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ABSTRACT:  This paper presents the overview of a project, as well as selected results from 
the experimental work aimed at direct comparison of the physical and durability properties of 
room temperature cured geopolymer and Portland cement concretes (GPCs and PCCs, 
respectively).  Geopolymer binder was formed by reacting low purity geologically-originated 
lateritic clay, banahCEM(a), with an alkali silicate activator, banahCEM(b).  Economical and 
“industry friendly” mix design of GPCs was developed to satisfy common medium and high 
strength applications.  In order to allow a like-for-like comparison, both GPCs and PCCs 
were proportioned with equivalent paste volume and characteristic compressive strength.  It 
was found that in the first 24 hours after mixing the GPCs achieved 55–75% of their 28-day 
strength, while equivalent PCCs gained 37–43%.  Selected durability properties of developed 
geopolymer mortars, such as acid (solutions of H2SO4 and HCl) and sulfate (solutions of 
Na2SO4 and MgSO4) resistance have been found to be better than those of Portland cement 
systems.  Room temperature curing and reported engineering properties make this 
geopolymer binder most suitable for harsh environment applications, where rapid strength 
gain is of essence, e.g. repair applications, pre-cast industry (fast mould turnover), tunnel or 
mine linings. 
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In order to commercialise the product, the initial effort led to a three-year R&D Invest 
Northern Ireland funded project, which started in February 2014, involving banah UK Ltd 
and Queen’s University Belfast.  The aim of this ongoing project is to provide strong proof to 
designers, specifiers, clients and developers, via extensive testing programme, that the novel 
geopolymer-based binder system (banahCEM) can be produced and placed with similar ease 
as Portland cement concretes (PCCs) and mortars (PCMs). Concrete mix designs and quality 
control systems are being developed to assist in the larger scale production of the binder and 
commercialisation of the banahCEM-based geopolymer concretes (GPCs) and mortars 
(GPMs) for a range of products (Phase 1a).  Low energy GPC and GPM mixes are being 
optimised to investigate the practicalities of producing mixes similar to those currently used 
in construction, i.e. having characteristic compressive strengths of 37.5 and 60 MPa (Phase 
1b).  These mixes are being comprehensively tested to provide reassurance that the new 
binder will have fresh, mechanical and durability properties at least as good, if not better, 
than those of Portland cement.  Specifically, this is being achieved by checking whether 
design strength of geopolymer mixes can be obtained whilst having acceptable fresh and 
early age properties, i.e. workability and setting time, required for casting structural elements 
(Phase 2).  In addition to ease of placement, values of structural properties such as strength in 
compression and tension, thermal expansion, modulus of elasticity, creep, shrinkage, 
permeability and fire resistance of these new concretes and mortars are being measured 
(Phase 3).  The durability of these new systems is being evaluated by testing their resistance 
to freeze-thaw action, acid attack, sulfate attack and alkali-silica reaction (Phase 4).  
Moreover, chloride ion ingress and corrosion of reinforcement steel is being tested to 
evaluate the protective properties of banahCEM-based materials. 
 
Finally, conventional PCC and PCM mixes, with the same paste content and characteristic 
strength as corresponding geopolymer mixes, are being designed and tested using the same 
experimental programme as outlined above.  This allows for a like-for-like comparison of 
banahCEM and Portland cement systems. 
 
This paper presents results obtained from the ongoing research project.  Objectives of this 
part of work were to characterise the materials used in this research, and to study the strength 
development, setting time, as well as selected durability properties, i.e. resistance to acid and 
sulfate attack, of nominated geopolymer mixes.  The results were benchmarked against 
analogous cement mixes. 
 

