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Secrecy Rate Beamforming for Multi-cell Networks
with Information and Energy Harvesting

Ali Arshad Nasir, Hoang Duong Tuan, Trung Q. Duong, and H. Vincent Poor

Abstract—Considering a multicell network for secure wireless
information and power transfer, this paper studies the joint
design of transmit beamformers at the base stations (BSs) and
receive signal splitting ratios at the end users’ equipment (UEs).
The primary concern in this work is the network internal security,
where there may be a single multi-antenna eavesdropper or
there is a risk that any near user may accidentally eavesdrop
on the received signal of any far user. The objective is to
maximize the minimum secrecy user rate under BS transmit
power and UE minimum harvested energy constraints. New path-
following algorithms are proposed for computational solutions of
these difficult nonconvex optimization problems. Each iteration
involves one simple convex quadratic program (QP). Numerical
results confirm that the proposed algorithms converge quickly
after few iterations having low computational complexity.

Index Terms—Secure communication, secrecy rate, energy
harvesting, nonconvex programming, wireless information and
power transfer, signal splitting, transmit beamforming.

I. INTRODUCTION

The openness of the wireless medium and the broadcast
nature of wireless networks makes them vulnerable to mali-
cious attacks of adversaries [1]–[4]. Adversaries may attempt
to launch various attacks to disrupt or eavesdrop upon the
normal information flows [5]. The traditional encryption for
secure information transfer may be not practical for certain
emerging wireless networking paradigms, such as the Internet
of Things or ad hoc networks, due to lack of infrastructure or
due to low complexity of terminals. Physical layer security
(PLS) [6], [7], which explores the ability of the wireless
physical layer to provide secrecy in data transmissions is a
compelling approach to providing security in such networks
[7]–[9]. The secrecy rate in PLS characterizes the ability of
users to transmit messages to intended users while keeping
the messages confidential from eavesdroppers [7], [10]. Note
that registered network users may also play the role of eaves-
droppers to decode information intended for other users in
the network, which is also related to the concept of internal
network security [11].
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Recently, dense small-cell deployment has been identified
as one of the ‘big pillars’ to support the much needed
1, 000⇥ increase in data throughput for the fifth-generation
(5G) wireless networks [12]. Moreover, the benefits of coor-
dination among small cells have been very recently reported
[13]. In such setup, small-cell users become more prone
to being eavesdropped upon due to closer proximity among
users. Furthermore, there is a major concern with the energy
consumption of such a dense small-cell deployment. Recent
advances in wireless power transfer allow the emitted energy in
the radio frequency (RF) signals to be harvested and recycled
[14]. Wireless power transfer from a BS to its users (UEs) is
viable in a dense small-cell environment, because the close
BS-UE proximity enables an adequate amount of RF energy
to be harvested for practical applications [15].

Recently, transmit beamforming design at the base station
(BS) for secrecy rate maximization under BS transmit power
constraints has achieved researchers’ considerable attention
[16]–[21]. A common approach to such design problems
is to formulate them as optimization of the outer products
of the beamforming vectors. The rank-one constraints on
these outer products are then dropped to translate into rank-
dropped programs, which however are still nonconvex due
to the presence of the eavesdropper rates in the objective.
A simple semi-definite programming (SDP) relaxation for
these rank-dropped programs was proposed in [17], while in
[19], they were addressed by successive SDP, which involves
a substantial number of additional variables. Randomization
was used in [17] and [19] to generate feasible beamforming
vectors from the found matrix solution of the rank-dropped
program. As noted in [22], such randomization is not efficient.
However, it should be noted that these rank-dropped programs
are examples of d.c. (difference of two convex functions)
programming, which can be easily and effectively solved by
d.c. iterations [23].

Meanwhile, simultaneous wireless information and power
transfer (SWIPT) has been proposed as a promising wireless
energy harvesting (EH) technique in energy constrained net-
works [14], [24]–[26], such as those for which PLS may be
most appropriate. Thus, for SWIPT systems, there is an inclu-
sion of receiver energy harvesting constraints in the secrecy
rate maximization problem, which is not only non-convex but
also conflicting with both information throughput and com-
munication security. Secure beamforming in SWIPT systems
is relevant, since not only the active network eavesdroppers,
but also the receivers employing energy harvesting, being
located close to the BS to enable meaningful EH [20], can
potentially eavesdrop upon other users’ information [20], [27].
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EH constrained secrecy rate maximization for single-input-
single-output (SISO) [11], [28], multiple-input-single-output
(MISO) [20], [21], [29]–[31], and multiple-input-multiple-
output (MIMO) [32], [33] systems, and single-antenna AF
relaying network [34] has been studied. Most of the these
works [11], [20], [21], [28], [31]–[33] assume either energy
harvesting (EH) functionality or information decoding (ID)
functionality at the receiver. To enable simultaneous EH and
ID (SWIPT) in practical networks, a receiver must employ
power splitting (PS) scheme whereby the received signal from
the BS is divided into information and energy streams [30].
Regarding beamforming design, following [17] for secrecy
rate maximization, [29]–[31] reformulated EH constrained
secrecy rate maximization by optimizing the outer products
of beamforming vectors. The rank-one constraints on these
outer products were also dropped in [29] and [30] to produce
rank-dropped programs. It should be noted that under this
reformulation, the addition of EH constraints does not change
the nature of the optimization problems. Based on the found
matrix solution of the rank-dropped programs, randomization
was also used in [29] and [30] to find feasible beamforming
vectors. In [31], the eavesdropping rate is delegated to a
highly nonlinear determinant constraint in the outer products
of the beamforming vectors, which is then relaxed to a convex
constraint [31, Proposition 1]. The exact penalty function opti-
mization approach of [22] was used in [31] to handle the rank-
one constraints on these outer-products. It is easily seen that by
using the exact penalty function optimization approach of [22],
the EH constrained secrecy rate maximization is equivalent to
d.c. programs in the outer products of beamforming vectors,
which again can be solved by d.c. iterations [23].

In this paper, we consider a multicell network, in which a
multi-antenna BS in each cell communicates with its respective
users (UEs). The UEs are divided into two groups on the
basis of their distance from the serving BS. The UEs in
the near vicinity of the BS (near UEs) implement SWIPT
while far-away UEs (far UEs) conduct information decoding
only. We consider two different eavesdropper models. In the
first model (Eve Model 1), we assume a single multi-antenna
eavesdropper, who tries to decode information for any user
equipment (UE). Thus, we aim to jointly optimize transmit
beamforming vectors, transmit artificial noise vectors (helps
to reduce signal-to-interference-plus-noise-ratio (SINR) at the
eavesdropper and increase the harvested energy for near UEs),
and receiver PS ratios for near UEs to maximize the worst
secrecy rate of all UEs under EH constraints for near UEs
and BS transmit power constraints. In our second model
(Eve Model 2), we consider a more practical scenario of the
network internal security where any user among near UEs
may accidentally eavesdrop on the received signal of any user
among far UEs. Thus, we aim to maximize the worst secrecy
rate of far UEs under minimum SINR and EH constraints
for near UE and BS transmit power constraints. We propose
path-following optimization algorithms to solve these two EH
constrained secrecy rate problems. Avoiding rank-constrained
optimization, our algorithms require minimum number of
variables, and computationally quite fast as converges in
few iterations. We compare the EH constrained secrecy rate

Figure 1. Downlink multiuser multicell interference scenario in a dense
network consisting of K small cells. For clarity, the interference scenario
is shown in cell 1 only. In general, the interference occurs in all K cells.

performance with the normal rates achieved in the absence of
eavesdroppers. Our simulation results show that secrecy rate
of our proposed algorithms is close to the achievable normal
rates in the absence of eavesdroppers. Furthermore, the secrecy
rate of the Eve Model 2 is better than that of the Eve Model
1 due to the presence of multi-antenna eavesdropper in Eve
Model 1.

