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Abstract 7 

This paper presents a novel method combining computer vision and artificial 8 

intelligence techniques for action recognition. The proposed methodology is 9 

decomposed into two stages. First, a machine learning based algorithm – bag of 10 

words- gives a first estimate of action classification from video sequences. Those 11 

results are passed to a common sense reasoning algorithm, which allows analysing, 12 

selecting and correcting the initial action estimates. Experiments are performed in 13 

realistic conditions, where poor recognition rates by the machine learning technique 14 

are significantly improved by the second stage based on reasoning. This 15 

demonstrates the value of integrating common sense reasoning into a computer 16 

vision pipeline. 17 

Keywords: Common sense reasoning, artificial intelligence, action recognition, bag of 18 

words, computer vision 19 

 20 

1. Introduction 21 

In the last decade, the automated recognition of human actions from video 22 

sequences has become an essential field of research in computer vision. Not only 23 



does it have applications in video surveillance, but also in indexing of film archives, 24 

sports video analysis and human-computer interactions. However, the task of action 25 

recognition from a single video remains extremely challenging due to the huge 26 

variability in human shape, appearance, posture, the individual style in performing 27 

some actions, and external contextual factors, such as camera view, perspective and 28 

scene environment.  29 

During the last few years, thanks to the availability of many datasets suitable for 30 

training action recognition algorithms, the field has made enormous progress to the 31 

point that the automatic annotation of the KTH (Schuldt et al., 2004) and Weizzman 32 

(Blank et al., 2005) databases is now considered solved. For more complex data, i.e. 33 

IXMAS (Weinland et al., 2006) and UT-Interaction (Ryoo and Aggarwal, 2009), 34 

accuracy rates around 80% are now claimed by state-of-the-art approaches 35 

(Waltisberg et al., 2010; Weinland et al., 2010; Nebel et al., 2011). Unfortunately, all 36 

those action recognition experiments are conducted with videos that are not 37 

representative of real life data, which led a recent review to conclude that none of 38 

existing techniques would be currently suitable for real visual surveillance 39 

applications (Nebel et al, 2011). This is further confirmed by the poor performance, 40 

obtained on videos captured in uncontrolled environments, such as Hollywood 1 and 41 

2 datasets (Laptev et al. 2008) and Human Motion DataBase (HMDB51) (Kuehne et 42 

al., 2011), where accuracies are 32%, 51% and 20% respectively (Kuehne et al., 43 

2011). In addition, these challenging datasets only display a fraction of the 44 

complexity exhibited by the real world, e.g. at most 51 different actions are 45 

considered. Consequently, usage of video-based action recognition remains a very 46 

distant aspiration for most actual applications.  47 



On the other hand, the human brain seems to have perfected the ability to recognise 48 

human actions despite their high variability. This capability relies not only on 49 

acquired knowledge, but also on the aptitude of extracting information relevant to a 50 

given context and logical reasoning. In contrast, machine learning based action 51 

recognition methodologies tend to learn isolated actions from a set of examples. 52 

Although only a few and limited attempts to introduce contextual information have 53 

been made (Waltisberg et al., 2010; Chen and Nugent, 2009; Akdemir et al. 2008; 54 

Vu et al. 2002; Ivano and Bobick, 2000), their performance supports the idea that 55 

action recognition can benefit greatly from combining traditional computer vision 56 

based algorithms with knowledge based approaches.  57 

In this paper, we propose a novel method relying on common sense reasoning and 58 

contextual information which allows analysing, selecting and correcting annotation 59 

predictions made by a video-based action recognition framework. The presented 60 

approach is decomposed into two stages. First, a classic action recognition algorithm 61 

classifies actions independently according to similarity to the training set. Secondly, 62 

results are refined using reasoning. More specifically, contextual information is 63 

exploited using common sense reasoning. 64 

2. Relevant work 65 

 66 

a. Video-based Human Action Recognition 67 

Video-based activity recognition algorithms can be classified into two different 68 

classes: machine learning and knowledge based techniques. The first and main 69 

category includes action descriptors based on Hidden Markov Models (Vezzani et 70 

al., 2010; Kellokumpu et al, 2008; Martinez et al. 2009; Ahmad and Lee, 2008; 71 



Weinland et al., 2007), Conditional Random Field (Zhang and Gong, 2010; Natarajan 72 

and Nevatia, 2008; Wang and Suter, 2007), Bag of Words (Laptev et al., 2008; Liu 73 

and Shah, 2008; Matikainen et al., 2010; Ta et al., 2010; Liu et al., 2008; Kovashka 74 

and Grauman, 2010) and low dimension manifolds (Wang and Suter, 2007b, 2008; 75 

Fang et al. 2009; Jia and Yeung, 2008; Blackburn and Ribeiro, 2007; Richard and 76 

Kyle, 2009; Turaga et al. 2008; Lewandowski et al. 2010, 2011). Since those 77 

approaches do not include any reasoning capability, their efficiency relies on a 78 

training set which is supposed to cover the variability of all actions present in the 79 

target videos. Given that this condition can only be valid in the most controlled 80 

scenarios, it has been proposed to extend these techniques by adding some form of 81 

reasoning based on either rules or logic. 82 

The inclusion of reasoning has been sparsely used and mostly for specific 83 

applications. It should be noted it is particularly popular in intelligent surveillance for 84 

the detection of unusual events (Makris et al. 2008). Since training data do not exist 85 

to define those events, rules and reasoning are the only available tools. Usually, 86 

activities which do not match those present in the training set are classified as 87 

unusual. In the most specific field of action recognition, reasoning rules have proved 88 

particularly successful when dealing with interactions between subjects (Waltisberg 89 

et al. 2010). Indeed, following initial action recognition on each character individually 90 

using a Random Forest framework, analysis of those actions allows inferring the 91 

nature of their interaction. As reported by Waltisberg et al. (2010), this scheme 92 

outperforms the standard approach which deals with all characters at once and is the 93 

current state of the art on the UT-Interaction dataset (Ryoo and Aggarwal, 2009). 94 

