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Abstract 20 

Increasing urbanisation has a direct impact on soil quality, resulting in elevated 21 

concentrations of potentially toxic elements (PTEs) in soils.  This research aims to assess 22 

if soil PTE concentrations can be used as an ‘urbanisation tracer’ by investigating 23 

geogenic and anthropogenic source contributions and controls, and considering PTE 24 

enrichment across historical urban development zones. The UK cities of Belfast and 25 

Sheffield are chosen as study areas, where available shallow and deep concentrations of 26 

PTEs in soil are compared to identify geogenic and anthropogenic contributions to 27 

PTEs.  Cluster analysis and principal component analysis are used to elucidate the main 28 

controls over PTE concentrations.  Pollution indices indicate that different periods of 29 

historical development are linked to enrichment of different PTEs.  Urban subdomains 30 

are identified and background values calculated using various methodologies and 31 

compared to generic site assessment criteria.  Exceedances for a number of the PTEs 32 

considered suggest a potential human health risk could be posed across subdomains of 33 
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both Belfast and Sheffield.  This research suggests that airborne diffuse contamination 34 

from often historical sources such as traffic, domestic combustion and industrial 35 

processes contribute greatly to soil contamination within urban environments.  The 36 

relationship between historical development and differing PTEs is a novel finding, 37 

suggesting that PTEs have the potential for use as ‘urbanisation tracers’.  The 38 

investigative methodology employed has potential applications for decision makers, 39 

urban planners, regulators and developers of urban areas. 40 

 41 

Capsule 42 

Potentially toxic elements have the potential for use as ‘urbanisation tracers’ due to their 43 

association with different historical anthropogenic sources. 44 

 45 

1 Introduction 46 

Globally, more people now live in urban areas than in rural areas; in 2014 54% of the world’s population 47 

lived in urban areas.  This has rapidly increased from just 30% in 1950 and is projected to reach 66% by 48 

2050 (UN 2014).  The demand put on these geographically limited urban environments will intensify as 49 

population density increases, with a direct impact on soil quality. 50 

Sources of potentially toxic elements (PTEs) in urban areas are often both geogenic and anthropogenic 51 

(Argyraki & Kelepertzis 2014; Rodrigues et al. 2009), with both point and diffuse anthropogenic sources 52 

common (Marchant et al. 2011).  Typical anthropogenic sources such as industry, traffic (leaded fuel, 53 

brake pads and tire wear (Argyraki & Kelepertzis 2014; Dao et al. 2014)) and waste disposal are known to 54 

contribute to PTE concentrations in soil (Ajmone-Marsan & Biasioli 2010).  Domestic outputs in urban 55 

environments, in the form of fuel burning and waste, can also be large contributors to soil PTE 56 

concentrations (Biasioli et al. 2006; Glennon et al. 2014). 57 

As urban areas continue to grow, a factor that must be considered is how human health can be affected 58 

by PTEs in soil.  Can development be appropriately and sustainably managed considering previous land 59 

uses and soil PTE concentrations?  The economic importance of urban soils must be balanced with 60 

ensuring potentially contaminated urban sites are safe for redevelopment. 61 

Numerous urban geochemical investigations have been completed across the world (Biasioli et al. 2006; 62 

Argyraki & Kelepertzis 2014; Glennon et al. 2014; Kelepertzis & Argyraki 2015; Golden et al. 2015; 63 
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Johnson et al. 2011; Thorton 2009; Mielke 1999) and it is by building upon this library of research that we 64 

can fully understand how urban PTE sources vary geographically.  The study areas used in this research 65 

have diverse bedrock and rich industrial histories, making them the ideal locations for investigating 66 

combined geogenic and anthropogenic contributions to soil PTE concentrations. 67 

This research aims to understand if PTE concentrations in soil can be used as a tracer for urbanisation by; 68 

(1) investigating geogenic and anthropogenic contributions to PTE concentrations in soil, (2) identifying 69 

groups of PTEs controlled by similar sources, (3) understanding how historical city development may 70 

have influenced soil quality by considering PTE enrichment across city development zones and (4) 71 

calculating typical threshold values for the anthropogenic PTEs from similar sources.  A novel 72 

investigative methodology will be employed utilising depth ratios, a range of multivariate statistical 73 

techniques and pollution indices.  The objective is to generate a methodology for use in other urban 74 

areas, for a range of potential pollutants, to inform on city areas most likely to be contaminated. 75 

Eleven PTEs are considered; arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), 76 

nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), vanadium (V) and zinc (Zn).  These elements are expected 77 

to be related to different geogenic and anthropogenic sources within the study areas; in particular they 78 

are likely to represent contamination from a variety of historical industrial processes.  Elements such as 79 

As, Cr, Cu, Ni, Pb and Zn commonly feature in urban geochemical studies due to their anticipated 80 

anthropogenic sources (Johnson & Ander 2008) while Carrero et al. (2013) demonstrate a relationship 81 

between a variety of the chosen PTEs, including Mo, Sb and Sn, and soils heavily impacted by traffic.  82 

Previous research in one of the study areas (McIlwaine et al. 2014; McIlwaine et al. 2015; Cox et al. 2013; 83 

Barsby et al. 2012; Palmer et al. 2015) has demonstrated concentrations of various PTEs to be controlled 84 

by geogenic sources in the form of bedrock geology. 85 

 86 

2 Methodology 87 

 88 

2.1 Study areas 89 

Two cities within the United Kingdom have been chosen as study areas for this research.  Belfast, 90 

Northern Ireland’s capital and largest city has been compared with Sheffield, a city in South Yorkshire, 91 

England.  These cities were selected due to their similar industrial heritage in heavy engineering 92 

(although Sheffield’s is slightly greater and more varied than Belfast) and their similar geology. 93 

The Corine land cover data (European Environment Agency 2012) was utilised to define both the Belfast 94 

and Sheffield study area boundaries (Figure 1).  This data is split into 44 different land uses based on the 95 
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interpretation of satellite images.  The majority of land uses were simplified into either urban or rural; 96 

areas of urban fabric and industrial units were obviously urban while areas of pasture and forest were 97 

clearly rural.  Where any inconclusive land uses were identified, the surrounding land use was utilised as 98 

an indicator of land use type on a site by site basis.  Within Sheffield, the Corine boundary was slightly 99 

reduced due to the spatial extent of the geochemical data available.  100 

 101 

Figure 1 Maps showing a) location of Belfast and Sheffield within the UK, b) simplified bedrock geology in Belfast 102 
(bedrock geology derived from data provided by Geological Survey Northern Ireland (GSNI) (Crown Copyright)) 103 
and c) bedrock geology in Sheffield (taken from BGS GeoIndex) 104 