The paper is organized as follows. Section II presents the
system model and problem formulation. Section III proposes
path-following iterative algorithms for the solutions. Section
IV evaluates the performance of our proposed algorithms by
numerical examples. Finally, Section V concludes the paper.

Standard notation used in the paper. Bold symbols are
used to represent vectors and matrices. <{·} defines the
real operator, r defines the first-order differential operator,
Trace(X) is the trace of matrix X, and hx,yi , x

H
y.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink of a dense network consisting of K

small cells with universal frequency reuse. As shown in Fig. 1,
the BS of a cell k 2 K , {1, . . . ,K} is equipped with M > 1

antennas and it serves Nk single-antenna UEs within its cell.
By BS k and UE (k, n), we mean the BS that serves cell k and
the UE n 2 Nk , {1, . . . , Nk} of the same cell, respectively.
The Nk UEs in cell k are divided into two groups, i.e., i)
N

1,k zone-1 users, which are located nearby their serving BS
inside the inner circle, and ii) N

2,k zone-2 users, which are
located far from their serving BS in the outer circle, such
that, Nk = N

1,k + N

2,k. By UE (k, n

1

) and UE (k, n

2

), we
mean UE n

1

2 N
1,k , {1, . . . , N

1,k} in zone-1 and UE n

2

2
N

2,k , {N
1,k + 1, . . . , Nk} in zone-2 of cell k, respectively.
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Let us denote by wk,n 2 CM⇥1 the beamforming vector by
BS k for its UE (k, n). Let h

¯k,k,n 2 CM⇥1 be the flat fading
channel vector between BS ¯

k and UE (k, n), which includes
the effects of large-scale pathloss and small-scale fading,
where ¯

k 2 K. Let us denote by xk,n the information signal
to be transmitted by BS k to UE (k, n) with E{|xk,n|2} = 1.
The complex baseband signal received by UE (k, n) is then
expressed as

yk,n =

X

¯k2K

h

H
¯k,k,n

X

n̄2Nk̄

�

w

¯k,n̄x¯k,n̄ + v

¯k

�

+ z

a
k,n, (1)

where vk is the artificial interference signal added by BS k

to confuse the eavesdroppers [35], zak,n ⇠ CN (0,�

2

a) is the
zero-mean circularly symmetric complex Gaussian noise with
variance �

2

a at the receiver of UE (k, n). To show the effect
of interference at UE (k, n), let us explicitly write (1) as

yk,n = h

H
k,k,nwk,nxk,n + h

H
k,k,n

X

n̄2Nk\{n}

wk,n̄xk,n̄

+

X

¯k2K

h

H
¯k,k,nv¯k +

X

¯k2K\{k}

h

H
¯k,k,n

X

n̄2Nk̄

w

¯k,n̄x¯k,n̄ + z

a
k,n,

(2)

The first term in (2) is the intended signal for UE n, the second
term is the intracell interference from within cell k, and the
third term is the intercell interference from other cells ¯

k 2
K \ {k}.

We assume that zone-1 users, being close to their serving
BS, implement SWIPT, such that UE (k, n

1

) applies the
power splitting (PS) technique to coordinate both information
decoding (ID) and energy harvesting (EH). The power splitter
divides the received signal into two parts in the proportion of
↵k,n1 : 1 � ↵k,n1 , where ↵k,n1 2 (0, 1) is termed as the PS
ratio for UE (k, n

1

). The first part p↵k,nyk,n forms an input
to the ID receiver as

p
↵k,n1yk,n1 + z

c
k,n1

=

p
↵k,n1

⇥
0

@

X

¯k2K

h

H
¯k,k,n1

X

n̄2Nk̄

�

w

¯k,n̄x¯k,n̄ + v

¯k

�

+ z

a
k,n1

1

A

+ z

c
k,n1

,

(3)

where z

c
k,n1

⇠ CN (0,�

2

c ) is the additional noise introduced
by the ID receiver circuitry. The received SINR of UE (k, n)

is given by

SINR-UEk,n = fk,n(w,v,↵k,n) ,
|hH

k,k,nwk,n|2
'k,n(w,v, ↵̄k,n)

(4)

where we denote w , [wk,n]k2K,n2Nk
, v , [vk]k2K, ↵ ,

[↵k,n1 ]k2K,n12N1,k , ¯↵ , [↵̄k,n]k2K,n2Nk
,

↵̄k,n =

(

↵k,n, n 2 N
1,k

1, n 2 N
2,k

,

and

'k,n(w,v, ↵̄k,n) ,
X

n̄2Nk\{n}

|hH
k,k,nwk,n̄|2 + |hH

k,k,nvk|2

| {z }

intracell interference

+

X

¯k2K\{k}

X

n̄2Nk̄

|hH
¯k,k,nw¯k,n̄|2 +

X

¯k2K\{k}

|hH
¯k,k,nv¯k|2

| {z }

intercell interference

+ �

2

a + �

2

c/↵̄k,n.

(5)

The second part
p

1� ↵k,n1yk,n1 of the received signal
is processed by an EH receiver. The energy harvested at UE
(k, n

1

) is given by

Ek,n1(w,v,↵k,n1) , ⇣k,n1(1� ↵k,n1)pk,n1(w,v), (6)

where

pk,n1(w,v) ,
X

¯k2K

X

n̄2Nk̄

|hH
¯k,k,n1

w

¯k,n̄|2 +
X

¯k2K

|hH
¯k,k,n1

v

¯k|2

+ �

2

a, (7)

and the constant ⇣k,n1 2 (0, 1) denotes the efficiency of energy
conversion at the EH receiver. Ek,n1 can be stored in a battery
and later used to power the operations of UE (k, n) (e.g.,
processing the received signals in the downlink, or transmitting
data to the BS in the uplink).

In the following subsections, we consider two different
eavesdroppers model and the corresponding problem formula-
tions.

A. Single Active Eavesdropper Model (Eve Model 1)
Following [10], we first consider the scenario in which a

single active eavesdropper k with Nev antennas is registered
in the cell k as a subscribed user and exchanges signalling
messages with BS k. The only objective of this malicious user
is to decode information for any UE (k, n). Thus the signal
for any UE (k, n) observed at the eavesdropper (EV) k in cell
k, yk 2 CNev⇥1, is given by

yk =

X

¯k2K

HH
¯k,k

X

n̄2Nk̄

�

w

¯k,n̄x¯k,n̄ + v

¯k

�

+ za
k , (8)

where H
¯k,k of size M ⇥ Nev is the corresponding wiretap

channel between BS ¯

k and EV k and za
k 2 CNev⇥1 is the zero-

mean Gaussian noise with variance �

2

a at each receive antenna.
As the EV is registered it is natural to assume that the wiretap
channel state information H

¯k,k is known [10]. Therefore, the
received SINR corresponding to the signal intended for the
UE (k, n) at the EV k is given by

SINR-EVk,n ,
kHH

k,kwk,nk2
qk,n(w,v)

. (9)

where

qk,n(w,v) ,
X

n̄2Nk\{n}

kHH
k,kwk,n̄k2 +

X

¯k2K

kHH
¯k,kv¯kk2

+

X

¯k2K\{k}

X

n̄2Nk̄

kHH
¯k,kw¯k,n̄k2 +Nev�

2

a
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The achievable secrecy rate at UE (k, n) in nat/sec/Hz is
thus given by [36]

fk,n(w,v,↵k,n) = ln(1 + SINR-UEk,n)� ln(1 + SINR-EVk,n)

= ln

 

1 +

|hH
k,k,nwk,n|2

'k,n(w,v,↵k,n)

!