These results support our hypothesis that additional knowledge and reasoning will 95 

lead to better performance. 96 



The second class of video-based activity recognition algorithms exploits a common 97 

knowledge-base or ontology of human activities to perform logical reasoning. Since 98 

ontology design is empirical in nature and labour intensive - symbolic action 99 

definitions are based on manual specification of a set of rules -, current ontologies 100 

are only suitable for very specific scenarios. In the field of video surveillance, 101 

ontologies have been proposed for analysis of social interaction in nursing homes 102 

(Chen et al., 2004), classification of meeting videos (Hakeem and Shah, 2004) and 103 

recognition of activities occurring in a bank (Georis et al., 2004). However, there is a 104 

need for an explicit commonly agreed representation of activity definitions 105 

independently of domain and/or algorithmic choice. Such common knowledge base 106 

and its exploitation through rules would facilitate portability, interoperability and 107 

sharing of reasoning methodologies applied to activity recognition. Several attempts 108 

have been made to design ontologies for visual activity recognition in a more 109 

systematic manner (Akdemir et al., 2008, Hobbs et al., 2004, Francois et al, 2005) so 110 

that they can cover different scenarios, e.g. both bank and car park monitoring 111 

(Akdemir et al., 2008). However, they remain limited to a few domains - up to 6 112 

(Hobbs et al., 2004). 113 

 114 

b. Common Sense Reasoning 115 

Within the artificial intelligence (AI) community, the usage of video as information 116 

source for reasoning has not been extensively applied (Moore et al., 1999; Duong et 117 

al., 2005). This is due to the lack of robustness and consistency of video features in 118 

real world scenarios, where the huge variability of the conditions impact considerably 119 

on activity recognition. As a consequence, AI researchers have focused on using 120 

sensors which are more reliable and consistent, but more intrusive, sensors to 121 



gather an actor’s behavioural information (Wang et al. 2007c). They include 122 

wearable sensors based on inertial measurement units (e.g. accelerometers, 123 

gyroscopes, magnetometers) and RFID tags attached to the actors and/or to objects. 124 

In such set-up, complex reasoning is possible and successful artificial intelligence 125 

approaches have flourished (Wang et al., 2007c; Philipose et al., 2004; Tapia et al., 126 

2004). However, most of these sensors are not suitable in most real life applications 127 

due to either their intrusive nature, e.g. subjects may refuse to wear them, or 128 

technical factors, such as size, ease of use and battery life.  129 

Among the AI approaches which could be considered for video based human action 130 

recognition, commonsense, probabilistic and ontological reasoning, as described in 131 

the previous subsection, are of particular interest. Ontological languages such as 132 

OWL (Dean et al., 2011a) and RDF (Dean et al., 2011b) use a syntax that imposes 133 

severe restrictions in the type of information that can be represented. First, 134 

relationships involving more than two entities cannot be considered since they may 135 

lead to hold a-priori inconsistent information, which is not allowed in this 136 

methodology. Secondly, since reasoning is limited to checking the consistency of the 137 

knowledge base, new information cannot be inferred. Both commonsense and 138 

probabilistic reasoning are able to address those limitations. However, their nature is 139 

very different since they can be classified as techniques based on either qualitative 140 

or quantitative reasoning. A weakness of quantitative reasoning comes from the 141 

complexity of estimating accurate probabilities for activities of interest: in practice it is 142 

unfeasible when dealing with unconstrained and realistic scenarios (Kuipers, 1994). 143 

On the other hand, qualitative reasoning has the ability of considering causality and 144 

expected behaviour based on logics, i.e. reasoning can provide explanations 145 



rationalising or motivating a given action, whereas probabilistic reason can only 146 

support decisions according to probability associated to actions. 147 

As a consequence, common sense reasoning (McCarthy, 1968, 1979; Minsky, 1986; 148 

Lenat, 1989, 1990) appears particularly suited to video based human action 149 

recognition. It provides the capability of understanding the context situation, given 150 

the general knowledge that dictates how the world works, which allows correcting 151 

mistakes made by the video analysis system.  McCarthy proposes an approach to 152 

build a system with the capability to solve problems in the form of an “advice taker” 153 

(McCarthy, 1968). In order to do so, he reckons that such an attempt should be 154 

founded in the knowledge of the logical consequences of anything that could be told, 155 

as well as the knowledge that precedes it. In that work, he postulates that “a program 156 

has common sense if it automatically deduces from itself a sufficiently wide class of 157 

immediate consequences of anything it is told and what it already knows''. Following 158 

McCarthy and Minsky’s studies (McCarthy, 1968; Minsky, 1986), it appears a way of 159 

enhancing systems with the capability to understand and reason about the context is 160 

by introducing commonsense knowledge similar to that humans hold.  161 

In this work, we propose the integration of commonsense reasoning within a video 162 

human activity recognition framework in order to improve accuracy. First, a machine 163 

learning based action recognition algorithm processes videos to generate data 164 

appropriate for logical inferences. Consequently, video data become a suitable 165 

information source for reasoning. Secondly, common sense reasoning increases 166 

accuracy of the computer vision algorithm by introducing general and context-167 

independent knowledge. This addition should allow usage of video based systems 168 

within real life applications. 169 



3. Novel action recognition framework 170 

 171 

a. Principles 172 

We propose a novel two-stage framework where initial action predictions made by a 173 

machine learning approach are analysed, refined and, possibly, corrected by 174 

common sense reasoning.  175 

 176 

Figure 1: Action recognition framework 177 

Given a video, V, which can be divided into a sequence of T actions and a computer 178 

