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Abstract 

 

Peptide-based materials are receiving significant attention for use within biomedicine due to 

their high chemical and functional versatility enabling tailoring of their structure to replicate 

the properties of host tissue and the extracellular matrix. This paper studies the design, 

synthesis and characterization of NSAID-peptide conjugates. Attachment of NSAIDs to a 

diphenylalanine-dilysine (FFKK-OH) peptide sequence generates supramolecular hydrogel 

forming molecules with antimicrobial and anti-inflammatory properties. NSAID-peptides 

demonstrate broad-spectrum antimicrobial activity against both Gram-positive and Gram-

negative bacteria implicated in a variety of antimicrobial resistant nosocomial infections 

including Staphylococcus aureus and Pseudomonas aeruginosa. Naproxen-peptides show 

particular promise, forming biocompatible nanofibrous viscoelastic hydrogels composed of β-

sheet secondary structures at low concentrations (0.4% w/v). Conjugation of the peptide motif 

FFKK-OH to naproxen increases selectivity for COX-2 enzyme, implicated in chronic wound 

scar-tissue formation. Our findings suggest that ultrashort NSAID-peptides have potential use 

as multifunctional materials for a range of biomedical applications. This includes as topical 

agents for treatment of chronic wounds, where a profile of persistent inflammation, pain and 
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the presence of infection has been proven to be detrimental to successful wound repair. This 

work may also serve as a template for the design of future medical device coatings with 

tailored antimicrobial and anti-inflammatory properties. 

 

Keywords: Nanostructure, hydrogel, infection, inflammation, chronic wound 

 

 

Introduction 

Antimicrobial resistance is becoming an increasingly menacing threat to society and is 

currently attributed to at least 700,000 deaths worldwide annually. A U.K Government review 

in 2014 concluded that without significant investment in new therapies this total would 

increase to more than 10 million deaths by 2050, a figure greater than predicted for cancer [1]. 

Hospital-acquired infections, especially those related to implantation of medical devices and 

skin wounds, are major contributors to this threat demonstrating an increased prevalence of 

microorganisms that display resistance to standardly employed antimicrobial therapies. These 

are responsible for increased patient morbidity and mortality, and significant economic cost 

due to extended hospital stay/sick days. Infections are particularly problematic among those 

with increased susceptibility and compromised immunity, for example the elderly and those 

with under-lying disease.  

 

Wound infections can be categorized into a variety of forms; most problematic being surgical 

site infections (SSIs), diabetic ulcers and major trauma, for example burns. SSIs are one of the 

most frequently reported hospital acquired infections accounting for 31% of nosocomial 

infections and are a reservoir for so-called hospital superbugs including Staphylococcus 

aureus and Pseudomonas aeruginosa [2]. SSIs are present in nearly 5% of patients who 

undergo a surgical procedure and over a third of postoperative deaths are related to SSIs [3]. It 
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is clear SSIs remain a significant burden to healthcare. Failure of antimicrobial therapy and/or 

unresolved healing can result in the development of a chronic wound. 

 

Chronic infected wounds are particularly problematic with a profile of exaggerated 

inflammation and resistant infection severely limiting wound healing [4]. They are 

responsible for multiple treatment failures and commonly require a minimum of eight weeks 

to fully resolve, due to increased microbial resistance to standard drug regimens and impaired 

healing. Nonhealing wounds costs the US healthcare system $3billion annually and affects 

over 2% of the population [5,6]. Acute and chronic wounds are resolved through similar 

biomolecular pathways, however chronic wounds commonly stall in the inflammatory phase 

partly due to the presence of pathogenic biofilm infection [7]. Implanted biomaterials are also 

associated with an exaggerated host immune response, termed the foreign body response. 

Sustained inflammation, present primarily within chronic wounds and biomaterial infections, 

has been proven to be detrimental to wound repair [8]. This has commonly been minimized 

and controlled using steroidal and non-steroidal anti-inflammatory drugs (NSAIDs), limiting 

the action of inflammatory mediators such as prostaglandins. Long-term systemic use of such 

drugs leads to undesirable side effects including adverse gastrointestinal, renal and 

cardiovascular risks. Debate still exists regarding the use of systemic NSAIDs to aid wound 

repair due to possible anti-proliferative effects demonstrated in animal studies and their 

possible contribution to increasing the severity of group A streptococcal infections [9][10]. 