2.1.1 Belfast 105 

A simplified representation of the highly diverse bedrock geology in Belfast, from GSNI’s 1:250000 map, 106 

is produced in Figure 1.  Silurian greywacke and Silurian shale are the two oldest rock formations, 107 

forming part of the Southern Uplands-Down-Longford Terrane, followed by the Permo-triassic 108 

sandstones and mudstones.  This is covered in the west of the city by Cretaceous sandstone and chalk 109 

Pennine Lower Coal Measures 
Rossendale Formation 

Pennine Middle Coal Measures 
Marsden formation 

Rossendale Formation 
Pennine Middle Coal Measures 
Marsden Formation 
Pennine Lower Coal Measures 
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and finally by the most recent Tertiary basalts which run along the north west boundary of city (Mitchell 110 

2004).  A number of Palaeogene intrusions occur within the study area.  Geology has previously been 111 

identified as a control over element concentrations in Northern Irish soil (McIlwaine et al. 2014), with 112 

areas of basalt and sandstone identified as containing elevated concentrations of different PTEs.  This 113 

study area is therefore of interest due to the expected geogenic controls within an urban environment. 114 

Superficial geology within Belfast (Supplementary Information 5) has been reproduced from a GSNI map 115 

showing the geology of Belfast and District (Bazley et al. 1984).  It is found in the form of till, glacial sands 116 

and gravels, and alluvium within the vicinity of the River Lagan. 117 

Historical maps of Belfast (Land and Property Services 1858; Land and Property Services 1901; Land and 118 

Property Services 1919) have been used to produce historical study area boundaries for 1858, 1901 and 119 

1919-1939.  Historical development of surrounding towns that are now incorporated in the greater Belfast 120 

area (Carrickfergus and Bangor on Figure 1) has not been included. 121 

Belfast is historically recognised for both linen production and ship-building; the early 18th century saw 122 

the introduction of the linen industry involving bleaching, weaving and spinning processes while ship-123 

building was introduced later in the 18th century (Beckett & Glasscock 1967; Crawford 1986).  The city 124 

was an important manufacturing centre during the industrial revolution with other common businesses 125 

including rope works, bleachers, glass manufacturers, tobacco factories and distilleries (Royle 2007).  126 

Present-day Belfast is much more reliant on service provision related occupations (82% in Northern 127 

Ireland in the 2013 Census of Employment (NISRA 2014)) than the historical industrial and 128 

manufacturing employment. 129 

2.1.2 Sheffield 130 

Sheffield is underlain by Carboniferous deposits of Westphalian and Namurian age (Freestone et al. 131 

2004).  The rocks are highly faulted and folded creating many discontinuous outcrops (Figure 1).  The 132 

Middle Coal Measures Formation outcrops to the east of the city centre; it is Westphalian in age and 133 

composed of sandstone.  The Lower Coal Measures Formation, also composed of sandstone and 134 

Westphalian in age, underlies most of the city centre.  The Rossendale and Marsden Formations are 135 

present to the west of the study area comprising of mudstone and siltstones. 136 

Quaternary deposits cover approximately 10% of Sheffield (Supplementary Information 5); silt alluvium 137 

is located in the river valleys around and in the city of Sheffield while some river terrace deposits in the 138 

form of sand and gravel also infill these valleys (Freestone et al. 2004). 139 

Historical maps (OS Six Inch England and Wales 1851; Bartholomew’s “Half Inch Maps” of England and 140 

Wales 1904; Bartholomew’s Revised “Half Inch Maps” 1920; 1:25000 maps of Great Britain 1953) of 141 
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Sheffield have also been used to produce historical study area boundaries for 1850-1851, 1904, 1920 and 142 

1938-1951. 143 

Sheffield is located in South Yorkshire in England and is believed to have been originally founded in the 144 

8th century.  Coal has played an important role in the city’s history, being mined and burnt for “space 145 

heating and industrial purposes in Sheffield since Roman times” (Rawlins et al. 2005).  By the 1750s, more 146 

than 150 firms were dedicated to steel manufacture within the city.  High quality cutlery, an export for 147 

which Sheffield is recognised, has been produced in the city since that time (Gilbertson et al. 1997).  148 

Industrial expansion continued until the late 1960s, when British Steel opened their Tinsley Park Works 149 

in the north east of the city.  The steel and cutlery industry in Sheffield began to decline in the late 1970s 150 

and 1980s when cheaper alternatives were being produced in other areas of the world.  This also affected 151 

the coal used to fuel industry in Sheffield, with coal use declining dramatically from the mid-1980s 152 

(Gilbertson et al. 1997).   153 

 154 

2.2 Geochemical data 155 

The Tellus project, managed by GSNI, was completed across Northern Ireland between 2004 and 2007, 156 

comprising both geophysical and geochemical surveys.  In total, 781 Tellus soil sample locations (4 157 

samples per km2) fall within the defined Belfast boundary (<200 km2).  Geochemical measurements are 158 

available via a variety of different analytical techniques.  Total concentrations determined by X-ray 159 

fluorescence (XRF) were available for the shallow (5-20 cm) soil samples. Aqua regia extractable data are 160 

available for the shallow and deep (35-50 cm) samples, with the PTEs investigated within this study 161 

analysed by a mixture of Inductively Coupled Plasma (ICP) Optical Emission Spectrometry (OES) and 162 

ICP Mass Spectrometry (MS). 163 

Similar sampling density and analytical techniques were employed during G-BASE sampling of 164 

Sheffield.  However, this G-BASE data was solely analysed by XRF and at this stage only the shallow (5-165 

20cm) soils have been analysed.  Some 495 G-BASE soil sample locations fall within the defined Sheffield 166 

boundary.  More detailed information on the Tellus datasets including quality assurance and quality 167 

control procedures can be found in  Green et al. (2010); Knights (2007) and Smyth (2007) and information 168 

on the Geochemical Baseline Survey of the Environment (G-BASE) protocols followed are provided by 169 

Johnson (2005). 170 

 171 
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2.3 Depth comparison 172 

Comparing shallow (5-20cm) and deep (35-50cm) PTE concentrations gives a greater understanding of 173 

anthropogenic and geogenic inputs to PTE concentrations in soil.  Generally, if the shallow 174 

concentrations are more elevated this suggests an anthropogenic control over the PTE (Chiprés et al. 175 

2009) while a geogenic control will result in elevated concentrations in the deep samples (Galán et al. 176 