vision system (CVS) trained to recognise N types of actions, each action, Vt, is 179 

processed independently and is associated to an action estimation vector, At, which 180 

ranks the N types of actions according to their similarity to Vt. Eventually, the CVS 181 

generates an action estimation matrix, A, of dimensions (T x N), where Aj
t represents 182 

the ith most likely type of the tth action occurring in the video. Each action estimate 183 

generated by the CVS is passed as input to the AI reasoning system (AIRS) which 184 

produces, in an online manner, J stories, Sj. These stories are generated and 185 

updated according to every new estimate At.  186 



In this paper, we define a ‘story’ as a coherent list of action types describing a video 187 

of interest. Coherence is defined by respect to both world and domain specific 188 

knowledge, WK and DSK respectively. Selection of action types relies on common 189 

sense reasoning applied to the action estimations A, and possible recognition of 190 

activities defined in the expectation knowledge, EXP. Note that a story may contain 191 

‘unknown action’ labels when, for a given action, none of the estimations allows 192 

coherent annotation. Stories are ordered by the AIRS and the most likely one is 193 

always first, in the same way that actions have been ordered and prioritised by the 194 

CVS.  195 

The AIRS processes every action estimation vector, At, according to the J stories Sj 196 

existing at t-1. First, the validity of each action estimates Ai
t is verified within the 197 

context of each story Sj using knowledge contained in WK and DSK. This is done 198 

inside the block Action validation/correction depicted in Figure 1. Secondly, if the 199 

sequence of previous actions stored in Sj led to the recognition by EXP of an activity 200 

(Figure 1, block Activity Recognition) which expected a specific action type in order 201 

to be completed, and if that type is not present in At, a correction of At is performed, 202 

i.e. the expected type is added to the story Sj instead of At. Finally, each valid action 203 

of At updates an existing story (Figure 1, block story update/swap). If a valid action 204 

cannot be allocated to a story, a new story is created. Since during the process, the 205 

most likely action estimates have priority to be allocated to the first stories, S1 is the 206 

story which is the most likely to describe accurately the video of interest. However, if 207 

any other Sj shows a more likely storyline, the position of S1 as ‘main story’ may be 208 

swapped with Sj (Figure 1, block story update/swap). 209 

We illustrate some of the reasoning performed by AIRS with an example, see Figure 210 

2: an activity (‘Getting up’) incompatible with the current story (S1) is rejected 211 



according to the world and domain specific knowledge; valid actions (‘Throwing’ & 212 

‘Sitting down’) are assigned to parallel stories (S2 and S3); an activity (‘Reading’) is 213 

recognised based on expectations, consequently the expected action (‘Sitting down’) 214 

is prioritised. 215 

 216 

 217 

Figure 2: Example of reasoning performed by AIRS. Blue and red arrows represent, 218 

respectively, valid and invalid actions. Green box depicts the sequence of action 219 

which led to the recognition of an activity (reading) based on expectations. Blue box 220 

shows the expected action (sitting down). 221 

b. Common sense reasoning algorithm 222 

The AIRS assigns and evaluates correspondences between action estimations in 223 

vector At and the stories S existing at t-1. The validity of each action estimate Ai
t is 224 

verified sequentially within the context of the main story S1 using knowledge 225 

contained in WK and DSK. Once action allocation, if any, has been completed for the 226 

main story, the same process is followed for all the other stories Sj using the 227 

remaining action estimates. This double sequentiality in the assignment of actions to 228 



stories deals with the fact that both stories and actions are ordered, where the first 229 

actions/stories are always the most likely. 230 

The n first action estimates are all considered as possible alternatives. Therefore, 231 

new stories are created if they do not fit any of the existing ones. The rationale 232 

behind this is that, although the first estimate provided by the CVS is not always 233 

correct, the CVS is quite robust since the correct action is likely to be present among 234 

the first n estimates (see ‘Experimental results’ section). During the allocation 235 

process of a given time step, some stories may not be allocated to any action, if 236 

none of the available action estimates is valid in their context according to  WK and 237 

DSK. 238 

A second level of reasoning is introduced by exploiting the concept of activity 239 

recognition. This is modelled in our system through the expectation knowledge, EXP. 240 

For each story Sj, if the sequence of previous actions leads to the recognition of an 241 

activity by EXP, the next action assigned to the story Sj must match the expected 242 

one, eA. In case where the expected action type is not present in At, At is corrected 243 

by including eA in the estimate vector so that eA can be assigned to story Sj. This 244 

mechanism provides a higher level of reasoning, going further than the validation 245 

mechanism provided by the DSK and WK, which allows correcting estimate failures 246 

of the CVS. However, in order to avoid over-reasoning errors, corrections are 247 

introduced only when, in addition to validation, a unique activity is recognised, i.e. 248 

when there is no doubt regarding the type of the expected action. 249 

 250 

Through the previously described process, the AIRS gives priority to the most likely 251 

action estimates in their allocations to the first stories. As a consequence, the AIRS 252 



output is an ordered set of stories, where S1 is the story which is the most likely to 253 

describe accurately the video of interest.  254 

However, the accuracy of the CVS may depend of the nature of the action and vary 255 

over time during video processing, which may lead to the correct estimates to be 256 

lower in the action estimation vectors. Consequently, after a while S1 may not 257 

contain the most likely story. The AIRS addresses this issue using a story swapping 258 

mechanism. When the AIRS is able to allocate systematically actions to a given story 259 

Sj and activities kept being recognised according to the expectations, this story is 260 

accepted as the main story and swapped with S1. Empirical experimentations have 261 

shown that the story swapping mechanism should be triggered when a story displays 262 

two consecutive activity recognitions, TH=2. 263 

 264 

This reasoning algorithm is presented through the following pseudo code. First, the 265 

main variables are defined. Then, the core of the algorithm is detailed. Finally, the 266 

main functions are described. Note that functions are colour-coded to allow better 267 

readability of the algorithm. 268 

 269 
///////////////////////////////////////////////////////////////////////////270 
// INPUT 271 
/////////////////////////////////////////////////////////////////////////// 272 
// Expert systems 273 
Expert DSK,WK,ExP; 274 
//An action is a primitive 275 
Action eA;  // expected action 276 
Action At[N]; // alternative actions predicted for time t,  277 