EXPERIMENTAL PROGRAMME 
 
Materials 
 
Geopolymer binder was based on a two component system produced by banah UK Ltd: 
banahCEM(a), being the powder component, and banahCEM(b), the liquid component.  As 
described earlier, banahCEM(a) is an aluminosilicate precursor [3,4].  Aqueous solution of 
alkali silicate with water content of 41.2% was used as a chemical activator.  The solution 
had a specific gravity of 1.57.  Portland cement CEM I 42.5N, produced by Quinn Cement in 
Northern Ireland and conforming to the requirements of BS EN 197-1:2011 [5], was used in 
conventional cement concretes.  Chemical compositions of banahCEM(a) and Portland 
cement, determined using X-ray fluorescence spectrometry, are shown in Table 1.  A 
polycarboxylate-based superplasticiser Chemcrete HP3 produced by Larsen Building 
Products, with specific gravity of 1.1 and solid content of 35%, was added to conventional 



concretes.  Water from the mains supply (17 ±1 °C) was used as the mixing water, 
throughout. 
 

Table 1   Chemical composition and physical properties of banahCEM(a) and Portland 
cement 

 
ELEMENTAL 

COMPOSITION [%] 
banahCEM(a) PORTLAND CEMENT 

SiO2 32.04 20.21 

Al2O3 24.99 4.79 

Fe2O3 25.21 2.78 

CaO 7.78 63.01 

MgO 1.71 1.93 

MnO 0.37 0.08 

TiO2 3.17 0.27 

Na2O 0.36 0.19 

K2O 0.15 0.59 

SO3 0.22 2.60 

P2O5 0.14 0.12 

LOI [%] 3.08 3.16 

Specific gravity [-] 2.89 3.13 

 
Three aggregates, i.e. 0–5 mm concrete sand, 4–10 mm crushed basalt and 10–20 mm 
crushed basalt, were sourced in Northern Ireland.  The oven-dry particle density and water 
absorption (tested according to BS 812-2:1995 [6]) of all aggregates are reported in Table 2.   

 
Table 2   Basic physical properties of used aggregates 

 

AGGREGATE  
NAME 

PARTICLE DENSITY 
ON THE OVEN-DRY 

BASIS [kg/m3] 

1-H WATER 
ABSORPTION 

[%] 

24-H WATER 
ABSORPTION 

[%] 
0–5 mm concrete sand 2695 0.9 1.1 

4–10 mm crushed basalt 2790 1.4 2.2 
10–20 mm crushed basalt 2751 1.2 2.1 

 
Mix Composition   
 
An extensive experimental programme was undertaken to develop the mix design of 
banahCEM GPCs and GPMs.  Geopolymer mixes were proportioned by varying two of the 
mix proportion parameters, viz. paste volume and water to solid (w/s) ratio.  Two GPC mixes, 
with slump of 50−100 mm (determined according to the procedure described in BS EN 
12350-2:2000 [7]) and 28-day specific characteristic compressive strengths (fc,28) of 37.5 and 
60 MPa (referred to as GPC-37.5 and GPC-60, respectively), were selected for further 
examination.  Their proportions are given in Table 3.  For comparison, two cement-based 
concretes (PCC-37.5 and PCC-60), having the same paste volume, workability and fc,28 as the 
corresponding GPCs, were designed following the BRE mix design guidelines [8] – mix 



proportions are also given in Table 3.  Importantly, a superplasticiser was added to PCC 
mixes during mixing process to obtain the essential workability. 
 

Table 3   Proportions of geopolymer and Portland cement concrete mixes 
 

MATERIALS [kg/m3] 
MIX CODE 

GPC-37.5 GPC-60 PCC-37.5 PCC-60 
banahCEM(a) 265 363 - - 
banahCEM(b) 188 258 - - 

Portland cement - - 336 468 
Superplasticiser - - 1.2 0.6 

0–5 mm concrete sand 794 739 794 739 
4–10 mm crushed basalt 476 443 476 443 
10–20 mm crushed basalt 714 665 714 665 
Water for aggregate 1h 

absorption 
23 21 23 21 

Total added water 87 57 191 197 
Free water content[kg/m3] 141 142 169 176 
Binder content [kg/m3]* 376 515 336 468 