2008).  Although this assumption will generally hold true, it is important to note that urban soil is often 177 

replaced or altered due to development, with potential for contaminated soils to be reworked or placed at 178 

depth.  Even with relatively undisturbed soils care should be taken as the presence of organic matter may 179 

cause differences between horizons (Reimann & Garrett 2005). 180 

Ratio boxplots based on the shallow concentration of the PTE divided by its deep concentration have 181 

been constructed to provide an indication of the general inputs to different PTEs in Belfast.  The data 182 

based on the aqua regia extraction, followed by an ICP finish was used for this comparison as it is 183 

available at both depths therefore providing a valid comparison.  This comparison could not be 184 

completed for Sheffield where only shallow data is available.  The docks area of Belfast (Figure 1) is 185 

developed on reclaimed land so, within that small area (approximately 6.5 km2), the assumptions 186 

regarding depth are not likely to hold true, however, there is no particular evidence to suggest this occurs 187 

elsewhere within Belfast.  The scale of the data used to complete this comparison and the size of the 188 

study area suggests that this depth comparison will inform on controlling sources. 189 

 190 

2.4 Source identification and relationships between PTEs 191 

Multivariate techniques in the form of cluster analysis and principal component analysis (PCA) have 192 

been used to determine underlying controls over the PTE dataset (Andersson et al. 2010; Candeias et al. 193 

2011; Argyraki & Kelepertzis 2014).   194 

Shallow XRF data was used for this analysis; previous research by McIlwaine et al (2015) suggests 195 

elemental form may affect the concentrations determined by ICP-OES/ICP-MS following an aqua regia 196 

digestion.  This is of particular importance within urban environments as the source of the PTE is likely 197 

to control its form.  Shallow data are of more relevance for this section of the research due to interest in 198 

the anthropogenic controls over the PTEs, and also because shallow/surface soils drive risks to humans 199 

through inhalation of dust, ingestion of soil and dermal contact (Cole & Jeffries 2009; CL:AIRE 2014a; 200 

Nathanail et al. 2015). 201 

Geochemical data is compositional in nature, meaning that all the values are relative to each other i.e. all 202 

the elements analysed in a sample sum to a constant value.  Therefore, all total element concentrations 203 



7 

depend on the concentrations of the other elements in that sample meaning that they should be ‘opened’ 204 

prior to multivariate statistical analysis (Pawlowsky-Glahn & Egozcue 2006; Reimann et al. 2012; 205 

Aitchison 1982).  The centred log-ratio (clr) transformation was found to be an appropriate manner for 206 

‘opening’ geochemical data prior to multivariate data analysis within this research as it allows retention 207 

of the relationship with the original variables of the dataset.  Prior to completion of the cluster analysis 208 

and PCA the data was also scaled to unit variance to ensure differences in scale would not control the 209 

outputs. 210 

Cluster analysis has been used as an exploratory data analysis method with the aim of splitting the data 211 

under consideration into a number of groups which are similar in their characteristics or behaviour 212 

(Reimann et al. 2008).  The commonly utilised Ward’s minimum variance method (Astel et al. 2007; 213 

Frentiu et al. 2013; Ward 1963) was used to form groups of subsets based on their similarity as defined by 214 

specified characteristics and the Euclidean distance. 215 

The PCA plots geochemical data in multivariate space, searching for the direction that contains 216 

maximum variability.  The resulting loadings describe the relationship between the original variables and 217 

the Principal Components (PCs), while the scores describe the relationship between each of the 218 

observations and the PCs (Reimann et al. 2008).  In order to understand the spatial distribution of the 219 

PCs, the score for each observation has been plotted, forming a map of how the PC is distributed.  This 220 

allows a comparison between controlling variables and geographical distribution, providing a full 221 

interpretation of the PCA (Reimann et al. 2008).  This interpolated map was produced using inverse 222 

distance weighting (output cell size of 200m, power of 2 and a search radius of 500m) which is 223 

recommended for use within spatially dense networks (Dirks et al. 1998). 224 

 225 

2.5 Urban growth 226 

Pollution indices (PIs) have been utilised to gain an understanding of how the PTE concentrations within 227 

the Belfast and Sheffield development zones (based on the historical boundaries discussed in Section 2.1) 228 

show various levels of enrichment.  These PIs have been calculated using; 229 

PI = Uc/Rc 230 

where Uc is the median element concentration within the development zone under consideration and Rc is 231 

the median rural element concentration.  A study by Biasioli et al. (2006) used PIs in a similar manner to 232 

estimate the enrichment of a city with certain PTEs.  In order to determine the influence of different 233 

urban environments over PTE concentrations through anthropogenic sources the most effective 234 

comparison is with rural environments.  Previous research has suggested that there was no obvious 235 
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agricultural input of anthropogenic PTEs to the rural environment within Northern Ireland (McIlwaine et 236 

al. 2014; McIlwaine et al. 2015).  The median rural concentration has been used as the median is more 237 

robust to outlying values than the more commonly used mean (Zhang et al. 2007). 238 

The median rural element concentrations were easy to calculate for the Belfast study area, as the Tellus 239 

rural data was available.  The median rural element concentrations for the Sheffield study area were 240 

taken from Freestone et al. (2004), which provided the ‘median concentrations in regional surface soil 241 

samples overlying Carboniferous Coal Measures, Humber-Trent atlas areas’.   242 

 243 

2.6 Background or typical threshold values 244 

A variety of methods for calculating background concentrations were utilised, and the results contrasted 245 

and compared to gain an understanding of their strengths. The domains (areas where a readily 246 

identifiable factor can be shown to control the concentration of the PTE) were based on the findings of the 247 

PCA and historical analysis, and as such were defined using the historical development zones identified.  248 

As previously suggested for use at a regional scale in Northern Ireland, the typical threshold value (TTV) 249 

(McIlwaine et al. 2014) methodology which utilises the Finnish upper limit of geochemical baseline 250 

variation (ULBL) (Jarva et al. 2010) to define background concentrations was employed.  The ULBLs are 251 

based on the upper limit of the upper whisker line of the box and whisker plots, which can be calculated 252 

using: 253 

ULBL = P75 + 1.5 x (P75-P25) 254 

P75 and P25 are the 75th and 25th percentiles of the element concentrations respectively (Jarva et al. 2010).  255 

Logarithmic transformed data were not used to plot the box and whisker plots, as the untransformed 256 

data led to the highest amount of outliers and therefore gives a more conservative value.  This is a very 257 

straightforward method for calculating background values, solely requiring the calculation of the 75th 258 

and 25th percentiles. 259 

In addition, the Normal Background Concentration (NBC) method employed for use alongside Part 2A of 260 

the Environmental Protection Act in England and Wales was used.  Within the NBC methodology, it is 261 

recommended that the domains are based on at least 30 values (Cave et al. 2012).  The NBC is calculated 262 

for each domain using a statistical methodology given in (Cave et al. 2012).  The NBC is then taken to be 263 

the upper 95% confidence limit of the 95th percentile.  The project outputs included R code scripts which 264 

can be used to determine NBCs, as discussed by Johnson et al. (2012).  These R scripts have been utilised 265 

by the author to calculate NBCs within this research. 266 

The median + 2MAD (median absolute deviation) (Reimann et al. 2005) method was also utilised.  The 267 

median + 2MAD, boxplot upper whisker and English NBC methods were compared as methods by 268 
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which to calculate background concentrations in urban environments in a study by Rothwell & Cooke 269 