// At are ranked according to CVS’s prediction confidence 278 
Int N;  // number of alternative actions at time t   279 
//A story is a list of actions 280 
Story S[J];   // existing stories 281 
Int J=1;  // number of existing stories, one starts with 1 story 282 
S[1]=null;  // the initial story is empty 283 
 284 
//Each story is associated to a list of possible activities containing 285 
future actions for the next time t 286 
Typedef Action[] Activity; 287 
Activity PossibleActiv[][J]=[ ALL ][J]; // set of activities, initially all  288 
              // activities are possible   289 
Int expect_fulfill[J]=zeros(1,J); // story counter for swapping mechanism 290 



/////////////////////////////////////////////////////////////////////////// 291 
// MAIN 292 
/////////////////////////////////////////////////////////////////////////// 293 
for t=1:Inf   // for each time step  294 
   N=length(At);     // number of alternative actions 295 
   Bool assigned_action[N]=zeros(1,N); // no action is assigned 296 
   J=length(S);     // number of existing stories 297 
   Bool updated_story[J]=zeros(1,J);  // no story has been updated 298 
   for i=1:N  // for each alternative action   299 

// integration of action i into an existing story 300 
for j=1:J  // for each existing story 301 

    if (updated_story(j)==0)   // if story j is available 302 
      // activity recognition process 303 

eA=f_activity_recognition(PossibleActiv(j));//expected activity  304 
if (eA!=null)   // if activity recognised   // 305 
story updating process 306 
   [PossibleActiv(j),S(j)]= f_story_update 307 

(eA,PossibleActiv(j),S(j),ExP); 308 
   updated_story(j)=1;  // story j is updated 309 
   // action allocation process 310 
   assigned_action=f_action_allocation(assigned_action,eA,At); 311 

     // story swapping process 312 
   [S,expect_fulfill]=f_storySwapping(S,expect_fulfill,j); 313 
else     // no activity is recognised 314 
   if (assign_action(i)==0)   // if action i is available 315 

// action validation process 316 
if f_action_validation(At(i),DSK,WK,S(j))//if At(i)valid  317 

       // story updating process 318 
   [PossibleActiv(j),S(j)]=f_story_update 319 

(At(i),PossibleActiv(j),S(j),ExP); 320 
   updated_story(j)=1;  // story j is updated 321 

       // action allocation process 322 
   assign_action(i)=1;   // action i is allocated 323 

  end  324 
    end 325 

end 326 
   end 327 

 end 328 
// integration of non-assigned action i into a new story 329 
if (assign_action(i)==0) // if action i is available 330 
   // action validation process 331 
   if f_action_validation(At(i),DSK,WK,S(j)) // if action i is valid 332 
 // story creation process 333 

[PossibleActiv,S,expect_fulfill]=f_story_creation 334 
(S,At(i),ExP,expect_fulfill); 335 

  J=length(S);    // update number of stories 336 
  updated_story(J)=1;   // story J is updated 337 

// action allocation process 338 
assign_action(i)=1;     // action i is allocated 339 

   end  340 
end 341 

  end 342 
end 343 
Expectations are checked at each given time t, for each current story (function 344 

f_activity_recognition). If the number of current expected activities is only one, 345 

the nature of the ongoing activity is known. Therefore, the function is able to return 346 

the expected type of the next action, eA.  347 



function [Action a]=f_activity_recognition(Activity pred)  348 
 if (size(pred)==1) 349 

 return pred(1); 350 
 else 351 
  return null; 352 
 end 353 

If any of the n observed actions of At matches eA, this action is set as allocated to 354 

avoid inclusion in any other story (function f_action_allocation). 355 

function [bool b]=f_ action_allocation(bool b, Action a, Action[] v) 356 
 for i=1:size(v) 357 
  if(v(i)==a) 358 
   b=1; 359 
  end 360 
 end 361 
 return b; 362 

When an action has been judged suitable to be added to a story, the current story is 363 

updated (function f_story_update). This also involves updating the list of possible 364 

ongoing activities, i.e. knowledge about possible actions for time t+1:  365 

PossibleActiv(j). This is achieved by, first, retrieving all expected activities in the 366 

knowledge of action a at time t, p2, (function retrieve_expected_activities) 367 

and, then, by finding the intersection between this list and the one predicted for time 368 

t, p, (function intersection). If no intersection exists, i.e. either CVS has failed or 369 

reasoning has been erroneous, since it is not possible to distinguish the source of 370 

the failure, expected activities are reset to p2 to avoid propagating errors. 371 

function [Activity p,Story s]=f_story_update 372 
(Action a, Activity p, Story s, ExP e) 373 

Activity p2=null; 374 
 s=[s a];    // add action a to current story s 375 
 p2=retrieve_expected_activities(e,a);   376 
 p=intersection(p,p2);  // new list of expected activities 377 
 if (size(p)==0) 378 
  p=p2; 379 
 end; 380 
 return [p,s]; 381 

If the activity recognition algorithm was able to detect unequivocally the nature of an 382 

ongoing activity within a story, Sj, confidence in that story is increased. This is stored 383 

in the variable expect_fulfill.  The valued of that variable is evaluated during the 384 



story swapping mechanism (function f_storySwapping). If it shows that the story Sj 385 

has consecutively recognised activities (in our case twice TH=2), the story Sj is 386 

swapped with S1 and becomes the main story, i.e. the most likely one. 387 

function [Story s[], int[] f]=f_storySwapping(Story s[], int[] f, int indx) 388 
 Story s_tmp; 389 

f(indx)++; 390 
 if f(indx)>=TH 391 
 // s(index) is moved as top story and all the others are shifted down 392 
  s = [s(indx) s(1: indx-1) s(indx-1:end)};  393 
  f = zeros(1,J); 394 
 end 395 
 return [s,f]; 396 