Despite reservations with systemic NSAID use, localized sustained release systems are 

commonly employed and NSAID topical applications demonstrate benefit in the treatment of 

chronic wounds [11]. For example an ibuprofen foam formulation provides localized delivery, 

reduced pain, a moist environment and has been proven to be advantageous for the resolution 

of chronic venous leg ulcers [12]. 
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There has been increased interest in the therapeutic potential of antimicrobial peptides. 

Displaying multiple modes of intracellular and extracellular action, antimicrobial peptides 

demonstrate a reduced propensity for developing antimicrobial resistance and are a significant 

prospect for solving the current shortage of antimicrobials in pharmaceutical development 

[13]. Several research groups have studied their incorporation into synthetic hydrogel 

matrices for the prevention of biomaterial and wound infections with promising results thus 

far [14,15,16]. Hydrogels possessing inherent antimicrobial properties represent a significant 

benefit by reducing microbial contamination within the matrix and at the wound/implantation 

site [17]. Self-assembling biomimetic hydrogels, including peptide-based strategies, have 

received attention as biofunctional materials and drug delivery platforms due to their 

similarity to the extracellular tissue matrix. Peptide-based materials possess: increased 

chemical functionality and versatility; improved biocompatibility; increased water capacity; 

moisture vapor transmission and gaseous exchange; biodegradability and tailored 

immunogenicity. Hydrogels provide improved healing at wound sites by enabling rapid 

absorption of wound exudate and protection of newly formed skin. Researchers have begun to 

employ a strategy whereby peptides are optimized to obtain multi-functionality, both 

pharmacological (antimicrobial, anti-biofilm, anti-inflammatory, analgesia) and physical 

(self-assembly, hydrogelation), within a single molecule. Most recently our group developed 

an ultrashort cationic peptide motif with selective activity against resistant pathogens 

implicated in medical device related infections [18]. Ultrashort peptides are of particular 

interest to the pharmaceutical industry as they are generally more cost-effective to synthesize 

relative to their larger peptide/protein counterparts and therefore more realistic molecules for 

clinical translation.  

 

Self-assembling hydrogel systems based on drug molecules eliminates the necessity for a drug 

delivery vehicle, typically a synthetic polymer [19,20] and may be tailored to respond to 
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environmental and physiological stimuli, for example pH change or the presence of specific 

enzymes. Synthetic-based polymers demonstrate limited drug loading, are difficult to 

functionalize and acidic degradation products can induce an unwanted inflammatory response 

[21]. The presence of aromatic groups, such as those present within NSAIDs, facilitates 

assembly of NSAID-peptide conjugates where the NSAID moiety replaces more traditional 

aromatic groups found in self-assembling systems such as carboxybenzyl [22], 9-

fluorenylmethyloxycarbonyl (Fmoc) [23] and 2-naphthoyl (Nap) [24]. Work thus far has 

focused on NSAIDs clinically used as topical preparations for acute pain, for example 

ibuprofen and naproxen [25]. Recently a multifunctional approach has been successful in 

creating an anti-inflammatory and anti-HIV hydrogel using naproxen conjugated to reverse 

transcriptase inhibitors via a peptide linker [26]. The idea of a multifunctional antimicrobial 

and anti-inflammatory platform is adopted from nature where herb extracts curcumin 

(Curuma longa), dayflower (Commelina diffusa) and bark (Spathodea campanulata) have 

demonstrated benefit in wound healing [27,28] Building on previously investigated NSAID 

conjugated peptides and antimicrobial peptides we have developed novel self-assembling 

NSAID-peptides utilizing racemic (±)-ibuprofen (Ibu), indomethacin (Ind) and (S)-(+)-

naproxen (Npx) (Figure 1).    