(2015).  The lack of systematically collected geochemical data (no G-BASE data was available) meant that 270 

a different approach had to be taken within this study in Gateshead; site investigation data collected 271 

during the planning process was instead used.  The local authority determined that the median + 2MAD 272 

method provided the preferred NBCs within this study as it consistently gave the most conservative 273 

values i.e. the lowest NBC (Rothwell & Cooke 2015).   274 

 275 

3 Results and discussion 276 

 277 

3.1 Depth ratio 278 

 279 

Figure 2 Boxplots of the shallow/deep PTE concentrations (depth ratio) using ICP following an aqua regia digestion 280 
data for Belfast (solid black line shows where the shallow and deep concentrations are equal, dashed line shows 281 
where the depth ratio is equal to 0.2, dotted line shows where the depth ratio is equal to 1.5 and the M values 282 
represent the median depth ratio) 283 

From the Belfast depth comparison, similar boxplot characteristics are shown for Co, V, Cr and Ni; the 284 

majority of the boxplot falls below a ratio of one, representing more elevated concentrations in deep soils.  285 

A number of lower outliers are identified, related to elevated concentrations at depth, while the upper 286 

outliers are likely to be related to anthropogenic sources of these PTEs in shallow soils.  This pattern 287 

suggests a predominantly geogenic control over these PTEs within Belfast.  The upper outliers may be a 288 

useful way of spatially assessing anthropogenic point sources of these PTEs in the study area.  These 289 
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outliers show a great deal of consistency across the Co, V, Cr and Ni distributions; the depth ratio falls 290 

above 1.5 (dotted line on Figure 2) for at least 3 of the PTEs at 18 sample locations and for all 4 PTEs at 8 291 

sample locations. 292 

Geogenic controls are also exerted over Cu and Zn, however the overall pattern for these PTEs is a little 293 

different.  A larger variance of the ratio is obvious, with a wider dispersion of the boxplot’s whiskers.  A 294 

number of lower outliers may represent the geogenic influence over these PTEs, however the increased 295 

amount of upper outliers suggest a more substantial anthropogenic contribution to Cu and Zn 296 

concentrations.  However, it should be noted that copper can complex with organic matter in soils 297 

(Karlsson et al. 2006) which may also explain the degree of variance of the ratio observed.  Further work 298 

is needed to define the effects of organic matter on such metal distribution in soils. 299 

The remainder of the PTEs appear to be controlled by anthropogenic processes as the medians of the 300 

depth ratio are generally higher than 1 and only upper outliers are present.  They can be split into two 301 

groups; As and Mo behave in a similar manner as both show a relatively small variance with only upper 302 

outliers.  Although Pb, Sb and Sn also only have upper outliers they demonstrate a much larger variance.  303 

This is related to a small number of samples where the deep concentration is much greater than the 304 

shallow concentration, for example the number of samples where the depth ratio is below 0.2 (dashed 305 

line on Figure 2) is 7, 6 and 15 for Pb, Sb and Sn respectively.  Most of these samples are dispersed across 306 

the study area and are potentially related to sites where the deeper soil has been disturbed or replaced 307 

(perhaps with waste materials) during development leading to higher concentrations of these PTEs at 308 

depth.  An alternative possible explanation for this pattern is that these PTEs are more easily leached 309 

from shallow to deeper soils at these locations. 310 
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3.2 Cluster analysis 311 

 312 

Figure 3 Dendrograms demonstrating the cluster analysis completed for Belfast and Sheffield, with axis 313 
representing dissimilarity height between variables 314 

The cluster analysis (Figure 3), which considers shallow soils analysed by XRF, groups the PTEs in Belfast 315 

in a very similar pattern to that previously determined by the depth ratio analysis (Figure 2).  The PTEs 316 

are first split into two main groups which can be explained by controlling geogenic (Co, V, Cr and Ni) 317 

and anthropogenic (Cu, Zn, Sn, Pb, Sb, As and Mo) factors. 318 

Within the geogenic cluster two separate groups of Co and V, and Cr and Ni are present.  Previous 319 

research has shown strong correlations between all these PTEs in a Northern Ireland context (Barsby et 320 

al. 2012), related to the stark control areas of Tertiary basalt exert over these PTEs.  The total 321 

concentration maps of Co, V, Cr and Ni (Supplementary Information 1) show extremely similar spatial 322 

distributions.  Although the main control over these PTEs in Belfast is the Tertiary basalts, a few 323 

anthropogenic hot spots are dispersed across Belfast.  It could be these point sources, and their influence 324 

over the PTEs separately, that creates the difference between the Co and V, and Cr and Ni groups. 325 

Three smaller groups make up the anthropogenic cluster in Belfast; firstly Cu and Zn, secondly As and 326 

Mo and finally Sn, Pb and Sb (Pb and Sb are most closely related within this cluster).  As highlighted in 327 

Section 3.1, these separate groupings are related to the different source contributions for these PTEs.  328 
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Although anthropogenic controls govern these concentrations, Cu and Zn are probably grouped because 329 

they also have geogenic contributions from the Tertiary basalts.  From an anthropogenic perspective, the 330 

close grouping of Cu and Zn could also be explained by their role in the production of brass (Herting et 331 

al. 2008).  Arsenic and Mo are anthropogenically controlled, but again a possible geogenic influence from 332 

the Silurian greywackes resulting in elevated concentrations of As and Mo in overlying soils (Young & 333 

Donald 2013) could cause them to cluster together within the overall anthropogenic cluster.  No geogenic 334 

contributions to Pb, Sb or Sn could be identified within the study area suggesting a sole anthropogenic 335 

control over these PTEs, creating their separate grouping (Figure 3).   336 

The results of the cluster analysis for Sheffield (Figure 3) are strikingly similar to those presented for 337 

Belfast.  Two main separate groupings are noted; Zn, Cu, Sb, Pb, Sn, Mo and As are grouped separately 338 

from Ni, Cr, V and Co.  As demonstrated on the concentration maps (Supplementary Information 1), Ni, 339 

Cr, V and Co show elevated concentrations to the north-east of the study area.  Although they are all 340 

affected by the presence of other point sources in Sheffield, the large anthropogenic source to the north-341 

east is their most obvious characteristic, resulting in them being grouped together. 342 