If the activity recognition mechanism does not detect any ongoing activity or several 397 

activities are possible, action allocation only relies on action validity. This is 398 

evaluated according to the action global coherence with the world WK and the 399 

domain specific knowledge DSK within the context of a story (function 400 

f_action_validation). 401 

function bool=f_action_validation(Action a,DSK d,WK w,Story s) 402 
 return validate(a,d,s,w);     403 

If an action is judged as valid, the action is assigned to the story and expected 404 

activities are updated (function f_story_update). After the assignment, boolean 405 

vectors, assigned_action and updated_story, are updated to make sure that each 406 

action is assigned at most to one story and that each story is not updated more than 407 

once for a given time t.  408 

Finally, if an action is valid but has not been assigned to any current story, a new 409 

story is created (function f_story_creation). 410 

function [Activity p, Stories s, int[] f]=f_story_creation(Stories s, 411 
Action a, EXP e, Activity p, int[] f) 412 

Activity Activnew=[All]; 413 
Story Snew=[]; 414 
[Activnew, Snew]=f_story_update(a,Activnew,Snew,e); 415 
J=J+1; 416 
s(J)=Snew; 417 
p(J)= Activnew; 418 
expect_fulfill(J)= 0; 419 

 return [p,s]; 420 



4.  Implementation 421 

 422 

a. Computer vision based action recognition 423 

Although computer vision based action recognition has been a very active field of 424 

research, only a few approaches have been evaluated on view independent 425 

scenarios. Accurate recognition has been achieved using multi-view data with either 426 

3D exemplar-based HMMs (Weinland et al., 2007) or 4D action feature models (Yan 427 

et al. 2008). But, in both cases performance dropped significantly in a monocular 428 

setup. This was addressed successfully by representing videos using self-similarity 429 

based descriptors (Junejo et al., 2008). However, this technique assumes a rough 430 

localisation of the individual of interest which is unrealistic in many applications. 431 

Similarly, the good performance of a SOM based approach using motion history 432 

images is tempered by the requirement of segmenting characters individually (Orrite 433 

et al. 2008). More recently a few approaches have produced accurate action 434 

recognition from simple extracted features: two of them rely on a classifier trained on 435 

bags of words (Kaaniche and Bremond, 2010; Liu et al. 2008) whereas the other one 436 

is based on a nonlinear dimensionality reduction method designed for time series 437 

(Lewandoski et al. 2010).  438 

Among those approaches, the Bag of Words (BoW) framework is particularly 439 

attractive since, not only it is one of the most accurate methods for action 440 

recognition, but its computational cost is low. Moreover, BoW can be applied directly 441 

on video data without the need of any type of segmentation. The versatility of that 442 

framework has been demonstrated on a large variety of datasets including film-443 

based ones (Laptev and Perez, 2007). Consequently, in this study, we decided to 444 



base the computer vision system of our action recognition framework on a BW 445 

methodology. 446 

 447 
Figure 3: BoW framework: a) Training and b) classification pipelines 448 

BoW is a learning method which was used initially for text classification (Joachims, 449 

1998). It relies on, first, extracting salient features from a training dataset of labelled 450 

data. Then, these features are quantised to generate a code book which provides 451 

the vocabulary in which data can be described and analysed. Here, we based our 452 

implementation on that proposed by (Csurka et al., 2004).  453 

The BoW training stage aims at, first, producing a codebook of feature descriptors 454 

and, secondly, generating a descriptor for each action video available in the training 455 

set, see Figure 3 a). The training pipeline starts by detecting salient feature points in 456 

each video using a spatio-temporal detector (Harris 3D) and describing each 457 

individual point by a histogram of optical flow (STIP) (Laptev, 2005). Once feature 458 



points are extracted from all training videos, the k-means algorithm is employed to 459 

cluster the salient point descriptors into k groups, where their centres are chosen as 460 

group representatives. These points define the codebook which is then used to 461 

describe each video of the training set. Finally, those video descriptors are used to 462 

train SVM classifiers – one per action of interest - with a linear kernel.  463 

In order to recognise the action performed in a video, Figure 3 b), salient feature 464 

points are first detected. Then, their descriptors are quantified using the codebook in 465 

order to generate a video descriptor. Finally, the video descriptor is fed into each 466 

SVM classifier, which allows quantifying the fit between the video and each trained 467 

action type. Therefore, an action estimation vector A can be generated where action 468 

types are ranked according to their fit.  469 

b. Knowledge-Base System for Common Sense Reasoning 470 

Automating common sense reasoning requires an expressive-enough language, a 471 

knowledge base and a set of mechanisms capable of processing this knowledge to 472 

check consistency and infer new information. A few knowledge-based approaches 473 

offer such features, i.e. Scone (Chen and Fahlman, 2008; Fahlman, 2006), Cyc 474 

(Lenat et al. 1989, 1990), WordNet (Fellbaum, 1998) or ConceptNet (Eagle et al., 475 

2003). Among them, the open-source Scone project is of particular interest since, 476 

instead of placing its focus on collecting commonsense knowledge, it provides 477 

efficient and advanced means for accomplishing search and inference operations. 478 

The main difference between this and other approaches lies in the way in which 479 

search and inference are implemented. Scone adopts a marker-passing algorithm 480 