� ln

 

1 +

kHH
k,kwk,nk2

qk,n(w,v)

!

,

= f

1

k,n(w,v,↵k,n)� f

2

k,n(w,v) (10)

where

f

1

k,n(w,v,↵k,n) , ln

 

1 +

|hH
k,k,nwk,n|2

'k,n(w,v,↵k,n)

!

and

f

2

k,n(w,v) , ln

 

1 +

kHH
k,kwk,nk2

qk,n(w,v)

!

.

The corresponding rate in bits/sec/Hz can be calculated by
evaluating fk,n(w,v,↵k,n)

ln 2

.
We aim to jointly optimize the transmit beamforming vec-

tors wk,n, artificial noise vectors vk, and the PS ratios ↵k,n1

for all k 2 K, n 2 Nk, n1

2 N
1,k to maximize the worst

secrecy rate of UEs

max

wk,n,vk2CM⇥1

↵k,n12(0,1)

F (w,v,↵) , min

k2K,n2Nk

fk,n(w,v,↵k,n)

= min

k2K,n2Nk

⇥

f

1

k,n(w,v,↵k,n)� f

2

k,n(w,v)

⇤

(11a)

s.t.
X

n2Nk

kwk,nk2 + kvkk2  P

max

k , 8k 2 K

(11b)
X

k2K

X

n2Nk

kwk,nk2 +
X

k2K
kvkk2  P

max (11c)

pk,n1(w,v)� e

min

k,n1
/⇣k,n1(1� ↵k,n1) � 0,

8k 2 K, n

1

2 N
1,k. (11d)

Constraint (11b) caps the total transmit power of each BS
k at a predefined value P

max

k . Constraint (11c) ensures that
the total transmit power of the network not exceed the al-
lowable budget Pmax, which helps limit any potential undue
interference from the considered multicell network to another
network. Of course, (11c) needs to be introduced only when
P

max

<

P

k2K P

max

k . Constraint (11d) requires that the
minimum energy harvested by UE (k, n

1

) be greater than some
target threshold e

min

k,n1
. While (11b) and (11c) are convex, the

objective (11a) is not concave and the constraint (11d) is not
convex due to the strong coupling between wk,n and ↵k,n1 in
both the SINR-UE and EH expressions [see (4) and (6)].

B. EH-Eavesdropper Model (Eve Model 2)
We also consider a more practical scenario of the network

internal security where any user in zone-1, UE (k, n

1

), n
1

2
N

1,k, may accidentally eavesdrop on the received signal of
any user in zone-2, UE (k, n

2

), n
2

2 N
2,k. The considered

case is practical because far users in zone-2 can achieve lesser
information rate, compared to that achieved by the near users
in zone-1, and thus are stronger potential victim of being

eavesdropped upon by the near zone-1 users.1 Considering
this, the signal for the zone-2 UE (k, n

2

) observed as an
eavesdropped signal at any zone-1 UE (k, n

1

) in cell k is
given by

yk,n1,n2 = h

H
k,k,n1

wk,n2xk,n2 + h

H
k,k,n1

 

X

n̄2Nk\{n2}

wk,n̄xk,n̄

+ vk

!

+

X

¯k2K\{k}

h

H
¯k,k,n1

0

@

X

n̄2Nk̄

w

¯k,n̄x¯k,n̄ + v

¯k

1

A

+ zk,n1 (12)

Thus, the received SINR corresponding to the signal intended
for the UE (k, n

2

) at the EV (k, n

1

) is given by

SINR-EVk,n2,n1 ,
khH

k,k,n1
wk,n2k2

qk,n2,n1(w,v)

. (13)

where

qk,n2,n1(w,v) ,
X

n̄2Nk\{n2}

khH
k,k,n1

wk,n̄k2

+

X

¯k2K\{k}

X

n̄2Nk̄

khH
¯k,k,n1

w

¯k,n̄k2

+

X

¯k2K

khH
¯k,k,n1

v

¯kk2 + �

2

a (14)

Thus, the achievable secrecy rate of UE (k, n

2

), n
2

2 N
2,k,

is given by

¯

fk,n2(w,v) = ln

 

1 +

|hH
k,k,n2

wk,n2 |2
'k,n2(w,v, 1)

!

� max

n12N1,k

ln

 

1 +

|hH
k,k,n1

wk,n2 |2
qk,n2,n1(w,v)

!

= min

n12N1,k

⇥

¯

f

1

k,n2
(w,v)� ¯

f

2

k,n2,n1
(w,v)

⇤

(15)

where

¯

f

1

k,n2
(w,v) , ln

 

1 +

|hH
k,k,n2

wk,n2 |2
'k,n2(w,v, 1)

!

¯

f

2

k,n2,n1
(w,v) , ln

 

1 +

|hH
k,k,n1

wk,n2 |2
qk,n2,n1(w,v)

!

and 'k,n2(w,v, 1) is defined in (5) for n = n

2

.
In such eavesdropper model, we aim to jointly optimize the

transmit beamforming vectors wk,n, artificial noise vectors vk,
and the PS ratios ↵k,n1 for all k 2 K, n 2 Nk, n1

2 N
1,k to

maximize the worst secrecy rate of UE(k, n
2

) among k 2

1The general cases that (i) near zone-1 users can eavesdrop on the received
signal of any user either in zone-1 or zone-2 or (ii) any user in any zone can
eavesdrop on the received signal of any other user in the cell can be easily
obtained by slight modification of proposed system model and our extensive
simulation analysis (cf. Fig. 6) study all such cases.
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K, n

2

2 N
2,k, while assuring a minimum threshold SINR for

UE(k, n
1

), for all k 2 K, n

1

2 N
1,k.

max

wk,n,vk2CM⇥1

↵k,n12(0,1)2(0,1)

¯

F (w,v) , min

k2K,n22N2,k

¯

fk,n2(w,v)

= min

k2K,n12N1,k,

n22N2,k

⇥

¯

f

1

k,n2
(w,v)� ¯

f

2

k,n2,n1
(w,v)

⇤

(16a)

s.t.
|hH

k,k,n1
wk,n1 |2

'k,n1(w,v,↵k,n1)

� �

min

, k 2 K, n

1

2 N
1,k,

(16b)
(11b) � (11d). (16c)

Constraint (16b) ensures a minimum threshold SINR, �
min

, for
zone-1 UE(k, n

1

), 8 k 2 K, n

1

2 N
1,k. The objective (16a) is

not concave, the constraint (16b) is not convex in its current
form and as observed in Problem (11), the EH constraint (11d)
is not convex.