In contrast, the other PTEs all have other factors affecting their concentration distributions.  This cluster 343 

analysis suggests similar sources controlling three groups of PTEs, 1) Zn and Cu, 2) Sb, Pb and Sn and 3) 344 

As and Mo.  Although these elements are anthropogenically controlled it is difficult to narrow down 345 

their specific sources.  As noted for Belfast, Zn and Cu could be grouped together due to their role in the 346 

production of brass.  The Pb, Sb and Sn concentrations are again likely to be solely anthropogenic; the 347 

widespread nature of their elevated concentrations might suggest a controlling atmospheric deposition 348 

source. 349 

The difference in the scale on the cluster analysis from the two cities should be noted.  The overall 350 

difference between the two groups, (Ni, Cr, V and Co are grouped separately from Mo, As, Sb, Pb, Sn, Zn 351 

and Cu) is much greater for Belfast than for Sheffield.  In addition, the PTEs identified as being of 352 

geogenic origin in Belfast (Ni, Cr, V and Co) have a much smaller difference in height (between the two 353 

groups and the adjacent PTEs), than is noted for these PTEs in Sheffield.  This suggests stronger 354 

similarity between these PTEs in Belfast, defending the identification of controlling geogenic and 355 

anthropogenic sources of these PTEs in Belfast and Sheffield respectively. 356 

Although the other group of PTEs (Mo, As, Sb, Pb, Sn, Zn and Cu) show similar height differences in 357 

Belfast and Sheffield between most of the groups, the overall difference between the Zn and Cu group, 358 

and the Mo, As, Sb, Pb and Sn group is much greater for Belfast than it is for Sheffield.  This could be 359 

explained by the geogenic contributions to Zn and Cu in Belfast compared to the governing 360 

anthropogenic controls over Mo, As, Sb, Pb and Sn. 361 
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These results are useful for providing preliminary information on links between PTEs; in order to 362 

ascertain the underlying associations between the anthropogenic PTEs more detailed multivariate 363 

analysis is required, along with an understanding of how their sources vary spatially. 364 

 365 

3.3 Principal component analysis 366 

 367 

Figure 4 Results of PCA completed for Belfast using shallow XRF data, with PC1 and PC2 maps 368 

The first two identified PCs explain 67 % of the total variance within the results of the Belfast PCA.  PC1 369 

separates the geogenic controls over Co, V, Cr and Ni from the anthropogenic PTEs.  Cobalt, V, Cr and Ni 370 

(green on biplot) cluster closely reemphasising their almost identical spatial distributions related to their 371 

similar sources.  The strong control exerted by the Tertiary basalts over these PTEs is represented in the 372 

red areas in the PC1 map (Figure 4). 373 

The PC1 results distinguish Pb, Sb and Sn (pink on biplot) as the most clearly defined anthropogenic 374 

PTEs.  The map of PC1 shows the anthropogenic group to create a halo effect around the oldest part of 375 

the city, with a stronger presence towards the east of the city.  The shipbuilding industry has been based 376 
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within this area of this city for many years, with George Best Belfast City Airport now also located here.  377 

This pattern is particularly obvious from the 1901 zone out to the modern Belfast zone, suggesting a long-378 

term pattern of contamination within these soils. 379 

PC2 appears to be explained by different contaminant sources contributing to As (red on biplot), and Cu 380 

and Zn (blue on biplot).  The widespread As contributions suggest a domestic source such as coal 381 

combustion (Duan & Tan 2013), whereas the dark areas related to Cu and Zn suggest point sources across 382 

the city centre and also highlight the area of Tertiary basalts in the west of the city.  A geogenic 383 

contribution to As in areas overlying Silurian greywacke is also possible; although the concentrations of 384 

As in this type of bedrock would not be expected to be particularly elevated, we would expect them to be 385 

higher than those found over the Tertiary basalts (Young & Donald 2013). 386 

An airborne diffuse source of PTEs aligns well with previous research which demonstrated that 387 

characteristic polycyclic aromatic hydrocarbon (PAH) ratios in soils were from an airborne diffuse source 388 

from a mixture of biomass, solid fuel and fossil fuel combustion (Doherty et al. 2015).   389 
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 390 

Figure 5 Results of PCA completed for Sheffield using shallow XRF data, with PC1 and PC2 maps 391 

The PCA outputs for Sheffield are similar to those for Belfast (Figure 5).  In total PC1 and PC2 account for 392 

53% of the total variance within the dataset.  This is 14% less than the PCA completed for Belfast 393 

highlighting that there may be additional environmental and geochemical parameters affecting variance, 394 

for example current land use and activity, in Sheffield. 395 

Within PC1 the results again clearly separate Ni, Cr, Co and V (green) from Sb, Pb and Sn (pink).  In 396 

contrast to the Belfast results, Ni, Cr, Co and V are distributed much more widely on the biplot (Figure 5), 397 

demonstrating that they are still anticipated to be from the same or similar sources, though not as closely 398 

correlated in Sheffield as in Belfast.  The map for PC1 demonstrates that Ni, Cr, Co and V exert the 399 

greatest control over a large area along the north-east boundary of the study area where many of 400 

Sheffield’s iron and steel works were/are found (as shown in red and orange in the PC1 map (Figure 5)).  401 

The elevated concentrations could be related to the industrial use (in these various factories) of the coal 402 

which also occurs naturally in this area. 403 
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The darker blue colours on the PC1 map (Figure 5) represent the areas controlled by Pb, Sb and Sn, and 404 

similarly to Belfast these PTEs are shown to form a halo around the oldest area of the city.  The 405 

widespread nature of these PTEs on their total concentration maps (Supplementary Information 1) 406 

suggests an atmospheric deposition anthropogenic source. 407 

For Sheffield, PC2 separates As (red), from Cu and Zn (blue).  In contrast to the Belfast PCA results, Ni 408 

and Cr also seem to have an influence over PC2, falling towards the same side as Zn and Cu on the 409 

biplot.  The blue areas on the PC2 map are related to elevated concentrations of As, suggesting a 410 

particular point source of As in these areas.  The red areas are related to Zn, Cu, Ni and Cr and fall in a 411 

similar, though smaller, area to the north-east of the location identified in PC1.  As shown in Figure 6, 412 

PC2 seems to be influenced by the geogenic presence of coal with many of the red areas on the map 413 

aligning with coal outcrops in Sheffield.  Therefore, PC2 seems to identify a geogenic or mining 414 

contribution to PTE concentrations (Zn, Cu, Ni and Cr) in Sheffield in the form of coal outcrops. 415 

 416 

Figure 6 Map of PC2 from PCA completed for Sheffield using shallow XRF data compared with the specific coal 417 
mining legacy plan for Sheffield created by the Coal Authority (The Coal Authority 2015)   418 
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3.4 Pollution indices 419 