Total paste content [kg/m3] 517 656 503 643 
Total paste content [L/m3] 275 325 275 325 

w/s ratio [-] 0.375 0.275 - - 
w/c ratio [-] - - 0.502 0.376 

* – for geopolymer mixes it represented banahCEM(a) and solid part of banahCEM(b) 
 
To achieve the required fc,28 of 37.5 and 60 MPa, mortar mixes were designed with different 
w/s ratios for GPMs (0.375 and 0.275, respectively) and w/c ratios for PCMs (0.60 and 0.42, 
respectively).  Paste volume of all mortars was kept constant at 500 L/m3, so the effect of 
aggregates on the properties of mortars could be ignored. 
   
Variability in concrete and mortar production was also taken into consideration, in 
accordance with the guidelines of BRE for design of normal concrete mixes [8].  Therefore, 
concrete and mortar mixes were designed with the 28-day target mean strength (fm,28) of 50.6 
MPa and 73.1 MPa (margin of 13.1 MPa was added to each fc,28). 
 
Mix Preparation   
 
To ensure that no other parameters influenced the results, all constituent materials were 
stored in dry locations at room temperature (20 ±2 °C) prior to batching.  Before mixing, all 
aggregates were oven-dried (at 105 ±5 °C) for more than 48 hours, until a constant mass was 
reached, subsequently cooled and stored in plastic bags until mixing.  All mixes were batched 
following exactly their pre-determined mix proportions, i.e. no additional water (other than 
what is given in the mix design) was added during mixing to adjust the workability.   
 
The concrete mixes were prepared in a Croker RP50XD, 82 kg capacity rotating pan mixer, 
in 18 L batches.  The mixing procedure consisted of the following steps: 
• Step 1 − Pre-saturation of aggregates started 30 minutes before the actual concrete mixing 
(Step 2).  Dry aggregates were placed in the mixer’s pan with ½ of the total water (free + pre-
saturation water) and mixed for 1 minute. 



• Step 2 – The dry portion of binding material, i.e. banahCEM(a) or Portland cement, was 
introduced into the mixing pan followed by 1 minute of mixing. 
• Step 3 – The remaining water (free + pre-saturation water) and the chemical activator (in 
the case of GPCs), or the superplasticizer (in the case of PCCs), were added to the mix. This 
was followed by 6 minutes of mixing.  The beginning of this step is referred to as time zero.   
 
The mortar mixes were made in a Hobart mixer in 3.5 L batches using similar procedure to 
that described above. 
 
Sample Casting, Demoulding and Conditioning   
 
All specimens were cast in two layers.  Each layer was compacted on a vibrating table.  After 
casting, the moulds with samples were covered with polythene plastic sheets and placed in 
the conditioning room (RH > 95% and 20 ±1 °C).  Samples were demoulded at 24 ±0.5 
hours, counting from the time zero, and placed in plastic boxes on 15 mm plastic supports.  
Boxes were filled with water to the height of 5 mm, then covered with tightly fitting lids and 
stored in the conditioning room (20 ±1 °C).  This procedure allowed the conditioning of the 
samples at RH of > 95% and prevented unintentional carbonation of the samples, and 
leaching of alkalis. 
 
Test Techniques 
 
Compressive strength of concrete specimens at given ages (3-hour, 6-hour, 12-hour, 24-hour, 
3-day, 7-day, 28-day, 91-day, 182-day and 365-day) was determined by crushing three 
100×100×100 mm cubes each time (at a constant loading rate of 200 kN/min).  The average 
of three measurements is reported in MPa.   
 
Initial and final setting times of concretes were determined with penetration resistance 
method described in ASTM C 403 [9].  A wet-sieve method, using a 5 mm sieve, was used to 
sieve out coarse portion of aggregates and obtain a mortar sample.  Mortar samples were cast 
in plastic moulds (150 mm size cubes) and compacted.  Samples were left in the conditioning 
room at 20 ±1 °C and between experiments were covered to prevent water evaporation.  
Penetration resistance results were plotted against time.  For each mix, the times of initial and 
final setting (counting from the time zero) were determined as the times when the penetration 
resistance equalled 3.5 and 27.6 MPa, respectively.  Setting time results are reported in 
minutes. 
 