III. PROPOSED ITERATIVE OPTIMIZATION BASED
SOLUTION

By denoting the outer products Wk,n , wk,nw
H
k,n, Vk ,

vkv
H
k and ⇢k,n1 = 1/↵k,n1 , �k,n1 = 1/(1 � ↵k,n1) and

then W , [Wk,n]k2K,n2Nk
, V , [Vk]k2K and ⇢ ,

[⇢k,n1 ]k2K,n12N1,k , � , [�k,n1 ]k2K,n12N1,k , one can easily
see that all nonlinear functions 'k,n(w,v, ↵̄k,n), pk,n1(w,v)

and qk,n(w,v) in (5), (7) and (9) are linear functions
in (W,V, ⇢k,n), which are referred as '̃k,n(W,V, ⇢k,n),
p̃k,n1(W,V) and q̃k,n(W,V). Accordingly, the secrecy rate
function fk,n(w,v,↵k,n) in (10) is represented in terms of
function of (W,V, ⇢k,n) as

˜

fk,n(W,V, ⇢k,n) =
˜

f

1

k,n(W,V, ⇢k,n)� ˜

f

2

k,n(W,V, ⇢k,n)

where

˜

f

1

k,n(W,V, ⇢k,n) , ln

�

'̃k,n(W,V, ⇢k,n) + h

H
k,k,nWk,nhk,k,n

�

+ ln(q̃k,n(W,V)),

˜

f

2

k,n(W,V, ⇢k,n) , ln ('̃k,n(W,V, ⇢k,n))

+ ln

⇣

q̃k,n(W,V) + Trace(HH
k,kWk,nHk,k)

⌘

which are concave functions in (W,V, ⇢k,n). In other words,
˜

fk,n is a d.c. function in (W,V, ⇢k,n). The EH constrained
maximin secrecy rate optimization (11) is equivalently refor-
mulated in terms of (W,V,⇢,�) as

max

W,V,⇢,�
F (W,V,⇢)

, min

k2K,n2Nk

h

˜

f

1

k,n(W,V, ⇢k,n)� ˜

f

2

k,n(W,V, ⇢k,n)

i

(17a)

s.t.
X

n2Nk

Trace(Wk,n) + Trace(Vk)  P

max

k , 8k 2 K

(17b)

X

k2K

X

n2Nk

Trace(Wk,n) +

X

k2K
Trace(Vk)  P

max

(17c)
p̃k,n1(W,V)� �k,n1e

min

k,n1
/⇣k,n1 � 0,

8k 2 K, n

1

2 N
1,k (17d)

⇢k,n > 0,�k,n1 > 0, 1/⇢k,n1 + 1/�k,n1  1,

8 k 2 K, n

1

2 N
1,k, (17e)

Wk,n ⌫ 0,Vk ⌫ 0, k 2 K, n 2 Nk, (17f)
rank(Wk,n) = 1, rank(Vk) = 1, k 2 K, n 2 Nk,

(17g)

where the constraints (17b)-(17f) are convex. By dropping
the rank-one nonconvex constraints (17g), the problem (17)
is maximization of a d.c. function subject to convex con-
straints, which is readily solved by d.c. iterations [23], avoid-
ing any substantial increasing the number of variables as
in [19], [29]–[31]. D.C. iterations generate a feasible point
(W

(+1)

,V

(+1), ⇢(+1)

,�(+1)

), which is better than the
incumbent (W

()
,V

()
,⇢()

,�()
), by solving the convex

program

max

W,V,⇢,�
min

k2K,n2Nk

h

˜

f

1

k,n(W,V, ⇢k,n)� ˜

f

2,()
k,n (W,V, ⇢k,n)

i

s.t. (17b)� (17f). (18)

where

˜

f

2,()
k,n (W,V, ⇢k,n) =

˜

f

2

k,n(W
()

,V

()
, ⇢

()
k,n)

+ hr ˜

f

2

k,n(W
()

,V

()
, ⇢

()
k,n), (W,V, ⇢k,n)� (W

()
,V

()
, ⇢

()
k,n)i.

and

hr ˜

f

2

k,n(W
()

,V

()
, ⇢

()
k,n), (W,V, ⇢k,n)� (W

()
,V

()
, ⇢

()
k,n)i

, 1

'̃k,n(W
()

,V

()
, ⇢

()
k,n)

⇥


X

n̄2Nk\{n}

h

H
k,k,n

⇣

Wk,n̄ �W

()
k,n̄

⌘

hk,k,n

+

X

¯k2K\{k}

X

n̄2Nk̄

|hH
¯k,k,nw¯k,n̄|2 +

X

¯k2K

h

H
¯k,k,n

⇣

V

¯k �V

()
¯k

⌘

h

¯k,k,n

+ �

2

c

⇣

⇢k,n � ⇢

()
k,n

⌘

�

+

1

q̃k,n(W
()

,V

()
) + Trace(HH

k,kW
()
k,nHk,k)

⇥


X

n̄2Nk\{n}

Trace
n

HH
k,k

⇣

Wk,n̄ �W

()
k,n̄

⌘

Hk,k

o

+

X

¯k2K\{k}

X

n̄2Nk̄

Trace
n

HH
¯k,k

⇣

W

¯k,n̄ �W

()
¯k,n̄

⌘

H
¯k,k

o

+

X

¯k2K

Trace
n

HH
¯k,k

⇣

V

¯k �V

()
¯k

⌘

H
¯k,k

o

+ Trace
n

HH
k,k

⇣

Wk,n �W

()
k,n

⌘

Hk,k

o

�
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On the other hand, by writing the rank-one constraints (17g)
equivalently as

Trace(Wk,n)� �

max

(Wk,n)  0, k 2 K, n 2 Nk

Trace(Vk)� �

max

(Vk)  0, k 2 K, (19)

where �

max

(Wk,n) (�
max

(Vk), resp.) is the maximal eigen-
value of Wk,n (Vk, resp.), the nonconvex optimization prob-
lem (17) can be represented by the following exact penalty
optimization [22]:

max

W,V,⇢,�

n

min

k2K,n2Nk

h

˜

f

1

k,n(W,V,⇢)� ˜

f

2

k,n(W,V,⇢)
i

+ µ

h

X

k2K

X

n2Nk

(�

max

(Wk,n)� Trace(Wk,n))

+

X

k2K
(�

max

(Vk)� Trace(Vk)

io

s.t. (17b)� (17f). (20)

for penalty parameter µ > 0, which is again maximization of a
d.c. function subject to convex constraints. By [23], (20) can be
efficiently solved by d.c. iterations, which generate a feasible
point (W(+1)

,V

(+1), ⇢(+1)

,�(+1)

) from the incumbent
(W

()
,V

()
,⇢()

,�()
) by solving the convex program

max

W,V,⇢,�

n

min

k2K,n2Nk

h

˜

f

1

k,n(W,V, ⇢k,n)� ˜

f

2,()
k,n (W,V, ⇢k,n)

i

+ µ

h

X

k2K

X

n2Nk

(�

()
k,n(Wk,n)� Trace(Wk,n))

+

X

k2K
(�

()
k (Vk)� Trace(Vk)

io

s.t. (17b)� (17f). (21)

where

�

()
k,n(Wk,n) = �

max

(W

()
k,n) + (w̄

()
k,n)

H
(Wk,n �W

()
k,n)w̄

()
k,n,

�

()
k (Vk) = �

max

(V

()
k ) + (v̄

()
k )

H
(Vk �V

()
k )v̄

()
k ,

and w̄

()
k,n (v̄()

k , resp.) is the normalized eigenvector corre-
sponding to �

max

(W

()
k,n) (�

max

(V

()
k ), resp.). The sequence

{W()
,V

()
,⇢()

,�()} is of iteratively improved feasible
points to (20), which converges to an optimal rank-one solution
of (17).
Problem (16) can be similarly treated. However, the main
drawback of this approach is that the total dimension of the
variables W and V increases explosively that makes the
iteration (21) computationally expensive. Also, there is no
beforehand choice for the penalty parameter µ to speed up
the convergence of iterations (21).