 

 

This report examines the synthesis and characterization of NSAID conjugated ultrashort 

cationic self-assembled peptide hydrogels as potential antimicrobial and anti-inflammatory 

biomaterials. Incorporation of an NSAID into the ultrashort carboxylic acid terminated motif 

(FFKK-OH) was hypothesized to confer improved hydrogel strength and cyclooxygenase 

(COX) inhibitory properties to the molecule. The development of a NSAID conjugated 

hydrogelator may also serve as a carrier for other therapeutic agents since the arrest of the 

inflammatory response is one of the most important factors in successful application of 

biomaterials [29].  
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Materials and Methods 

Materials 

Wang resin preloaded with Fmoc-Lys(Boc) (mesh size 100-200, 0.65 mmol/g substitution), 

(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (HBTU), 

diisopropyl ethylamine (DIEA), Fmoc and Boc protected amino acids were obtained from 

Novabiochem, Merck KGaA (Dramstadt, Germany). 37% hydrochloric acid (HCl), sodium 

hydroxide anhydrous pellets (≥99%), acetonitrile (HPLC grade, ≥99.93%), (±)-ibuprofen 

(≥98%), indomethacin (≥99%), (S)-(+)-naproxen (≥99%), deuterated dimethyl sulfoxide (d6-

DMSO), deuterium oxide (D2O), deuterium chloride (DCl), sodium deuteroxide (NaOD), 

trifluoracetic acid, triisopropylsilane, thioanisole and Whatman pH indicator paper (pH 1-14) 

were purchased from Sigma-Aldrich (Dorset, U.K.). NCTC Clone 929 (ATCC CCL 1) 

murine fibroblast subcutaneous connective tissue cells, S. epidermidis (ATCC 25984), S. 

aureus (ATCC 6584), P. aeruginosa (PAO1) and E. coli (ATCC 11303) supplied by LGC 

Standards (London, U.K). AlamarBlue® was obtained from AbD Serotec (Oxford, U.K.). 

Sterile Nunc™ 96-well microtiter plates supplied by VWR International (Leicestershire, 

U.K.). Fresh defibrinated equine erythrocytes were purchased from Laboratory Supplies and 

Instruments Ltd (Antrim, U.K.). Cayman’s COX fluorescent inhibitor screening assay kit was 

obtained from Cambridge Bioscience Ltd (Cambridge, U.K.). 

 

Methods 

Synthesis, Purification and Identification 

NSAID-peptide hybrids (IbuFFKK, IndFFKK and NpxFFKK) were synthesized as per 

standard Fmoc-based solid-phase peptide methods using a nitrogen bubbler apparatus [18]. 

Wang resin preloaded with Fmoc-Lys(Boc) was utilized to produce carboxylic acid 

terminated peptides, upon cleavage with 95% v/v trifluoracetic acid, 2.5% v/v 

triisopropylsilane and 2.5% v/v thioanisole for 3 hours at room temperature. The peptide 
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amine terminus was conjugated to the corresponding carboxylic acid of the NSAID before 

cleavage. Standard HBTU coupling was performed in dimethylformamide (DMF) with 4-fold 

molar excess of DIEA and 3-fold excess of Fmoc-protected amino acid or NSAID used for 

coupling for 3 hours at room temperature. Precipitation was achieved using cold diethyl ether 

(-20 °C). Crude product was dissolved in ethyl acetate and subjected to a series of washes 

with 1 mM HCl (3 x 50 ml) and water (3 x 50 ml and dried over anhydrous magnesium 

sulfate (MgSO4). NSAID-peptide identities were confirmed using 1H NMR analysis (Varian 

Unity Inova 400 spectrometer, Varian systems, Palo Alto, California, U.S.A.) in d6-DMSO 

and electrospray mass spectroscopy (Thermo Finnigan LCQ Deca ion trap, Thermo Fisher 

Scientific, Waltham, Massachusetts, U.S.A.). NSAID-peptide purity was determined by 

reverse-phase-HPLC (Agilent 1260 series, Agilent Technologies Ltd, Cork, Ireland), using a 

Gemini C18 column (250 mm x 4.6 mm) with a flow rate of 1.5 mL/min and gradient of 2-

60% acetonitrile (30 minutes) in 0.05% TFA-water. All NSAID-peptides were found to have 

purity greater than 95%. 