 420 

Figure 7 Bar chart showing the PI for the PTEs within each of Belfast’s and Sheffield’s development zones (dashed 421 
line where PI = 1) 422 

Pollution indices are used to assess the enrichment of the PTEs in the different historical development 423 

zones of both cities.  In Belfast, the PIs are calculated using rural median concentrations, thereby 424 

demonstrating enrichment of these PTEs in the different Belfast zones compared to rural Northern 425 

Ireland.  The PIs suggest that certain groups of PTEs are related to different development zones of Belfast 426 

(Figure 7).   427 

For Co, V, Cr and Ni the highest PI is within the modern Belfast zone, due to the fact that a greater 428 

proportion of the modern Belfast area overlies basalts, which have a significant control over their 429 
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concentrations, than in the remainder of the development zones.  These PIs are much reduced when the 430 

median concentration of the PTEs in soils overlying areas of Tertiary basalts replaces the rural median 431 

concentration (Supplementary Information 2).  For example, the PIs for V, Co, Cr and Ni within the 432 

modern development zone reduce from 1.29, 1.83, 1.85 and 2.23 to 0.59, 0.69, 0.62 and 0.66 respectively. 433 

Pb concentrations are at their highest within the 1901 Belfast zone, although the PI is only slightly higher 434 

at 4.56 than that within the 1919-1939 zone (4.50).  For Cu, Zn, Sn, Sb, As and Mo the highest PIs are 435 

located within the 1919-1939 zone suggesting this development zone is the most enriched for the 436 

anthropogenically controlled PTEs.  However, these PTEs do differ across historical zones: the second 437 

highest PI (Cu and Zn – constituents of brass) falls within the 1858 zone, Sn, Sb and Mo have an elevated 438 

PI within the 1901 zone, and As within the modern Belfast zone.  This suggests that rapid growth 439 

associated with development of heavy industry in Belfast between 1901 and 1919-1939 may be 440 

responsible for the elevated concentrations of a number of PTEs.  However, contamination from all of 441 

these PTEs is likely to have begun before this period of time. 442 

Overall, Pb and Sn have the highest pollution indices suggesting the biggest anthropogenic enrichment of 443 

these PTEs in the study area.  These are also two of the oldest and best recognised urban contaminants.  444 

Although Sb and Mo also show anthropogenic enrichment, it is at a much lower level with PIs ranging 445 

between 1.30 and 2.00 for Sb and 1.50 and 2.06 for Mo.  Geogenic contributions to As in the form of 446 

natural mineralisation (McIlwaine et al. 2014) in rural areas of Northern Ireland probably results in lower 447 

PIs for As.   448 

As opposed to the PIs calculated for Belfast, the PIs for Sheffield are calculated using a rural median 449 

solely from the Carboniferous Coal Measures, rather than the median concentrations from the entire 450 

surrounding rural area.  The results therefore tell us about enrichment of these PTEs in the urban area 451 

compared to one type of bedrock geology, rather than enrichment compared to the rural area as a whole. 452 

The PIs calculated for Sheffield are consistently highest within the 1920 zone.  This suggests that industry 453 

in Sheffield between 1904 and 1920 may be responsible for the most elevated PTE concentrations in soils.  454 

For Sn, Pb and Sb the PIs fall considerably within the 1938-1951 zone, below all three of the previous 455 

historical zones.  The PIs are lowest for Cr, Mo, Sn, Pb, Sb, Cu and Zn in the modern zone, and lowest for 456 

Co, V, Ni and As in the 1850-1851 zone.   457 

Lead, Sb and Sn show the greatest accumulation in Sheffield’s soils (highest PIs), followed by Cu and Zn.  458 

The PIs for Sb are high due to its low median concentration in the Carboniferous Coal Measures (0.5 459 

mg/kg).  Cobalt and V are depleted in Sheffield’s soils when compared to the rural median, while Cr, Ni, 460 

As and Mo show minimal accumulation.   461 
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3.5 PTE typical threshold values 462 

Within the Belfast study area, four PTEs (Co, Cr, Ni and V) have been clearly identified as elements that 463 

are geogenically controlled.  The remainder of the PTEs in Belfast (As, Cu, Mo, Pb, Sb, Sn and Zn) are 464 

dominated by anthropogenic inputs.  In Sheffield, all the PTEs show an anthropogenic influence.  From 465 

these results, different methods for calculating background concentrations have been applied to assess 466 

the concentrations of the anthropogenically controlled PTEs within the city development zones, which 467 

have been shown to act as urban subdomains.  These background values indicate what a ‘typical’ or 468 

background concentration of these PTEs would be within the defined domain; aiming to differentiate 469 

between concentrations related to geogenic and diffuse anthropogenic sources, and concentrations 470 

generated by point sources.471 
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 472 

Table 1 Summary of background values calculated for the PTEs in Belfast regarded as having some anthropogenic input within the separate development zones via the ULBL, 473 
Median + 2MAD and NBC methods (BC = box-cox transformation, L = log transformation and E = empirical) 474 

 
1858 1901 1919-1939 Modern 

 
ULBL M +2MAD NBC ULBL M +2MAD NBC ULBL M +2MAD NBC ULBL M +2MAD NBC 

As 18 13 - 21 15 BC 37 26 17 E 52 19 14 L 21 

Cu 120 95 - 160 100 BC 210 200 120 BC 640 120 80 L 130 

Mo 2.8 1.8 - 3.5 2.4 L 4.7 5.1 3.0 E 18 2.7 1.8 L 3.1 

Pb 190 140 - 430 280 L 490 620 270 BC 1300 200 120 L 260 

Sb 2.7 1.9 - 4.3 3.1 L 10 7.2 3.7 BC 33 3.0 2.1 L 4.3 

Sn 16 11 - 20 14 L 33 51 18 BC 1000 14 7.7 BC 24 

Zn 240 210 - 310 220 L 470 510 290 BC 2100 240 170 L 290 
 475 
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Normal background concentrations cannot be calculated for the 1858 Belfast domain as there are only 18 476 

samples available within this area.  With the exception of the Median + 2MAD method for Pb, all the 477 

background values calculated are highest within the 1919-1939 zone.  This would be expected for all the 478 