(Fahlman, 2006), which is not a general theorem-prover, but is much faster and 481 

supports most of the search and inference operations required in commonsense 482 



reasoning: inheritance of properties, roles, and relations in a multiple-inheritance 483 

type hierarchy; default reasoning with exceptions; detecting type violations; search 484 

based on set intersection; and maintaining multiple, immediately overlapping world-485 

views in the same knowledge base. In addition, Scone provides a multiple-context 486 

mechanism which emulates humans’ ability to store and retrieve pieces of 487 

knowledge, along with matching and adjusting existing knowledge to similar 488 

situations. 489 

In our framework, the algorithm described in section 3b was implemented using 490 

Scone in order to encode formal definitions and their applications for WK, DSK and 491 

EXP. It is important to note that, although we took advantage of the proposed multi-492 

context mechanism (Chen and Fahlman, 2008), we exploited it for a usage it was not 493 

originally intended for, extending its application for a wider purpose. In particular, we 494 

propose the usage of multi-context for the management of alternative stories 495 

describing coherent explanations of the video of interest.  496 

The three sources of knowledge exploited in our implementation, i.e. WK, DSK and 497 

EXP, are described below: 498 

1. World knowledge, WK, comprises all relevant commonsense knowledge that 499 

describes “how the world works”. This information is independent of the 500 

application domain, in the sense that it only considers general knowledge 501 

rather than specific or expert knowledge about a specific field. As an example, 502 

we provide below the description of the implications of performing the action 503 

of ‘scratching the head’. 504 

(new-event-type {scratch} '({event}) 505 
:roles 506 
((:type {scratcher} {animated thing}) 507 
(:type {scratched thing} {thing}))) 508 



(new-event-type {scratch head} 509 
'({scratch} {action}) 510 
:roles 511 
((:rename {scratched thing} {scratched head}) 512 
(:rename {scratcher} {scratcher hand})) 513 
:throughout 514 
((new-is-a {scratcher hand} {hand})) 515 
:before 516 
((new-statement {scratcher hand} {approaches} {scratched head}) 517 
(new-not-statement {scratcher hand} {is in direct contact to} 518 
{scratched head})) 519 
:after 520 
((new-statement {scratcher hand} {is in direct contact to} 521 
{scratched head}))) 522 

2. Domain specific knowledge, DSK, describes a given application domain in 523 

terms of the entities that are relevant for that specific context, as well as, the 524 

relationships established among those. The description of an element 525 

“punching ball” as part of the layout of a specific room is an example of 526 

domain specific information. 527 

(new-type {bouncing element} {thing}) 528 
(new-type {punching ball} {thing}) 529 
(new-is-a {punching ball} {bouncing element}) 530 
(new-indv-role {punching ball location} {punching ball} {location}) 531 
(new-statement {punching ball} {is in} {test room}) 532 
(new-statement {punching ball} {rests upon} {test room floor}) 533 
 534 

3. Expectations, EXP, consist in sequences of actions that are expected to 535 

happen one after the other. It encapsulates logical concepts such as causality, 536 

motivation and rationality, which are expected in human action recognition. 537 

For example, in a waiting room context, if a person picks up a magazine, that 538 

person is expected to sit down and read the magazine. Expectations are part 539 

of the domain specific knowledge since described behavioural patterns are 540 

context specific. 541 

(new-indv {picking up a book for reading it} {expectations}) 542 
(the-x-of-y-is-z {has expectation} {picking up a book for reading it} {walk 543 
towards}) 544 
(the-x-of-y-is-z {has expectation} {picking up a book for reading it} {pick 545 
up}) 546 
(the-x-of-y-is-z {has expectation} {picking up a book for reading it} {turn 547 
around}) 548 
(the-x-of-y-is-z {has expectation} {picking up a book for reading it} {sit 549 
down}) 550 



(the-x-of-y-is-z {has expectation} {picking up a book for reading it} {get 551 
up}) 552 

 553 

5. Experimental results 554 

 555 

i. Dataset and Experimental Setup  556 

In order to perform action recognition experiments which are relevant to real life 557 

applications, videos under study should display realistic scenarios. In addition, a 558 

suitable training set must be available, i.e. it must be able to cover a variety of 559 

camera views so that recognition is view-independent and the set should include a 560 

sufficiently large amount of instances of the actions of interest. These instances must 561 

be not only annotated but perfectly segmented and organised to simplify the training. 562 

The only suitable training sets which fulfil these requirements are IXMAS (Weinland 563 

et al., 2006) and Hollywood (Laptev et al. 2008), as stated in the introduction. 564 

Whereas the Hollywood dataset is oriented towards event detection which includes 565 

significant actions but largely independent from each other (drive car, eat, kiss, 566 

run...), IXMAS is focused on standard indoor actions which allows providing quite an 567 

exhaustive description of possible actions in this limited scenario. Therefore, IXMAS 568 

actions may be combined to describe simple activities, i.e. sit down-get up, pick up-569 

throw, punch-kick and walk-turn around, and eventually provide complete 570 

representations of sets of actions performed by individual, i.e. recognition of whole 571 

stories. 572 

Thus, for training, the publicly available multi-view IXMAS dataset is chosen 573 

(Weinland et al., 2006). It is comprised of 13 actions, performed by 12 different 574 

actors. Each activity instance was recorded simultaneously by 5 different cameras. 575 



Since no suitable standard videos are available in order to describe the complexity of 576 

a real life application with a significant number of complex activities, we create a new 577 

dataset, called the Waiting Room dataset “WaRo11” (Santofimia et al., 2012), that 578 

we make available to the scientific community. In addition, using very different 579 

datasets for training and testing allows us to show the generality of our framework, 580 

its capabilities for real-world applications and its performance under a challenging 581 

situation. 582 

Since the “WaRo11” dataset has been designed for being representative of the 583 

variability existing in a real life scenario, but also for integrating most of the actions 584 

trained for the CVS, a specific setup was configured to simulate a waiting room. In 585 

this setup, actions happen without giving any instructions to the subjects. They are 586 

performed as natural part of their behaviour and motivation as human beings. This is 587 

facilitated thanks to the presence of several elements interrelated to each other, 588 

which may introduce causality and sequentiality as it is found in a real situation. For 589 

instance, the presence of a book and a chair could motivate a subject to first pick up 590 

the book and then sit down to carry out the action reading. Alternatively, a subject 591 

may pick up the book, realises its topic of no interest and decides to throw it away. 592 