 

Self-Assembling pH-Triggered Gelation 

NSAID-peptide hydrogels prepared by a process of pH-triggered induction [18]. The method 

of gelation followed the sequence of steps outlined for of 2% w/v NSAID-peptide 

formulations in Table 1. A stock solution was prepared by suspending each NSAID-peptide in 

deionized water. Complete dissolution was achieved at pH 9 via titration with 1 M NaOH due 

to deprotonation of the terminal carboxylic acid moiety. Changes in pH were monitored using 

Whatman pH paper. Protonation of the terminal carboxylate ion, by titration with 0.5 M HCl 

to pH 7, enabled formation of homogeneous hydrogels at concentrations above the minimum 

gelation concentration (% w/v) for each molecule. Minimum gelation concentration (% w/v) 

was defined as the lowest concentration of NSAID-peptide that formed a self-supporting 

hydrogel, observed via a gel inversion assay after 24 hours development [30]. Gels and 
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solutions were differentiated based on flow characteristics with gels remaining suspended and 

solutions demonstrating flow. 

 

Cryo-Scanning Electron and Transmission Electron Microscopy 

NSAID-peptides were prepared via pH induction as described and analyzed for 3D 

morphology using a Hitachi Analytical Benchtop SEM TM3030 (Hitachi High-Technologies 

Europe, Berkshire, U.K.) with Deben Cool Stage (Deben, Suffolk, U.K.). Cryo-SEM samples 

were freeze-dried by vacuum lyophilization at 2 °C. Images were obtained at -10 °C, using an 

accelerating voltage of 15 kV and a range of magnifications (15-30 000x) [31]. TEM was 

performed using a FEI Morgagni 268 transmission electron microscope (FEI electronics, 

Burlington, Massachusetts, U.S.A.). A negative staining technique was employed [31]. TEM 

samples were placed on 400 mesh copper grids, glow discharged and coated with a carbon 

film (35nm), rinsed thrice with double distilled water, then stained trice with a 2% w/v 

solution of uranyl acetate. Excess stain was removed by blotting with filter paper. The grids 

were left to air dry prior to examination of the 3D architecture of the NSAID-peptide samples. 

 

Fourier Transform Infra-Red Spectroscopy 

FTIR spectra were obtained at a resolution of 2 cm-1 and over wavelengths 4000-400 cm-1 

(128 scans) using a Jasco 4000 series FTIR spectrometer (Jasco Inc. Tokyo, Japan). Samples 

were prepared as described above but using deuterated solvents (D2O, DCl, NaOD). 

Hydrogels were sandwiched between two calcium fluoride discs (0.05 mm spacer). A D2O, 

DCl, NaOD mixture, prepared to the same concentrations as NSAID-peptide containing 

samples, was used as a background and subtracted from all spectra.   
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Oscillatory Rheology   

Dynamic rheological measurements were performed using an Anton Paar Physica MCR301 

rheometer. A cup and vane measuring system was used to perform frequency sweeps. For 

frequency 2 mL of the gels were prepared in 7 mL Sterilin vials as described previously [30]. 

All experiments were performed at 25 °C from 1-100 rad s-1 at a strain of 0.0003 %. 

 

Bacterial Susceptibility Assay 

The ability of NSAID-peptides to reduce bacterial viability were tested using a colony 

counting method previously outlined by Mateescu and Jiang [32,33]. S. epidermidis (ATCC 

25984), S. aureus (ATCC 6584), P. aeruginosa (PAO1) and E. coli (ATCC 11303) were 

subcultured for 24 hours at 37 °C in Müller Hinton broth (MHB), optically adjusted to an 

optical density reading of 0.3 at 550 nm (1 × 108 colony forming units per milliter (CFU/mL)) 

in phosphate buffered saline (PBS) and further diluted in MHB (equivalent to 2 × 106 

CFU/mL) prior to plating 100 μL into each well of a microtiter plate containing 100 μL of 

self-assembled NSAID-peptide (2-0.5% w/v) prepared as described above. Control wells 

included bacteria treated with PBS, as the negative control (100% survival) and 2% w/v 

HPMC as an inert hydrogel to study the effect of gelation on bacterial viability. Inoculated 

microtiter plates were incubated for 24 hours in a Gallenkamp gyrorotary incubator (37 °C) 

and 20 μL samples were taken from each well, serially diluted in PBS and transferred onto 

Müller Hinton agar plates for colony counting via the Miles and Misra method. Results were 

displayed as the mean (Log10 CFU/mL) of four replicates. 

 

Cyclooxygenase Enzyme Inhibition Assay 

The anti-inflammatory activity of the NSAID-peptides (1- 2000 µM) were determined against 

both COX-1 and COX-2 enzymes using a COX Fluorescent Inhibitor Screening Assay Kit. 