PTEs apart from Pb, where the calculated PI is highest within the 1901 zone (Figure 7) suggesting the 479 

greatest enrichment of Pb in this zone.  Upon further investigation this was found to be related to the 480 

distribution of the data.  As the PI is based on the median of the dataset it is less affected by skew than 481 

the background value calculations via the ULBL and NBC methods; the 1919-1939 Pb data is more highly 482 

skewed than the 1901 Pb data.  This suggests a more homogenous source of Pb, such as atmospheric 483 

deposition, within the 1901 zone, whereas the 1919-1939 zone is possibly witnessing atmospheric 484 

deposition as well as more independent point sources of Pb.  This is possibly associated with increased 485 

development in the east of the city within this 1919-1939 zone, as identified and discussed within the PC1 486 

results (Section 3.3).487 
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Table 2 Summary of background values calculated for the PTEs in Sheffield regarded as having some anthropogenic input within the separate development zones via the 488 
ULBL, Median + 2MAD and NBC methods (BC = box-cox transformation, L = log transformation, N = no transformation and E = empirical) 489 

 
1850-1851 1904 1920 1938-1951 Modern 

 
ULBL M +2MAD NBC ULBL M +2MAD NBC ULBL M +2MAD NBC ULBL M +2MAD NBC ULBL M +2MAD NBC 

As 62 34 - 70 44 L 77 54 39 - 50 38 L 61 41 31 L 50 

Co 31 22 - 29 23 L 40 36 24 - 29 23 E 41 29 23 E 28 

Cr 220 130 - 190 130 E 780 270 140 - 190 130 E 600 160 120 E 370 

Cu 210 110 - 300 160 L 590 250 150 - 180 120 L 260 120 80 BC 200 

Mo 12 7.4 - 12 8.3 L 23 15 8.3 - 9.1 6.7 BC 19 8.3 5.9 L 13 

Ni 97 57 - 82 62 BC 240 120 82 - 75 58 BC 140 68 51 L 89 

Pb 940 440 - 930 530 L 1400 800 460 - 560 360 L 790 370 250 L 600 

Sb 16 8.0 - 14 8.2 L 20 12 6.7 - 11 6.2 BC 22 7.2 4.6 L 9.2 

Sn 100 47 - 77 45 L 170 69 48 - 46 28 L 64 33 21 L 46 

V 130 110 - 140 110 N 140 130 110 - 140 110 E 150 140 110 L 130 

Zn 420 290 - 620 400 L 920 520 380 - 420 280 BC 880 330 230 L 390 
 490 



 

NBCs cannot be calculated for the 1850-1851 or 1920 Sheffield domain as there are only 491 

22 and 27 samples available within these areas respectively.  The domains with the most 492 

elevated background values are reasonably consistent across the ULBL and Median + 493 

2MAD calculations.  Where these differences occur it is likely to be related to the 494 

distribution of the data, as explained for Pb in the Belfast results. 495 

The main differences between the ULBL and Median + 2MAD concentrations are noted 496 

for Pb, Sb and Sn.  The highest concentrations via the ULBL method are in the 1850-1851 497 

zone for all three PTEs, whereas via the Median + 2MAD method the highest 498 

concentrations are in the 1904 zone for Pb and Sb and the 1920 zone for Sn.  In 499 

conjunction with the spatial distribution previously discussed, the most elevated 500 

concentrations of all of these PTEs seem to form a halo surrounding the oldest part of 501 

the city, suggesting a stronger alignment with the ULBLs than the Median + 2MAD 502 

values.  503 

The ULBL method highlights the highest concentrations for Co, Cr, Mo and Ni in the 504 

1920 zone, while the Median + 2MAD method has the highest concentrations for Co, Cr, 505 

Mo, Ni, Sn and V in this zone.  The concentrations of V do not vary much across the 506 

development zones for any the methods used to calculate background values, 507 

suggesting this PTE is not influenced by different periods of historical development to 508 

the same extent as the other PTEs.  509 

As can be seen in Supplementary Information 3, the most conservative background 510 

concentrations (i.e. the lowest concentrations) are calculated by the Median + 2MAD 511 

method, while the least conservative (i.e. the highest concentrations) are calculated via 512 

the NBC method, for all the PTEs except V.  This is true for the majority of the 513 

background concentrations calculated, not just for Sheffield’s modern zone. 514 

Rothwell & Cooke (2015) suggested the median + 2MAD method for use because it 515 

consistently calculated the most conservative background concentrations in their study 516 

in Gateshead.  Although this is a sensible precaution from a risk perspective, it may not 517 

be realistic to state that further investigation may be required at 19% of sampled sites 518 

within Sheffield’s modern zone where the concentration of Pb is above the calculated 519 

Median + 2MAD value.  The ULBLs provide concentrations between the most 520 

conservative Median + 2MAD concentrations and the least conservative NBCs; they may 521 

therefore be more appropriate values to use in gaining an understanding of background 522 



 

concentrations of different PTEs in these studies.  In addition, the NBC methodology is 523 

only applicable to domains with more than 30 samples and so it can’t be applied in a 524 

number of the urban subdomains identified.   525 

The ULBL methodology has previously been applied on a Northern Ireland regional 526 

scale to generate TTVs (McIlwaine et al. 2014).  Although only compared with NBCs at 527 

this regional level, it was still identified as the most appropriate method for calculating 528 

background values. 529 

3.5.1 Comparison with generic assessment criteria 530 

Comparisons can be drawn between the recommended background values calculated 531 

via the ULBL method and UK generic assessment criteria such as suitable 4 use levels 532 

(S4ULs) and provisional category 4 screening levels (pC4SLs).  These different criteria 533 

vary slightly in their definition, and are available for different PTEs.  Suitable 4 use 534 

levels are based on the same level of risk as soil guideline values (SGVs) i.e. minimal or 535 

tolerable risk.  However, S4ULs were generated using an updated exposure model and 536 

are available for additional land uses (public open spaces) (Nathanail et al. 2015).  537 

Provisional C4SLs have been created to support Defra’s statutory guidance for Part 2A 538 

of the Environmental Protection Act.  The guidance stated that where there is no risk 539 

that land poses a significant possibility of significant harm, or the level of risk is low, the 540 

category 4 classification should be used.  At the other extreme, category 1 encompasses 541 

areas where the risk of the land posing a significant possibility of significant harm is 542 

unacceptably high (CL:AIRE 2014a).  Therefore the key difference between S4ULs and 543 

C4SLs is the level of risk they consider; S4ULs are guidelines considering a level that is 544 

tolerable or posing a minimal risk to human health whereas C4SLs describe a higher 545 

level of risk which can still be considered low enough to allow category 4 land 546 

classification (CL:AIRE 2014a).  The available S4ULs and pC4SLs are provided in 547 

Supplementary Information 4.  548 

All the calculated background values for As in Belfast fall below the lowest SGV (32 549 

mg/kg), S4UL (37 mg/kg) and pC4SL (37 mg/kg), while all the ULBLs for Sheffield fall 550 

above these values.  The highest ULBL for Sheffield (70 mg/kg), calculated for the 1904 551 

zone, is higher than the residential and allotment SGVs, pC4SLs and S4ULs 552 

(Supplementary Information 4).  For Cu and Zn all the ULBLs fall below the lowest 553 

available S4ULs (520 mg/kg and 620 mg/kg for Cu and Zn respectively) for both Belfast 554 