Resistance to inorganic sulphuric (H2SO4) and hydrochloric (HCl) acid attack was tested 
based on the general guidelines provided in ASTM C 267 [10].  After five weeks of curing, 
sets of four 50×50×50 mm mortar cubes from each mix were placed in plastic boxes 
containing acid solutions (20 ±1 °C) with concentrations of 0.10, 0.31 and 0.51 moles of 
H2SO4 or HCl per kg of solution.  Every 7 days, any loose material was removed from the 
samples by gentle brushing under a stream of tap water.  Subsequently, the mass of each cube 
was recorded, and they were returned to the boxes holding fresh acid solutions.  This 
procedure was repeated for 8 consecutive weeks.  To exemplify acid resistance of tested 
specimens, the mean cumulative percentage of mass loss (for 4 cubes) during 8 weeks of 
testing for samples immersed in acid of concentration of 0.51 mol/kg solutions (which 
corresponds to 5% H2SO4 and 1.9% HCl by weight of solution) is reported in this paper.   
 



Sulfate attack resistance was tested similarly to the procedure described in ASTM C 1012 
[11].   After five weeks of curing, sets of three 25×25×285 mm mortar bars from each mix, 
equipped with 6 mm stainless steel balls at each end of the bar, were placed vertically in 
plastic boxes containing 0.352 moles of Na2SO4 or MgSO4 per litre of solutions.  Samples 
were kept in the solutions (20 ±1 °C) for 52 weeks during which their length was measured at 
specific intervals (every week for the duration of the first 4 weeks, then every two weeks for 
the duration of 8 weeks, and for the remaining 40 weeks they were tested every 4 weeks).  
During the first 12 weeks of testing, sulfate solutions were renewed every 2 weeks, and every 
4 weeks afterwards.  The mean length change (for three bars) at week 32 of measurements, 
given in microstrains, is reported in this paper. 
 

RESULTS AND DISCUSSION 
 
Concrete Strength Development 
 
Strength development of GPC and PCC mixes over the period of one year is shown in  
Figure 2.  As designed, all mixes achieved their 28-day target mean strength.  As expected, 
mixes with lower w/s ratio (for GPC) or lower w/c ratio (for PCCs) had higher compressive 
strength.   
 
In comparison to PCC mixes, GPCs had very high initial strength.  At the age of 3 hours, it 
was possible to demould and test the GPC samples (the 3-hour strength was ca. 7.5 MPa for 
GPC-37.5 and ca. 15 MPa for GPC-60), while PCC samples were still soft, as they have not 
reached their initial setting time yet (see next section).  At the age of 24 hours, GPC-37.5 had 
strength 1.5 times higher than PCC-37.5, while GPC-60 strength was almost double that of 
PCC-60.  Up to the age of 28-days the strength gap between the corresponding GPC and PCC 
mixes decreased, with clear strength crossover effect, in favour of PCC mixes, at 28 days.   

 

 
 

Figure 2   Strength development of geopolymer and Portland cement concretes 
 
The strength gain of GPCs was very rapid up to the age of 3 days.  Afterwards, the strength 
development was relatively slow in comparison to PCCs.  Beyond the 28-day mark, there was 
no noticeable change in the strength of GPC mixes, indicating that the geopolymer reaction 
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was nearly completed at this age.  On the other hand, cement hydration continued, resulting 
in further increase in strength of PCCs.  Importantly, in the first 24 hours, the GPCs achieved  
55–75% of their 28-day strength, while equivalent PCCs gained 37–43%.   
 