Reagents used were supplied and prepared according to the kit protocol. Potassium hydroxide 
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(KOH), DMSO, COX-1 (SC-560) and COX-2 (DuP-697) inhibitors were supplied ready for 

use. Assay buffer (x10) (final formulation: 100 mM Tris-HCl, pH 8.0), heme, arachadonic 

acid (final concentration: 2 mM) were prepared as per kit instructions. The test plates (one 

plate per COX enzyme) were set up according to the kit protocol with triplicates for each 

NSAID-peptide concentration. The inhibitor/sample was incubated with the enzyme for 5 

minutes at room temperature. 10 μL of 10-acetyl-3, 7-dihydroxyphenoxazine (ADHP) was 

added followed by 10 μL of arachidonic acid (reaction initiator). The plates were incubated 

for 2 minutes at room temperature and then read at an excitation wavelength of 530 nm and an 

emission wavelength of 585 nm using a FLUOstar Omega Fluorometer (BMG Labtech, 

Ortenberg, Germany) and Gen5 data analysis software (BioTek, Swindon, U.K.). IC50 

(concentration needed to inhibit COX activity by half) values were interpreted from activity 

curves (Log10 inhibitor vs normalized response) using GraphPad Prism 6 (GraphPad Software 

Inc, California, USA). The percentage inhibition of the COX enzymes was calculated by 

measurement of respective emission wavelengths (585nm) and using Equation 1. 

 

 
100

/

0
0 x

activityCOX

activitypeptideNSAIDactivityCOX
Inhibition

inhibitorno

inhibitorno 


 

(1) 

 

In each case, the background fluorescence was subtracted from each fluorescence value 

obtained. The percentage inhibition of the test inhibitors SC-560 and DuP-697 enabled a 

direct comparison to be made between the NSAID-peptide activity and that of a known 

inhibitor. NSAID only wells ((±)-ibuprofen, indomethacin, (S)-(+)-naproxen: 1-50 µM) were 

tested to determine whether or not conjugation of the NSAID to the peptide altered anti-

inflammatory activity/selectivity. All compounds were assayed in triplicate. 
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Hemolysis Assay 

The ability of NSAID-peptides to induce hemogolobin release from fresh equine erythrocytes 

was tested using a method previously outlined by our group [34]. 100 μL of equine 

erythrocytes were treated with 100 μL of NSAID-peptides for 1 hour at 37 °C. Control wells 

included 0.1% v/v Triton X-100 (100% hemolysis, positive control) and PBS (0% hemolysis, 

negative control). Following incubation the erythrocytes were centrifuged at 1000 g and 

aliquots of the supernatant used to determine hemoglobin released in a fresh 96-well 

microtiter plate read at 405 nm using a Tecan Sunrise plate reader (Tecan UK Ltd, Reading, 

U.K.) and Equation 2 below. Results are reported as the mean of six replicates. 

 

100
1.0

Peptide

4050
0405

405405

0
0 x

PBSAbsTritonXAbs

PBSAbsAbs
Hemolysis

mnm

nmnm






  

(2) 

 

Cell Viability Assay 

Cell cytotoxicity was assessed using murine fibroblast subcutaneous connective tissue NCTC 

clone 929 (ATCC CCL 1). Cells were cultured in Minimum Essential Medium (MEM) 

containing phenol red with Earle’s Salts and L-glutamine, supplemented with 10% horse 

serum and 1% penicillin and streptomycin (Invitrogen, Paisley, U.K.). Cells were grown at 

37 °C and 5% CO2 and subcultured at 80-90% confluency. Subculturing involved removal of 

spent media, washing with sterile PBS and detachment of cell monolayers with 0.05% trypsin/ 

0.53 mM EDTA.4Na solution (Invitrogen, Paisley, U.K.). Cells were cultured until at least 

third passage and inoculated at 1 x 104 cells per well in 96-well microtiter plate and incubated 

for 24 hours. The media was then removed and the cells exposed to 100 μL of a range of 

NSAID-peptide samples for 24 hours. Control wells included PBS (100% viability, negative 
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control) and 70% ethanol treated cells (100% kill, positive control). Following exposure to 

NSAID-peptides, cell viability was assessed using a 10% v/v solution of alamarBlue® diluted 

in supplemented MEM and allowed to develop for 10 hours. Absorption was measured at 570 

nm using a Tecan Sunrise plate reader. Cell viability was calculated using Equation 3 below 

and reported as the mean of six replicates. 


