In the following subsections, we propose path-following
optimization algorithms to solve the secrecy rate problems (11)
and (16) directly in the beamforming variables w and v. Each
iteration is a simple convex quadratic program in (w,v,↵) so
its computation is very efficient.

A. Proposed Solution for Problem (11) (Eve Model 1)
In order to propose path-following iterations for solution

of (11) we find a concave lower bound approximation for

the objective function F (w,v,↵) in (11a) and inner convex
approximation for the EH constraint (11d).

Let us first find the concave lower bound approximation of
f

1

k,n(w,v,↵k,n)� f

2

k,n(w,v) at th iteration. Thus, we need
to develop a lower bounding concave function for the first
term f

1

k,n(w,v,↵k,n) and upper bounding convex function for
the second term f

2

k,n(w,v), which agree with these terms at
⇣

w

()
,v

()
,↵

()
k,n

⌘

of th iteration.

Proposition 1: The lower bounding concave approximation
for f1

k,n(w,v,↵k,n) is given by

f

1

k,n(w,v,↵k,n) � f

1,()
k,n (w,v,↵k,n)

, f

1

n(w
()

,v

()
,↵

()
k,n)

+ 2

<{(w()
k,n)

H
hk,k,nh

H
k,k,n(wk,n �w

()
k,n)}

'k,n(w
()

,v

()
,↵

()
k,n)

�
 

1

'k,n(w
()

,v

()
,↵

()
k,n)

� 1

'k,n(w
()

,v

()
,↵

()
k,n) + |hH

k,k,nw
()
k,n|2

!

⇥
⇣

'k,n(w,v,↵k,n) + |hH
k,k,nwk,n|2

� 'k,n(w
()

,v

()
,↵

()
k,n)� |hH

k,k,nw
()
k,n|2

⌘

(22a)

= f

1

k,n(w
()

,v

()
,↵

()
k,n)

+ 2

<{(w()
k,n)

H
hk,k,nh

H
k,k,nwk,n}

'k,n(w
()

,v

()
,↵

()
k,n)

� |hH
k,k,nw

()
k,n|2('k,n(w,v,↵k,n) + |hH

k,k,nwk,n|2)
'k,n(w

()
,v

()
,↵

()
k,n)('k,n(w

()
,v

()
,↵

()
k,n) + |hH

k,k,nw
()
k,n|2)

� |hH
k,k,nw

()
k,n|2

'k,n(w
()

,v

()
,↵

()
k,n)

(22b)

and upper bounding convex approximation for f

2

k,n(w,v) is
given by

f

2

k,n(w,v)  f

2,()
k,n (w,v)

, f

2

k,n(w
()

,v

()
) +

 

1 +

kHH
k,kw

()
k,nk2

qk,n(w
()

,v

()
)

!�1

⇥
 

kHH
k,kwk,nk2

q

()
k,n(w,v)

� kHH
k,kw

()
k,nk2

qk,n(w
()

,v

()
)

!

(23a)

= f

2

k,n(w
()

,v

()
)� 1

+

 

1 +

kHH
k,kw

()
k,nk2

qk,n(w
()

,v

()
)

!�1

 

kHH
k,kwk,nk2

q

()
k,n(w,v)

+ 1

!

(23b)
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with

q

()
k,n(w,v) =

X

n̄2Nk\{n}

<{hHH
k,kw

()
k,n̄, 2HH

k,kwk,n̄ �HH
k,kw

()
k,n̄i}

+

X

¯k2K\{k}

X

n̄2Nk̄

<{hHH
¯k,kw

()
¯k,n̄

, 2HH
¯k,kw¯k,n̄ �HH

¯k,kw
()
¯k,n̄

i}

+

X

¯k2K

<{hHH
¯k,kv

()
¯k

, 2HH
¯k,kv¯k �HH

¯k,kv
()
¯k

i}+Nev�
2

a (24)

where function
kHH

k,kwk,nk2
q

()
k,n(w,v)

is convex on domain

q

()
k,n(w,v) � 0. (25)

The functions f

1,()
k,n and f

2,()
k,n agree with f

1

k,n and f

2

k,n,
respectively, at (w()

,v

()
,↵

()
k,n).

Proof: See Appendix A.
Next, we have to find an inner convex approximation for the

EH constraint (11d) in the sense that any point that is feasible
for the former is also feasible for the latter. This requires us to
find an affine approximation of pk,n1(w,v) at the th iteration,
which is given by

p

()
k,n1

(w,v) =

X

¯k2K

X

n̄2Nk̄

<{hhH
¯k,k,n1

w

()
¯k,n̄

, 2h

H
¯k,k,n1

w

¯k,n̄ � h

H
¯k,k,n1

w

()
¯k,n̄

i}

+

X

¯k2K

<{hhH
¯k,k,n1

v

()
¯k

, 2h

H
¯k,k,n1

v

¯k � h

H
¯k,k,n1

v

()
¯k

i}+ �

2

a.

(26)

Using (26), an inner convex approximation for the EH con-
straint (11d) is given by

p

()
k,n1

(w,v)�e

min

k,n1
/⇣k,n1(1�↵k,n1) � 0, 8k 2 K, n

1

2 N
1,k,

(27)
where (27) is inner convex approximation of (11d) in the sense
that each feasible point to the former is also feasible for the
latter and provides a lower bound for the optimal value of the
former. Using (22b), (11b), (11c), (25) and (27), the -iteration
for the nonconvex problem (11) is the following inner convex
approximation:

max

wk,n,vk2CM⇥1

↵k,n12(0,1)

F

()
(w,v,↵)

, min

k2K,n2Nk

[f

1,()
k,n (w,v,↵k,n)� f

2,()
k,n (w,v)]

(28a)
s.t. (11b), (11c), (25), (27), (28b)

where the details for finding the initial feasible point
⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2 K, n 2 Nk, n1

2 N
1,k are given

in the following subsection.

1) Initialization of Algorithm 1: The initial feasible point,
⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2 K, n 2 Nk, n1

2 N
1,k, is

obtained by solving a feasibility program which in addition
to power constraints, (11b), (11c), and energy harvesting
constraint (11d), also aims to satisfy a minimum threshold
SINR, �

min

for all UEs (k, n), 8 k 2 K, n 2 Nk. The
satisfaction of SINR constraint,

|hH
k,k,nwk,n|2 � �

min

'k,n(w,v,↵k,n), 8 k 2 K, n 2 Nk,

(29)

during initialization assists the quick convergence of Algo-
rithm 1. Constraint (29) is nonconvex due to coupling between
wk,n and ↵k,n1 . Let us express it as second order cone
(SOC) constraint. For ¯

wk,n = e

�|.arg(hH
k,k,nwk,n)

wk,n, one
has |hH

k,k,nwk,n| = h

H
k,k,n ¯

wk,n = <{hH
k,k,n ¯

wk,n} � 0 and
|hH

k0wk,n| = |hH
k0 ¯wk,n| for (k0, n0

) 6= (k, n), where | ,
p�1.