This waiting room setup was implemented in a single room and filmed by a single 593 

fixed camera. A book was positioned on the floor, a chair was left in a corner and a 594 

punching ball was placed in another corner. Eleven sequences were recorded with 595 

eleven different actors of both genders comprising a wide range of ages (19-57) and 596 

morphological differences. No instruction was given to the actors further than “go to 597 

the room and wait for 5 minutes and feel free to enjoy the facilities while you wait”. 598 

The resulting variability in the actions performed is depicted in Table 1. 599 



Sequence Age Sex Number of 
actions 

Actor 1 34 M 31 

Actor 2 33 M 25 

Actor 3 35 M 10 

Actor 4 57 F 12 

Actor 5 19 M 9 

Actor 6 19 M 18 

Actor 7 20 F 15 

Actor 8 19 M 9 

Actor 9 22 F 5 

Actor 10 19 M 12 

Actor 11 20 F 9 

Total   155 

Actions Instances 
check watch 4 
cross arms 0 

scratch head 2 
sit down 13 
get up 12 

turn around 18 
walk 53 

wave hand 9 
punch 26 
kick 10 
point 3 

pick up 13 
throw 0 

Table 1: a) Number of actions performed by each actor. b) Number of instances of 600 

the trained actions found in the WaRo11 dataset. 601 

Each of the recorded sequence was manually groundtruthed: first, the video of 602 

interest was segmented into a set of independent actions, then each action was 603 

labelled. Note that the segmentation of a video into independent actions is outside 604 

the scope of this study. Therefore, when testing our algorithms, we processed 605 

manually segmented actions. Readers interested in automatic action segmentation 606 

should refer to (Rui and Anandan, 2002; Black et al., 1997; Ali and Aggarwal, 2001; 607 

Shimosaka, 2007; Shi, 2011). 608 

ii. Results 609 

 610 

a) Performance of the computer vision system 611 

First the CVS was applied to IXMAS sequences using the leave-one-out strategy 612 

followed by (Weinland et al., 2007; Yan et al., 2008; Junejo et al., 2008; Richard and 613 

Kyle, 2009). In each run, we select one actor for testing and all remaining subjects 614 

for training. Secondly, using the whole of the IXMAS dataset for training, the CVS 615 

was applied to WaRo11. Accuracy performances for both experiments are provided 616 

in Table 2. 617 

Table 2. Average recognition rate for all the actions on the datasets obtained by the 618 

computer vision system based on BoW 619 

 IXMAS WaRo11 
CVS: BoW 63.9% 29.4% 

 620 

The BoW based technique displays results comparable to those of the state of the 621 

art on the IXMAS dataset (Nebel et al. 2011). However, when applied to a more 622 



realistic environment, performances decrease considerably. This shows the 623 

limitations of the CVS methodology under real circumstances, when the testing 624 

conditions differs significantly from the training. On the other hand, when 625 

performance is analysed in terms of average cumulative recognition curve (ACR) - 626 

Figure 4, blue -, i.e. percentage that an action is accurately recognised within a set of 627 

estimates,- one can see that considering the first few ranks may improve significantly 628 

accuracy. For example, accuracy would jump from 29 to 66% if the best solution 629 

could be detected within the 6 first estimates. This confirms that additional 630 

information is contained within the action estimation vector generated by BoW, and, 631 

therefore, there is scope to exploit it to improve the initial annotation. This is exactly 632 

what our reasoning system intends to do.   633 

 634 

Figure 4: Blue: Average Cumulative Recognition curve for a number of estimations 635 

from 1 to 13. Red: Recognition rate obtained by our approach depending on the 636 

number of considered action estimates. 637 

b) Performance of the whole framework 638 



The proposed framework integrating AIRS has been tested using the 11 sequences 639 

of WaRo11. Experiments were conducted considering the N={1,3,5,7} most likely 640 

actions estimates – as calculated by CVS - for AIRS analysis. Performance results 641 

are evaluated against the CVS only system in Table 3, where average and 642 

recognition rates per sequence are provided. In addition, they are compared with the 643 

CVS cumulative recognition rate, Figure 4, red. 644 

Table 3. Recognition rates obtained using either CVS or the combination of CVS and 645 

AIRS on WaRO11 dataset.  646 

Actor 1 2 3 4 5 6 7 8 9 10 11 
Average 

per action 

CVS 35.5% 16.0% 30.0% 58.3% 44.4% 22.2% 40.0% 15.4% 40.0% 16.7% 33.3% 29.4% 
CVS+AIRS 

(n=1) 
38.7% 24.0% 30.0% 58.3% 44.4% 22.2% 33.3% 30.8% 60.0% 25.0% 33.3% 35.5% 

CVS+AIRS 
(n=3) 

41.9% 28.0% 40.0% 66.7% 44.4% 38.9% 20.0% 30.8% 60.0% 25.0% 33.3% 38.7% 

CVS+AIRS 
(n=5) 

64.5% 52.0% 50.0% 75.0% 55.6% 66.7% 40.0% 30.8% 60.0% 25.0% 33.3% 51.9% 

CVS+AIRS 
(n=7) 

