaining 74 200 

± 2 % (mean ± S.E.) comprised of the smaller invasive barnacle A. modestus across all 201 

treatments. Mean total percentage cover of barnacles on the plates was 15.1 ± 2.4 % (± S.E.). 202 

There was no significant interaction between the presence of C. gigas and nutrient 203 

enrichment (F 3, 31 = 0.793, P = 0.507, Fig. 3A) on the percentage cover of S. balanoides. 204 

There was also no significant effect of the presence of C. gigas (F 3, 31 = 1.030, P = 0.393, 205 

Fig. 3A), nor of nutrient enrichment (F 1, 31 = 0.059, P = 0.810, Fig. 3A) on percentage cover 206 
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of S. balanoides. There was no significant interaction between the presence of C. gigas and 207 

nutrient enrichment (F 3, 31 = 2.082, P = 0.123) on the percentage cover of the invasive 208 

barnacle A. modestus. Both the presence of C. gigas (F 3, 31 = 3.329, P = 0.032, Fig. 3B and 209 

3B (i)) and nutrient enrichment (F 1, 31 = 4.374, P = 0.045, Fig. 3B and 3B (ii)) had 210 

significant negative effects on the percentage cover of A. modestus, however, there was no 211 

significant effect of increasing densities of C. gigas (Fig. 3B (i)).  212 

4. Discussion 213 

This study tested empirically for effects of invasive species, coupled with nutrient 214 

enrichment, on the early life history processes of two species of barnacle and identified 215 

negative effects of an invasive species and nutrient enrichment on invasive barnacle 216 

recruitment. The effects of both factors on barnacle recruitment were independent of each 217 

other indicating that the cumulative effect of both C. gigas presence and nutrient enrichment 218 

were additive.  These effects on barnacle recruitment, however, were not consistent across 219 

both species, affecting an invasive but not a native species. Recruitment of the invasive 220 

barnacle, Austrominius modestus, was lower in the presence of the invasive oyster, 221 

Crassostrea gigas, whereas recruitment of the native species, Semibalanus balanoides was 222 

not affected by either stressor. Furthermore, increasing the density of C. gigas did not 223 

enhance their negative effect on recruitment of A. modestus, indicating that this effect was not 224 

density-dependent, which shows that even at low densities the presence of an invasive species 225 

can determine subsequent community dynamics. These findings also show that the effects of 226 

an invasive species on other benthic species recruitment varies between different species of 227 

recruits and are not determined necessarily by the presence of a secondary stressor, such as 228 

nutrient enrichment, or the density of the invasive species.  229 
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The negative effect of the presence of C. gigas on recruitment of the invader A. modestus 230 

may have been driven by reduced settlement or increased post-settlement mortality rates. 231 

Differential settlement may have occurred, where all the settlers at 8 weeks, which could not 232 

be identified to species level, were the native barnacle, S. balanoides. Semibalanus 233 

balanoides showed no response to C. gigas or nutrient enrichment treatments at 24 weeks, 234 

indicating that S. balanoides settlement and recruitment may not be affected by these 235 

treatments. Hence, the effects seen at 24 weeks may have been a result of the subsequent 236 

reduced settlement and recruitment of A. modestus between the two sampling events.  237 

Differential settlement may occur where there are inter-species differences in larval supply or 238 

settlement cues (Bohn et al., 2013). Alternatively, if differential settlement did not occur, 239 

treatment effects could have been on post-settlement mortality rather than reduced settlement 240 

because the effects were detected only at 24 weeks. It is possible that there was a density-241 

dependent reduction in settlers after eight weeks, as the presence of C. gigas reduced the free 242 

space available for settlement. This is not probable, however, because of the known 243 

gregarious behaviour of barnacles (Barnett and Crisp, 1979) and the relatively large amount 244 

of free space (approximately 60%) remaining on the experimental plates. The similar density 245 

of barnacles on settlement plates compared to C. gigas shells also indicates that no 246 

preferential settlement occurred on the oysters that may have confounded any effects of C. 247 

gigas on settlement. These findings suggest that effects of the presence of the invasive oyster 248 

could have manifested at post-settlement mortality stages. Post-settlement mortality is a key 249 

determinant of population dynamics in barnacles and, thus, the effects of C. gigas and 250 

nutrient enrichment on barnacle early life history may propagate through time to impact the 251 

diversity and functioning of mature benthic communities (Hunt and Scheibling, 1997; Delany 252 

et al., 2003).  253 
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The lower total barnacle recruitment rate, primarily a result of fewer A. modestus, may have 254 

been caused by a range of mechanisms. According to optimal foraging theory (MacArthur 255 

and Pianka, 1966), the addition of C. gigas may represent an increase in prey resource (Pyke, 256 

1984) for consumer species, such as the common shore crab Carcinus maenas, that may prey 257 

upon both juvenile oysters and barnacles (Diederich, 2005). This may lead to enhanced 258 

predation levels on the settlement plates. Alternatively, the physical presence of C. gigas may 259 

have led to increased turbulence around the plate, increasing mortality directly owing to 260 

physical disturbance (Crimaldi et al., 2002; Gutierrez et al., 2003). In addition, C. gigas could 261 

affect mortality indirectly by mechanisms including filter feeding, which would reduce food 262 

supply, and by causing differences in biofilm composition by altering hydrology (Thompson 263 

et al., 2005; Neal and Yule, 2009). In each of these potential mechanisms, a density-264 

dependent effect of C. gigas may have been expected, however, we did not identify any 265 

density-dependence in this study. This may have been because C. gigas covered only 266 

approximately 45% of each plate at the highest density, which may have not been sufficient 267 

for density effects on recruitment to become apparent (Wagner et al., 2012; Wilkie et al., 268 