By making the variable change ↵k,n1 ! ↵

2

k,n1
in (29), we

have the following SOC constraint [37]:

<{hH
k,k,nwk,n} � p

�

min

q

'k,n(w,v,↵

2

k,n), 8k 2 K, n 2 Nk,

(30)
which is equivalent to the following SOC:

<{hH
k,k,nwk,n} � p

�

min

�

�

�

�

�

�

�

�

�

�a

µk,n
⇣

h

H
¯k,k,n

w

¯k,n̄

⌘

¯k,n̄2K,Nk\{k,n}
h

H
¯k,k,n

v

¯k

�

�

�

�

�

�

�

�

�

2

,

8 k 2 K, n 2 Nk, (31)
✓

tk,n1 1

1 ↵k,n1

◆

⌫ 0, k 2 K, n

1

2 N
1,k, (32)

where
⇣

h

H
¯k,k,n

w

¯k,n̄

⌘

¯k,n̄2K,N\{k,n}
is an (KN�1)⇥1 column

vector, tk,n1 is an auxiliary variable, and

µk,n =

(

�ctk,n , n 2 N
1,k

�c , n 2 N
2,k

.

Meanwhile, under the variable change ↵k,n1 ! ↵

2

k,n1
in

(27), the harvested energy constraint (11d) is implied by the
following constraint in ↵

2

k,n1
and a slack variable �

2

k,n1
:

q

e

min

k,n1
/⇣k,n1

�k,n1

�<{hH
k,k,n1

wk,n1}  0, 8k 2 K, n

1

2 N
1,k

(33a)
�

2

k,n1
+ ↵

2

k,n1
 1, 8k 2 K, n

1

2 N
1,k.

(33b)

Thus, initial feasible point,
⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2
K, n 2 Nk, n1

2 N
1,k, of (11) is obtained by solving a

feasibility program (11b), (11c), (31), (32), (33a), and (33b).
In Algorithm 1, we summarize our proposed path-following
optimization algorithm to solve the EH constrained secrecy
rate problem (11).

Proposition 2: Algorithm 1 generates a sequence
{(w()

,v

()
,↵()

)} of improved points of (11), which
converges to a Karush-Kuhn-Tucker (KKT) point.
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Algorithm 1 Path-following Iterations for Problem (11)
1: Initialize  := 0.
2: Choose a feasible point

⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2
K, n 2 Nk, n1

2 N
1,k of (11) by solving a feasibility

program (11b), (11c), (31), (32), (33a), and (33a).
3: repeat
4: Solve (28) for

⇣

w

(+1)

k,n , v

(+1)

k ,↵

(+1)

k,n1

⌘

, 8k 2
K, n 2 Nk.

5: Set  := + 1.
6: until convergence of the objective in (11).

Proof: We have

F (w,v,↵) � F

()
(w,v,↵) 8 w,v,↵

F (w

()
,v

()
,↵()

) = F

()
(w

()
,v

()
,↵()

).

Therefore,

F (w

(+1)

,v

(+1)

,↵(+1)

) � F

()
(w

(+1)

,v

(+1)

,↵(+1)

)

> F

()
(w

()
,v

()
,↵()

)

= F (w

()
,v

()
,↵()

),

where the second inequality follows from the fact that
(w

(+1)

,v

(+1)

,↵(+1)

) and (w

()
,v

()
,↵()

) are the op-
timal solution and a feasible point of (11), respectively. This
result shows that (w

(+1)

,v

(+1)

,↵(+1)

) is a better point
to (11) than (w

()
,v

()
,↵()

). Furthermore, the sequence
{(w()

,v

()
,↵()

)} is bounded by constraints (11b) and
(11c). By Cauchy’s theorem2, there is a convergent subse-
quence {(w(⌫)

,v

(⌫)
,↵(⌫)

)} with a limit point ( ¯w,

¯

w,

¯↵),
i.e.,

lim

⌫!+1

h

F (w

(⌫)
,v

(⌫)
,↵(⌫)

)� F (

¯

w,

¯

w,

¯↵)

i

= 0.

For every  there is ⌫ such that ⌫    ⌫+1

, so

0 = lim

⌫!+1
[F (w

(⌫)
,w

(⌫)
,↵(⌫)

)� F (

¯

w,

¯

w, ↵̄)]

 lim

!+1
[F (w

()
,v

()
,↵()

)� F (

¯

w,

¯

w,

¯↵)]

 lim

⌫!+1
[F (w

(⌫+1)
,w

(⌫+1)
,↵(⌫+1)

)� F (

¯

w,

¯

w,

¯↵)]

= 0,

which shows that lim

!+1
F (w

()
,w

()
,↵()

) = F (

¯

w,

¯

w,

¯↵).
Each accumulation point {( ¯w,

¯

w,

¯↵)} of the sequence
{(w()

,w

()
,↵()

)} is a KKT-point according to [38, The-
orem 1].

B. Proposed Solution for Problem (16) (Eve Model 2)

To propose path-following optimization for solution of
(16), we find a concave lower bound approximation for the
objective function ¯

F (w,v,↵k,n) in (16a) and inner convex
approximations for the SINR (16b) and EH constraints (11d).

Let us first find a concave approximation of ¯

f

1

k,n2
(w,v)�

¯

f

2

k,n2,n1
(w,v) at

�

w

()
,v

()
�

of th iteration. We can use
Proposition 1 to find a lower bounding concave function

2From a bounded (compact) sequence, there is a convergent subsequence

for the first term ¯

f

1

k,n2
(w,v) and upper bounding con-

vex function for the second term ¯

f

2

k,n2,n1
(w,v). Thus, a

lower bounding concave approximation for ¯

f

1

k,n2
(w,v) ,

ln

 

1 +

|hH
k,k,n2

wk,n2 |2
'k,n2(w,v, 1)

!

is given by

¯

f

1

k,n2
(w,v) � ¯

f

1,()
k,n2

(w,v)

=

¯

f

1

k,n2
(w

()
,v

()
)

+ 2

<{(w()
k,n2

)

H
hk,k,n2h

H
k,k,n2

wk,n2}
'k,n2(w

()
,v

()
, 1)

� |hH
k,k,n2

w

()
k,n2

|2('k,n2(w,v, 1) + |hH
k,k,n2

wk,n2 |2)
'k,n2(w

()
,v

()
, 1)('k,n2(w

()
,v

()
, 1) + |hH

k,k,n2
w

()
k,n2

|2)

� |hH
k,k,n2

w

()
k,n2

|2
'k,n2(w

()
,v

()
, 1)

(34)

and an upper bounding convex approximation for

¯

f

2

k,n2,n1
(w,v) , ln

 

1 +

|hH
k,k,n1

wk,n2 |2
qk,n2,n1(w,v)

!

is given

by

¯

f

2

k,n2,n1
(w,v)  ¯

f

2,()
k,n2,n1

(w,v)

=

¯

f

2

k,n2,n1
(w

()
,v

()
)

+

 

1 +

khH
k,k,n1

w

()
k,n2

k2
qk,n2,n1(w

()
,v

()
)

!�1

⇥
 

khH
k,k,n1

wk,n2k2
q

()
k,n2,n1

(w,v)

+ 1

!