 

and Sheffield, with the exception of the 1904 ULBL for Zn which is equal to the 555 

allotment S4UL of 620 mg/kg.  The comparison for Cr depends upon its speciation; the 556 

ULBLs calculated within Sheffield are all lower than the most conservative S4UL for 557 

Cr(III), but vast exceedances are obvious across the development zones for Cr(VI).  The 558 

ULBLs calculated for Ni in Sheffield are all within the most conservative S4UL for Ni 559 

(130 mg/kg for residential areas).  Exceedances of the most conservative S4UL for V (91 560 

mg/kg for allotments) are shown for all the ULBLs calculated for Sheffield. 561 

The ULBLs calculated for Pb are high, especially in the 1919-1939 development zone for 562 

Belfast (620 mg/kg) and the 1850-1851 zone for Sheffield (940 mg/kg).  This is of concern 563 

as Pb is known to be a non-threshold toxin i.e. no minimal risk level has been identified 564 

(Palmer et al. 2015).  The lowest published pC4SL for Pb is 34 mg/kg, identified for 565 

allotment land use (CL:AIRE 2014b).  The ULBLs calculated are 5.6, 12.6, 18.2 and 5.9 566 

times greater than this pC4SL within the 1858, 1901, 1919-1939 and modern 567 

development zones respectively in Belfast, and 27.6, 27.4, 23.5, 16.5 and 10.9 times 568 

greater in the 1850-1851, 1904, 1920, 1938-1951 and modern development zones in 569 

Sheffield.  These calculated ULBLs are elevated when compared to the pC4SLs for Pb, 570 

and for sample locations where the ULBLs are exceeded in particular, further 571 

investigation may be required to examine the potential risk posed. 572 

4 Conclusions 573 

The scale of PTE concentration data available within the study area considered allowed 574 

for a thorough examination of the effects of historical development on soil PTE 575 

concentrations.  Clear groups of PTEs were identified within the study area investigated 576 

via depth ratios, a range of multivariate statistical techniques and PIs.  In particular, 577 

depth ratios proved to be a useful technique for identifying controlling sources in this 578 

urban environment.  The concentrations in shallow soils were found to be controlled to 579 

a greater extent by anthropogenic influences than concentrations in deeper soils, which 580 

remain controlled by principally geogenic processes.  Controlling sources and links 581 

between historical development and PTE concentrations were identified, suggesting the 582 

investigative methodology employed within this research may be useful for application 583 

within other urban environments.   584 



 

The depth ratio boxplots suggested the highest levels of anthropogenic input for Pb, Sb 585 

and Sn followed by As and Mo in Belfast.  Geogenic inputs were found to control the 586 

concentrations of Ni, Co, Cr and V, while Cu and Zn were influenced by both 587 

anthropogenic and geogenic inputs.  The marked similarity in the spatial distributions 588 

of the geogenically controlled PTEs (Co, V, Cr and Ni) clearly demonstrates the control 589 

that the Tertiary basalts have over their concentrations, and suggests similar point 590 

sources of anthropogenic contributions perhaps due to importing of ‘clean’ topsoil, 591 

which originally overlaid the Antrim basalts, in these areas.  PTEs under predominantly 592 

anthropogenic sources in Belfast can be split into three groups; 1) Sn, Pb and Sb, 2) Cu 593 

and Zn and 3) As and Mo.  Cu and Zn receive some geogenic contribution to their 594 

concentrations from the Tertiary basalts but similar anthropogenic contributions are also 595 

obvious.  Increasing anthropogenic contributions to both As and Mo see them grouped 596 

similarly, with Pb, Sb and Sn noted for the greatest anthropogenic contribution.   597 

All of the PTEs investigated were found to be under some anthropogenic influence in 598 

Sheffield.  Nickel, Co, Cr and V were found to align well in a large area along the north-599 

east boundary of Sheffield where they were shown to occur at elevated concentrations.  600 

This pattern is thought to be related to the various industrial land uses located in this 601 

part of the city; many of Sheffield’s iron and steel works were/are found here.  The 602 

elevated concentrations could be related to the industrial use (in these various factories) 603 

of the coal which also occurs naturally in this area.  Similarly to Belfast, Pb, Sb and Sn 604 

were shown to form a halo around the oldest area of the city.  The widespread nature of 605 

these PTEs on their total concentration maps suggests anthropogenic atmospheric 606 

source deposition.  A geogenic contribution to Zn, Cu, Ni and Cr concentrations was 607 

identified in the form of coal outcrops in Sheffield. 608 

The relationship between historical development and differing PTEs is a novel finding 609 

from this research.  This suggests that PTEs have the potential for use as ‘urbanisation 610 

tracers’ as different PTEs have been shown to be associated with different historical 611 

anthropogenic sources. 612 

Background values were calculated for the PTEs deemed to have some form of 613 

anthropogenic input (via the PCA) within each of the city’s development zones.  These 614 

PTEs demonstrated varying historical sources within the development zones which 615 

result in varying background values.  The background values for Belfast were generally 616 



 

highest in the 1919-1939 development zone, suggesting that soil contamination was at its 617 

greatest in Belfast between 1901 and 1939.  This coincides with when shipbuilding and 618 

its associated industries, such as iron and steel foundries, were at their zenith.  The 619 

background values calculated for Sheffield varied more widely across the different 620 

development zones considered.  The ULBL method was determined to be the most 621 

appropriate for calculating background values within this research, and the ULBLs were 622 

compared to SGVs, S4ULs and pC4SLs.  A number of exceedances of these generic 623 

assessment criteria were noted for various PTEs in various development zones.  This 624 

demonstrates that the potential risk associated with PTEs in urban environments may 625 

require further assessment. The development of urban subdomains refines the areas that 626 

need to be considered for additional investigation. 627 

Current statutory guidance for Part 2A of the Environmental Protection Act states that 628 

widespread geogenic or diffuse anthropogenic pollution in soil should not be regarded 629 

as contaminated land unless other evidence demonstrates that it poses a risk.  These 630 

findings establish that PTE concentrations associated with geogenic and diffuse 631 

anthropogenic contamination are elevated to levels that do have the potential to pose 632 

risk to human health.  However, as with anthropogenic point sources, a regional 633 

assessment of PTE bioaccessibility would need to be completed to assess the level of risk 634 

posed.  These findings potentially suggest that a relevant legislative regime that ensures 635 

geogenic and diffuse anthropogenic contamination are effectively dealt with may be 636 

required. 637 
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