 100

70

Peptide
100

5700
0570

570570

0
0 x

PBSAbsEthanolAbs

PBSAbsAbs
viability

nmnm

nmnm

  

(3) 

 

Statistical Analysis 

Statistical analyses were performed using Microsoft Excel 2013 and GraphPad Prism 6. 

Standard deviations were obtained at each concentration of NSAID-peptide tested based on 

six replicates for quantitative bacterial viability assays and mean values obtained. For cell 

cytotoxicity assays standard deviations and mean values were also obtained from six 

replicates at each concentration. Statistical analyses were employed using a Kruskal-Wallis 

test, with a Dunn’s multiple comparisons test used to identify individual differences between 

the reduction in bacterial viability for each NSAID-peptide hydrogel relative to the negative 

PBS control. A Kruskal-Wallis test, followed by a Dunn’s multiple comparisons test, was also 

utilized for statistical analysis of tissue culture cytotoxicity data by comparison of percentage 

viability for the NSAID-peptides employed to the PBS negative control (100% viability). 

Hemolysis data was compared by the same statistical method with percentage hemolysis 

compared to the PBS, negative, non-hemolytic, control (0% hemolysis). Non-parametric 

Kruskal-Wallis tests were employed rather than parametric Analysis of Variance (ANOVA) 
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as data was shown to be non-normally distributed using the Kolmogorov and Smirnov method.  

In all cases a probability of p < 0.05 denoted significance. 

 

Results and Discussion 

Gel Inversion Assay 

A variety of methods exist to successfully induce peptide hydrogelation including pH, thermal 

(heat-cool) and enzymatic means. In order to ensure the conditions that mediate hydrogelation 

were replicated as closely as possible we decided to utilize a pH-triggered approach, to a final 

physiological pH of 7.4, at room temperature and using L-amino acid isomers. 

Diastereoisomers of NSAID peptides have previously demonstrated different behavior in 

relation to self-assembly and hydrogelation [25]. All NSAID-peptides formed clear solutions 

at pH 9 and above. Hydrogelation is driven by subsequent titration of acid, highlighting the 

role of the terminal carboxylic acid moiety in self-assembly [18].  

 

To enable hydrogelation a critical balance is required between molecular hydrophilicity and 

hydrophobicity with the surrounding medium, primarily water, providing excellent capacity 

for hydrogen bonding [35,36]. NpxFFKK demonstrated the greatest capacity to form stable 

hydrogels possessing a critical gelation concentration of 0.4% w/v (Table 2, Figure 2c and S7). 

IbuFFKK was unable to form hydrogels in standard deionized water (H2O) instead forming an 

opaque, white precipitate (Figure S4). Interestingly IbuFFKK formed a transparent soft gel at 

2% w/v using deuterated water (D2O) (Figure 2a and S5). This phenomenon may be due to 

increased hydrogen bond strength between deuterated hydrogen and electron donors (amines, 

carbonyl and carboxylic acid groups) present within the NSAID-peptide primary structure 

[37,38]. The number of hydrogen bonds per molecule of water is also higher for deuterated 

water compared to standard water [38]. As hydrogel formation is a delicate balance between 

solubilization and precipitation the use of deuterated water may favor increased hydrogen 
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bond formation and improved solubilization for IbuFFKK resulting in formation of a clear 

hydrogel at 2% w/v. IndFFKK was able to form a self-supporting supramolecular hydrogel at 

1.5% w/v (Figure S6) becoming an increasingly white and opaque hydrogel as the 

concentration increased to 2% w/v (Figure 2b). 

 

Microscopy 

Transmission electron microscopy (TEM) and cryogenic scanning electron microscopy (cryo-

SEM) were utilized to examine the nanoscale architecture of the molecular assemblies. 