� 1 (35)

with

q

()
k,n2,n1

(w,v) =

X

n̄2Nk\{n2}

<{hhH
k,k,n1

w

()
k,n̄, 2h

H
k,k,n1

wk,n̄ � h

H
k,k,n1

w

()
k,n̄}

+

X

¯k2K\{k}

X

n̄2Nk̄

<{hhH
¯k,k,n1

w

()
¯k,n̄

, 2h

H
¯k,k,n1

w

¯k,n̄ � h

H
¯k,k,n1

w

()
¯k,n̄

}

+

X

¯k2K

<{hhH
¯k,k,n1

v

()
¯k

, 2h

H
¯k,k,n1

v

¯k � h

H
¯k,k,n1

v

()
¯k

i}+ �

2

a,

(36)

where the function
khH

k,k,n1
wk,n2k

2

q
()
k,n2,n1

(w,v)
is convex on domain

q

()
k,n2,n1

(w,v) � 0. (37)
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Figure 2. Topology of the multicell network used in numerical examples

Next, we are left with SINR constraint (16b) and EH con-
straint (11d). By making the variable change ↵k,n1 ! ↵

2

k,n1
,

the SINR constraint (16b) is equivalent to the SOC constraint
(31) and (32). Finally, by using the affine approximation of
pk,n1(w,v), given by p

()
k,n1

(w,v) in (26), and applying the
variable change ↵k,n1 ! ↵

2

k,n1
in the constraint (27), an inner

convex approximation for the EH constraint (11d) for Problem
(16) is given by

p

()
k,n1

(w,v)� e

min

k,n1

⇣k,n1�k,n1

� 0, 8k 2 K, n

1

2 N
1,k, (38a)

�k,n1 + ↵

2

k,n1
 1, �k,n1 > 0, 8k 2 K, n

1

2 N
1,k, (38b)

Using (34), (11b), (11c), (37), (31), (32), (38a), and (38b), the
-iteration for (16) is given by its following inner approxi-
mated optimization problem:

max

wk,n,vk2CM⇥1

↵k,n1 ,2(0,1),�k,n1

¯

F

()
(w,v)

, min

k2K,

n22N2,k,n12N1,k

[

¯

f

1,()
k,n2

(w,v)� ¯

f

2,()
k,n2,n1

(w,v)]

(39a)
s.t. (11b), (11c), (37), (31), (32), (38a), (38b).

(39b)

In Algorithm 2, we summarize our proposed path-following
optimization algorithm to solve the Problem (16), where the
same initialization as detailed in Section III-A1 can be used
to find the initial feasible point

⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2
K, n 2 Nk, n1

2 N
1,k for the Problem (16).

Analogously to Proposition 1, it can be shown that Al-
gorithm 2 generates a sequence {(w()

,w

()
,↵

()
k,n)} of

improved points of (16), which converges to a KKT point.

IV. NUMERICAL EXAMPLES

Fig. 2 shows the network topology with K = 3 cells and
N = Nk = 4, 8 k 2 K UEs per cell that we use in our
numerical examples. Out of the four users in each cell, two

Algorithm 2 Path-following iterations for Problem (16)
1: Initialize  := 0.
2: Choose a feasible point

⇣

w

(0)

k,n,v
(0)

k ,↵

(0)

k,n1

⌘

, 8 k 2
K, n 2 Nk, n1

2 N
1,k of (16) by solving a feasibility

program (11b), (11c), (31), (32), (33a), and (33a).
3: repeat
4: Solve (39) for

⇣

w

(+1)

k,n , v

(+1)

k ,↵

(+1)

k,n1

⌘

, 8k 2
K, n 2 Nk.

5: Set  := + 1.
6: until convergence of the objective in (16).
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Algorithm 2 (Eve Model 2)

Figure 3. Convergence of Algorithms 1 and 2 for M = 5 and emin = �20
dBm.

are placed inside the inner-circle and two inside the outer-
zone, i.e., N

1,k = N

2,k = 2, 8 k. We set the cell radius as
40m and the BS-to-UE distance is 7 m and 20 m in the inner
and outer zone of each cell, respectively. We assume that a
single Nev = 2-antennas eavesdropper is randomly placed in
each cell inside the inner circle. In our simulation setup, their
placements are at 5 m, 10 m, and 15 m from the respective BSs
in three cells as shown in Fig. 2. We set the path loss exponent
as � = 3. For small-scale fading, we generate Rician fading
according to Rician factor, KR = 10 dB [39]. For simplicity
and without loss of generality, we assume that the minimum
energy harvesting requirement e

min

k,n1
= e

min and the energy
harvesting efficiency ⇣k,n1 = ⇣, 8k, n

1

(for UEs inside inner
circle). In all simulations, we set ⇣ = 0.5, �2

a = �90 dBm,
and �

2

c = �90 dBm. We further set the maximum power of
each BS as P

max

k = 26 dBm, which is consistent with the
power budget usually assumed for small-cell BSs [40], and
we set the maximum power budget for the whole network to
be P

max

= 30 dBm. For Problem (16), we set the minimum
threshold SINR for users in the inner zone to be �

min

= 6 dB.
Fig. 3 shows the convergence of our proposed Algorithms 1

and 2 for M = 5 antenna BS and minimum energy harvesting
threshold e

min

= �20 dBm. For some particular fixed channel,
we can see that Algorithm 1 employing Eve Model 1 converges
in 18 iterations, while Algorithm 2 employing Eve Model
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Figure 4. Eavesdropper Model 1: Secrecy rate (with eavesdroppers) and
normal rate (without eavesdroppers) versus number of antennas M for fixed
energy harvesting threshold emin = �20 dBm.
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Figure 5. Eavesdropper Model 1: Secrecy rate (with eavesdroppers) and
normal rate (without eavesdroppers) versus energy harvesting threshold emin

for fixed number of BS antennas M = 5.
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Figure 6. Eavesdropper Model 2: Secrecy rate (with eavesdroppers) and
normal rate (without eavesdroppers) versus number of antennas M for fixed
energy harvesting threshold emin = �20 dBm.
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Figure 7. Eavesdropper Model 2: Secrecy rate (with eavesdroppers) and
normal rate (without eavesdroppers) versus energy harvesting threshold emin

for fixed number of BS antennas M = 5.

2 just took 7 iterations to converge. On average over large
number of channel realizations, we found that Algorithm 1
requires 16 and Algorithm 2 requires 12 iterations before
convergence. Fig. 3 also shows that achievable worst user
secrecy rate for Eve Model 1 is smaller than that for Eve
Model 2. This is expected since we employ multi-antenna
single eavesdropper in Eve Model 1, which decreases the
achievable secrecy rate.

Figs. 4 and 5 plot the worst user secrecy rate and worst
user normal rate (without eavesdroppers) for Eve model 1 as
detailed in Section II-A. Basically, secrecy rate in the presence
of eavesdroppers refers to the Problem (11) and the proposed
solution is in Algorithm 1. We compare the achievable secure
rate for our proposed Algorithm 1 with the normal rate which
assumes no presence of eavesdroppers and thus solve Problem
(11) in the absence of the factor f

2

k,n(w,v) in (11a). The
particular result is labeled as “Algorithm 1 (without EV)”.