61.3% 40.0% 60.0% 75.0% 55.6% 66.7% 33.3% 30.8% 40.0% 25.0% 33.3% 51.0% 

 647 

These results show a considerable increase of performance due to the inclusion of 648 

the reasoning system, i.e. accuracy raises from 29% to 52%, in the best case. Our 649 

framework outperforms significantly the CVS system, even for the case where only 1 650 

action prediction is considered by the AIRS. Moreover, it can be noticed that 651 

accuracy is only rarely deteriorated by reasoning: the system does not seem to 652 

suffer from either reasoning errors or over reasoning. Only in sequences 7 and 11 653 

performance are either deteriorated or unaffected by the inclusion of the AIRS. 654 

Detailed analysis of these two sequences permits to identify, first, absence of 655 

continuity or causality between their composing actions and, secondly, a high 656 

percentage of unconstrained actions, i.e. actions that are not linked to any other and 657 

that can be performed at any instant (‘cross arms’, ‘check watch’, ‘scratch head’). 658 



These two factors explain why no effective reasoning can be performed to improve 659 

recognition. 660 

A more detailed analysis of the AIRS can be obtained by comparing the performance 661 

of our approach when varying the number of predictions considered in the action 662 

estimate vector. When only considering the most likely action estimate (N=1), the 663 

reasoning system is already able to improve on the CVS. This demonstrates the 664 

value of one of the AIRS reasoning mechanisms, i.e. activity recognition based on 665 

expectations. In this context, the AIRS is comparable to the state-of-art techniques in 666 

video-based systems based on simple ontologies and rules. 667 

 When several action estimates are available, the AIRS’s second mechanism, i.e. 668 

common sense action validation and the coherent assignation of actions to stories, 669 

can be exploited, which leads to deeper reasoning. Performance of the total system 670 

– i.e. 38% and 52% for N=3 and 5 estimates, respectively - compared with those 671 

displayed by the ACR – 40% and 57%- shows that the complete reasoning system is 672 

quite efficient at selecting an action among the N best estimates (see Figure 4, red). 673 

Finally, when more estimates are considered, it seems that the added noise prevents 674 

the reasoning system to further improve accuracy, i.e. 51% for N=7.  675 

Figure 5 provides confusion matrices with (CVS+AIRS for the best case, i.e. N=5) 676 

and without reasoning (CVS only) to visualise improvement on the recognition rate 677 

per action. For many actions, such as ‘sitting down’, ‘getting up’, ‘turn around’, ‘check 678 

watch’ or ‘kick’, the system is able to move from a recognition rate of almost 0% to a 679 

situation where the action is recognised correctly in a majority of instances. This is 680 

particularly remarkable in the case of ‘sitting down’ where the CVS was trained using 681 

sequences of individuals sitting on the floor, whereas in WaRO11, they sit on a chair. 682 



Such achievement could not have been reached without usage of world and 683 

contextual information. As discussed earlier, recognition rate of an unconstrained 684 

action such as ‘scratch head’ does not benefit from reasoning. 685 

 686 
Figure 5. Confusion matrices obtained with CVS (left) and CVS+AIRS (right) 687 

Table 4: Outputs of CVS (N=5) and AIRS for the first 10 actions of WaRo11 seq. 1 688 

 

     
Frames 220-271 271-310 310-344 344-373 373-394 
Ground 

truth 
Walk Pick up Turn around Sit down Get up 

CVS 1 
Walk Pick up 

Kick 
Sit down 

Check watch 

CVS 2 Kick Point Point Throw Throw 

CVS 3 Point Throw 
Turn around 

Check watch Kick 

CVS 4 Wave hand Scratch head Pick up Pick up Point 

CVS 5 Sit down Sit down Cross arms Cross arms Pick up 

AIRS main 
story Walk Pick up Turn around Sit down Get up 

      

 

     
Frames 394-432 432-1243 1243-1276 1276-1326 1326-1533 
Ground 

truth 
Pick up Sit down Get up Pick up Punch 

CVS 1 
Pick up 

Cross arms Punch 
Pick up Punch 

CVS 2 Get up Point Point Throw Kick 



CVS 3 Throw Check watch Kick Get up Throw 

CVS 4 Scratch head Scratch head Pick up Point Point 

CVS 5 Turn around 
Sit down 

Throw Check watch Check watch 

AIRS main 
story 

Turn around 
Sit down Get up Pick up Punch 

Table 4 illustrates the importance of reasoning to improve performance by showing 689 

outputs of CVS (N=5) and AIRS for the first 10 actions of sequence 1. When CVS 690 

failed to identify the correct actions as its first estimate, AIRS was able to choose the 691 

correct annotations among the other 4 estimates, i.e. ‘turn around’ and ‘sit down’ 692 

actions. Moreover, when none of the CVS outputs was suitable, AIRS managed to 693 

correct those estimates by inferring a new action consistent with common sense 694 

reasoning – ‘get up’ actions. An error of reasoning occurred in the 6th action, where 695 

the AIRS contradicted the correct CVS estimation. This error is explained by the 696 

unexpected presence of a second object on the floor, i.e. a pen, which was not 697 

known by the DSK. Consequently, the rule imposing that a second object could be 698 

picked only after releasing the first one proved invalid.  699 

6. Conclusions 700 

 701 

We present a novel approach for action recognition based on the combination of 702 

statistical and knowledge based reasoning. The inclusion of artificial intelligence 703 

strategies, based on common sense, allows outperforming significantly the state of 704 

the art technique in computer vision when dealing with realistic datasets. Our main 705 

contributions are the creation of the first integrated framework combining computer-706 

vision-based and artificial-intelligence-based action recognition techniques which is 707 

fully context and scenario independent, and the implementation of a common sense 708 

reasoning schema which outperforms machine learning methodologies. 709 



Results are highly encouraging and confirm the validity of our hypothesis: the 710 

computer vision community should not focus exclusively on classical statistical 711 

reasoning, but should integrate ideas and methodologies from artificial intelligence in 712 

order to overcome the limitations of current applications under real-life conditions. 713 
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