2013). It has been hypothesised that the presence of invasive species may affect the 269 

recruitment of other non-native species, either by increasing non-native species recruitment 270 

under the invasional meltdown hypothesis (Simberloff and Holle, 1999), or by reducing non-271 

native species recruitment by increasing community invasion resistance (Elton, 1958; 272 

Balmford, 1996; Levine and D’Antonio, 1999). Our results show that the recruitment rate of 273 

the non-native barnacle, A. modestus was lower when C. gigas was present, which is not 274 

consistent with the invasional meltdown hypothesis. Invasional meltdown occurs when there 275 

are facilitative direct or indirect interspecific interactions amongst invasive species 276 

(Simberloff and Holle, 1999), suggesting that in this study there were no facilitative 277 

interactions between A. modestus and C. gigas.  278 
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Nutrient enrichment also decreased the percentage cover of A. modestus, which again was 279 

probably driven by increasing post-settlement mortality. Direct effects of nutrient enrichment 280 

on post-settlement mortality of A. modestus may have been caused by increases in ammonia 281 

concentrations within nutrient enriched treatments, which has been shown previously to 282 

affect recruitment in benthic invertebrates (Fitt and Coon, 1992), or as a result of other 283 

compounds, such as potassium (Kang et al., 2004), incidentally released in nutrient enriched 284 

treatments (Pawlik and Hadfield, 1990; Pawlik, 1992; Minchinton and McKenzie, 2008). 285 

Nutrient enrichment may also have reduced recruitment by causing differences in the 286 

abundance and composition of biofilm, an important food resource for intertidal grazers 287 

(Jenkins et al., 2001; Hill and Hawkins, 2009), and therefore, increased grazing rates on the 288 

settlement plates (Thompson et al., 2000). Grazing activity by the limpet, Patella vulgata 289 

(Lewis, 1954) and the periwinkle Littorina littorea (Connell, 1961a; Dayton, 1971), both 290 

present at the study site, have been linked to increased biological disturbance and, thus, 291 

increased post-settlement mortality of newly settled cyprid larvae and juvenile barnacles 292 

(Lewis, 1954; Connell, 1961b; Dayton, 1971; O’Connor et al., 2011). Our results are contrary 293 

to studies in other systems that have found nutrient enrichment to increase invasion (Bertocci 294 

et al., 2015; Gennaro and Piazzi, 2011), suggesting the impacts of nutrient enrichment on 295 

invasive species are likely determined by the main life-history traits of the species examined. 296 

Despite the predicted widespread occurrence of synergistic and antagonistic cumulative 297 

impacts of multiple stressors (Sala and Knowlton, 2006; Crain et al., 2008), this study found 298 

only additive cumulative effects of the presence of C. gigas and nutrient enrichment on A. 299 

modestus recruitment. Additive effects are estimated to occur in approximately 25% of 300 

multiple stressor scenarios (Crain et al., 2008) and may allow greater predictability of 301 

cumulative effects where there is sufficient information describing the direct effects (e.g. 302 

Chiu et al., 2008; Rius et al., 2009). The additive cumulative effects were identified over a 303 
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relatively short time period in this study, however, the nature of the interaction among 304 

stressors may shift over longer time periods as the effects of the stressors develop (Darling 305 

and Côté, 2008).  In light of this, continued environmental change, such as ocean warming 306 

and changes in climate variability, during community development over a longer time scale 307 

may lead to more indirect and unpredictable impacts on communities and their functioning 308 

(Crain et al., 2008). 309 

We have shown that the additive cumulative effects of species invasion and nutrient 310 

enrichment differed between recruiting species and, thus, have potential consequences for 311 

population dynamics and the assemblage structure of mature communities. This study 312 

highlights the importance of considering the effects of invasion, in combination with other 313 

anthropogenic stressors, on processes and events across a range of life history stages in order 314 

to fully comprehend multiple stressor impacts on communities. Future work should focus on 315 

determining the mechanisms causing the individual and cumulative effects of invasion and 316 

nutrient enrichment on recruitment using natural substrata, more complex communities and 317 

over longer time periods. We should aim to identify the specific contexts at different life 318 

history stages that determine interactions among multiple stressors in order to advance our 319 

understanding of multiple stressor impacts.  320 
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Figure legends 547 

Fig. 1: Experimental plate showing settlement and recruitment of barnacles after 24 weeks. 548 

Fig. 2: Mean abundance of barnacle settlers (± S.E.) per plate (31.1 cm2) with absence and 549 

increasing densities of C. gigas at eight weeks (A) and 24 weeks (B). Open bars represent 550 

ambient nutrient treatments and closed bars are enriched nutrient treatments. Fig. 2B (i) 551 

means of C. gigas density treatments across ambient and nutrient enriched conditions based 552 

on SNK tests. Significant differences among means are indicated by different lower case 553 

letters (P < 0.05). 554 

Fig. 3: Mean percentage cover (± S.E.) of S. balanoides (A) and A. modestus (B), at 24 555 

weeks. Fig. 3B (i) means of C. gigas treatments across ambient and nutrient enriched 556 

conditions and Fig. 3B (ii) means of nutrient enrichment treatments across C. gigas 557 

treatments. Open bars and ‘A’ represent ambient treatments and closed bars and ‘N+’ 558 

represent nutrient enriched treatments. Significant differences among treatments or levels of 559 

treatments are indicated by lower case letters (P < 0.05). 560 