Fig. 4 plots the rate (in bits/sec/Hz) for varying number
of antennas M = {3, 4, 5, 6} with fixed energy harvesting
threshold e

min

= �20 dBm, while Fig. 5 plots the rate (in
bits/sec/Hz) for varying range of energy harvesting targets
e

min

= {�25,�23, . . . ,�15} dBm with fixed number of
antennas at the BS M = 5. Fig. 4 shows that the rate is
almost linearly increasing with number of antennas from 3

to 6. Fig. 5 shows that rate decreases by increasing the EH
targets, which does make sense as more power is required for
EH to achieve a high EH target, which decreases the available
power for information decoding and so does the same to the
information rate. Fig. 4 also compares the performance of
the proposed Algorithm 1 with the one which employs exact-
penalty iterations in (21). We can observe that the performance
of the proposed Algorithm 1 is quite close to that of the
exact-penalty iteration based algorithm. It is important to
note that the proposed Algorithm 1 is computationally quite
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Table I
COMPLEXITY ANALYSIS FOR ALG. 1 AND EXACT PENALTY ALGORITHM IN SECTION III TO SOLVE PROBLEM (11)

Algorithms avg. # iter scal var lin cons quad cons SD cons
Alg. 1 16 K(MN +M +N1) K(N +N1) KN1 +K + 1 0

Exact penalty Alg. 40 (M(M + 1)/2)K(N + 1) + 2KN1 3KN1 +K + 1 2KN1 K(N + 1)

-25 -23 -21 -19 -17 -15
Harvested Energy Threshold, emin (dBm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
p
tim

a
l A

ve
ra

g
e
 P

S
 R

a
tio

Algorithm 1 (Eve Model 1)
Algorithm 2 (Eve Model 2)

Figure 8. Optimal average power splitting ratio versus energy harvesting
threshold emin for fixed number of BS antennas M = 5, while employing
both Eavesdropper Models 1 and 2.
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Figure 9. Secrecy rate with optimized PS ratios (Algorithm 1) versus
fixed PS ratios ↵k,n1 = {0.2, 0.4, . . . , 0.8} for fixed number of BS
antennas M = 6 and EH threshold emin = �15 dBm, while employing
Eavesdropper Model 1.

better because exact-penalty iteration based algorithm requires
complex matrix optimization and quite lot of iterations, 40

on average, to converge. On the other hand, the proposed
Algorithm 1 requires only vector optimization and about 16

iterations, on average, to converge
The computational complexities of Algorithm 1 and

exact-penalty iteration based algorithm are O (iA1
K

3

(MN +M +N

1

)

3

(K(N + 2N

1

+ 1) + 1)

�

and
O
⇣

i

[EP ]

((M(M + 1)/2)K(N + 1) + 2KN

1

)

3

(5KN

1

+K(N + 2) + 1)), respectively [41]. Here, iA1 = 16 is the
average number of times that (28) is solved by Algorithm
1 and i

[EP ]

= 40 is the average number of times that an
exact penalty algorithm (21) is solved by . Table I shows
the average number of iterations, scalar variables, and linear,
quadratic, and SD constraints, required by both algorithms.
We can observe that proposed Algorithm 1 requires fewer
constraints and variables.

Figs. 6 and 7 plot the worst user secrecy rate and worst
user normal rate (without eavesdroppers) for Eve model 2
as detailed in Section II-B (see proposed Algorithm 2).
Fig. 6 plots the rate (in bits/sec/Hz) for varying number
of antennas M = {3, 4, 5, 6} with fixed energy harvesting
threshold e

min

= �20 dBm, while Fig. 7 plots the rate (in
bits/sec/Hz) for varying range of energy harvesting targets
e

min

= {�25,�23, . . . ,�15} dBm with fixed number of
antennas at the BS M = 5. We observe the same rate behavior
as that was observed in Figs. 4 and 5 for Eve Model 1. Fig. 6
also compares the performance of the proposed Algorithm 2

with general system models, (i) zone-1 UE eavesdrops on any
UE and (ii) any UE can eavesdrop on any other UE in the cell.
As expected, in the presence of more eavesdroppers or more
victims of eavesdropping, the achievable secrecy rate under
such general cases is slightly worse than that of the detailed
case in Section II-B, where zone-1 UE eavesdrops on the
received signal of zone-2 UE. We can also observe from Fig. 6
that secrecy rate of above mentioned general cases (i) and (ii)
are quite close. This is because though case (ii) also allows far
users in zone-2 to eavesdrop, but their received signal strength
is quite low to ensure meaningful eavesdropping.

Fig. 8 plots the optimal average power splitting ratio versus
energy harvesting threshold e

min for fixed number of BS an-
tennas M = 5. The average has been taken among optimized
PS values of all users over many channel realizations. Fig.
8 shows that on average, PS ratio decreases by increasing
the energy harvesting threshold, which does make sense as
p

1� ↵k,n1yk,n1 of the received signal is processed by an
EH receiver. Thus, increasing e

min implies larger values of
1�↵k,n1 or smaller values of the PS ratio ↵k,n1 . In addition,
Fig. 8 also shows that for Eve Model 1, we require quite larger
value of PS ratios compared to that required for Eve Model 2.
This is because of the multi-antenna stronger eavesdropper in
Eve Model 1, which demands a larger value of ↵k,n1 to boost
the received signal p↵k,n1yk,n1 strength fed to the ID receiver
and to enable the maximization of the worst user secrecy rate.

Fig. 9 plots the worst user secrecy rate for Eve model 1 for
fixed number of BS antennas M = 6 and EH threshold e

min

=
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�15 dBm. In particular, we compare the performance of our
proposed Algorithm 1, which jointly optimizes beamforming
vectors and PS ratios with that of the modifed algorithm, which
only optimizes beamforming vectors assuming fixed PS ratios
↵k,n1 = {0.2, 0.4, . . . , 0.8}. Fig. 9 clearly shows the benefit
of joint optimization of beamforming vectors and PS ratios,
as proposed in Algorithm 1.

V. CONCLUSIONS

In this paper, we have addressed the joint design of transmit
beamforming and receive power splitting for secure wireless
information and power transfer. There is a single multi-
antenna eavesdropper or there is a risk that any near user
may accidentally eavesdrop upon the received signal of any
far user. We have proposed new path-following optimization
algorithms for maximizing the minimum secrecy rate among
all UEs under the energy harvesting constraints. Numerical
examples with realistic parameters have confirmed the merits
of our proposed algorithms.

APPENDIX A: PROOF OF PROPOSITION 1

Write

ln

✓

1 +

|x|2
y

◆

= � ln

✓

1� |x|2
y + |x|2

◆

,

which is convex in (x, y + |x|2), i.e., function f(x, z) =

� ln(1 � |x|2/z), which is the composition of the increasing
and convex function � ln(1 � t) and the convex function
t(x, z) = |x|2/z, is convex in the domain {(x, z) : 0 <

z < |x|2} [42]. Therefore, at (x̄, z̄), we have

f(x, z) � f(x̄, z̄) + hrf(x̄, z̄), (x, z)� (x̄, z̄)i
= f(x̄, z̄) + 2

<{x̄(x� x̄)}
z̄ � |x̄|2 �

✓

1

z̄ � |x̄|2 � 1

z̄

◆

(z � z̄).

(40)

This means for z̄ = ȳ + |x̄|2 and z = y + |x|2,

ln

✓

1 +

|x|2
y

◆

� ln

✓

1 +

|x̄|2
ȳ

◆

+ 2

<{x̄(x� x̄)}
ȳ

�
✓

1

ȳ

� 1

ȳ + |x̄|2
◆

(y + |x|2 � ȳ � |x̄|2)
(41)

Substituting x = h

H
k,k,nwk,n, y = 'k,n(w,v,↵k,n), x̄ =

h

H
k,k,nw

()
k,n, ȳ = 'k,n

⇣

w

()
,v

()
,↵

()
k,n

⌘

in (41), we obtain
(22b).

Analogously, (23a) follows from the following inequality:

ln(1 + t)  ln(1 + t

0
) + (t� t

0
)/(1 + t

0
) 8t � 0, t

0 � 0,

which is a consequence of the concavity of ln(1 + t).
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