Setting Time 
 
The initial and final setting times found for selected concrete mixes are shown in Figure 3.  
GPMs showed relatively shorter initial and final setting times than those obtained for cement 
mixes.  The ratio of initial setting time between PCC-37.5 and GPC-37.5 was 1.9, while for 
stronger grades it was 2.5.  Similar ratios were obtained for final setting times. 
 

  
 

Figure 3   Setting time of geopolymer and Portland cement concretes 
 

Where GPCs are concerned, both setting times increased with an increase in w/s ratio (setting 
times of GPC-37.5 were higher than those of GPC-60).  For lower strength grade PCC mixes, 
the initial and final setting times were only marginally higher than those of PCC-60.  This 
was unexpected, since the setting times of Portland cement systems are known to increase 
with an increase in w/c ratio [12].  However, superplasticiser was used in both PCC mixes, 
which might have affected the setting times [12].  The difference between initial and final 
setting increased with an increase in the w/s ratio or w/c ratio.   
 
Acid Attack Resistance 
 
The cumulative mass losses obtained for mortar samples during 8 weeks of immersion in acid 
solutions are shown in Figure 4.  When GPM mixes are compared to PCMs of the same 
strength grade, it is clear that geopolymer-based ones lost less mass than the conventional 
mixes, hence showing better resistance to H2SO4 and HCl acid attacks.   
 
Irrespective of the binder used and strength grade, H2SO4 attack caused larger mass loss than 
that of HCl (ca. 1.5 times larger for GPMs and at least 2.3 times larger for PCMs).  Where 
Portland cement is concerned, both acids have a dissolution effect on hardened cement paste 
caused by hydrogen ions (primarily dissolution of portlandite and decalcification of C-S-H 
and C-A-S-H phases) [13].  Indeed, as the pH of the solutions was periodically measured, a 
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rise in the pH over the period of seven days (one cycle) was clearly observed.  In addition, 
H2SO4 acid leads to sulfate attack.  Expansive acid reaction products (gypsum and, later on, 
ettringite) can precipitate on the samples’ surface and within pores of already degraded near-
surface layer, leading to microcracks and sprawling caused by induced tensile stresses [14].  
In the case of HCl, chloride ions penetrate into the cement matrix, causing monosulphate to 
react forming Friedel’s salt and ettringite [13].  For banahCEM mortars, the mechanisms of 
the matrix destruction caused by these two acids are uncertain, but they appear to be 
distinctly different, and this requires further detailed investigation.  As reported by Gao et al. 
[15], immersion in HCl solution of metakaolin-based geopolymer samples, made with 
potassium activator, caused leaching of KOH, KHCO3 and K2CO3.  The increase in pH of the 
acid solution used for banahCEM seems to support these findings.   
 

 
 

Figure 4   Mass loss of GPM and PCM samples due to the acid attack 
 
Sulfate Attack Resistance 
 
Regardless of strength grade, up to the age of 32 weeks, samples of GPM mortars proved to 
be stable in sulfate solutions, exhibiting relatively small change in length 
(shrinkage/elongation below 200 microns for both Na2SO4 and MgSO4 solutions).  As 
expected, attacked by sulfate ions, PCM mixes showed large expansions [16].  Mix PCM-
37.5 immersed in Na2SO4 was already disintegrating at 32-week, while PCM-60 had 
expansion exceeding 1200 microstrain (cracks can be observed at samples of both PCM 
mixes, while PCM-37.5 bars showed large curvature – see Figure 5).  For MgSO4 PCM-37.5 
and PCM-60 had expansion at the level of more than 4500 and 700 microstrain, respectively.   
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 After 32-weeks of immersion, geopolymer mortars showed superb resistance to attack by 
sodium and magnesium sulfate salt solutions, irrespective of the strength grade of the 
mortar mix.  PCM mixes were found to expand in these two media, with the lower grade 
mixes being more prone to the sulfate attack.  Larger expansion was recorded for PCM 
samples stored in Na2SO4 solution. 
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