NpxFFKK hydrogels were found to be composed of nanofibers that entangled to form an 

entangled network (Figure 3c and S8c and S10c). Naproxen has previously demonstrated 

ability to self-assemble into supramolecular hydrogels with nanofibrous architecture when 

attached to a variety of peptidomimetic molecules including peptide amphiphiles and β-

peptides [21,39].  By contrast 2% w/v IbuFFKK forms less uniform, non-fibrous structures in 

the presence of deuterated water (Figure 3a and S8a and S10a). Interactions between these 

nanoparticles and the surrounding solvent are sufficient to form a self-supporting 

supramolecular hydrogel as defined by the vial inversion assay [30]. However rheological 

analysis, detailed below, confirms that the resulting material more closely resemble a viscous 

liquid with surfactant-like properties. Cryo-SEM images for 2% w/v IbuFFKK in standard 

deionized water show the presence of a non-uniform fibers (Figure S9a) and particles (Figure 

S9b) that result in formation of a white precipitate. IndFFKK formed short nanotape-like 

structures (Figure 3b and S8b and S10b) where hydrophobic segments are packed tightly 

away from the aqueous interface. These appear less uniform, forming areas of dense pockets, 

compared to the nanofibrous architecture of NpxFFKK. These networks of, varying 

morphologies, are responsible for the immobilization of surrounding solvent molecules 

resulting in gel formation [21]. The structural morphologies correlate well to the oscillatory 

rheological profiles, most notably the storage moduli, as discussed further below.  
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However, the molecular-level understanding of the exact mechanism of peptide gelation 

kinetics remains unclear despite extensive research and warrants further investigation within 

the field [40]. It should also be noted that analysis of TEM images of gels, such as 

morphology of fibers, may not accurately represent the gel network and so should be done 

with caution. TEM images are of dried gels, whereas tests such as rheology are carried out on 

wet gels. Therefore, the structures observed by SEM could be due to drying effects [41,42].  

 

Fourier Transform Infrared Spectroscopy 

The secondary structures of NSAID-peptide nanostructures were determined by Fourier 

Transform Infrared (FTIR) spectroscopy. All FTIR studies were conducted in deuterated 

solvents, acknowledging the difficulty encountered using standard water due to strong 

absorbance within the amide I region (1700-1600 cm-1) [21]. The amide I band is generated 

through stretching of the C=O bond and its participation in hydrogen bonding provides an 

insight into peptide secondary structures. All NSAID-peptides were studied at or above 

critical gelation concentrations (2% w/v). NpxFFKK demonstrated the most predominant β-

sheet secondary structure characterized by a strong reduction in transmittance at 1630 cm-1 

(Figure S11) [43]. This trough is less pronounced for IndFFKK and particularly IbuFFKK 

owing to less uniform nanoparticle and nanotape structures respectively. However, they both 

possess a shoulder-like reduction in transmittance at 1679 cm-1 possibly linked to the presence 

of antiparallel β-sheets (Figure S11). Increased concentration of NpxFFKK, from 0.5 to 2.0% 

w/v, correlated to a respective reduction in transmittance at 1630 and 1679 cm-1 owing to a 

greater presence of β-sheet secondary structures and more rigid hydrogels at 2% w/v 

NpxFFKK (Figure S12). However, interpreting this data for short dipeptide molecules is often 

difficult as has been seen with other ultrashort peptide hydrogels. 
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Oscillatory Rheology 

Oscillatory rheology was utilized to study the viscoelastic properties of 2% w/v self-

assembled NSAID-peptide hydrogels (Figure 4). The frequency dependence of their storage 

(Gʹ) and loss moduli (Gʺ) were measured using a dynamic frequency sweep, varying the 

oscillation frequency (1-100 rad s−1) at a constant oscillation amplitude (0.0003%) and 

temperature (25 °C). 

 

NpxFFKK exhibits viscoelastic properties of a solid-like material as observed by the maximal 

storage modulus (Gʹ: ~398 Pa) being ten times larger than the maximal loss modulus (Gʺ: 

~39.8 Pa). They are independent of frequency and demonstrate good tolerance to external 

shear force. NpxFFKK has the highest mean storage modulus and greatest gel strength of the 

NSAID-peptides (Gʹ: ~398). Its Gʹ and Gʺ are comparable to that of the widely reported 

FmocFF hydrogels [44]. A larger conjugate system, conferred by the presence of naproxen in 

NpxFFKK (Figure 1c), enables stronger π- π and van der Waals’ intermolecular interactions 

between NpxFFKK molecules and allows longer fibers and more entangled arrangement of 

nanofibers as observed via microscopy (Figure 3c). Similarly IndFFKK is capable of forming 

a stable hydrogel at 2% w/v possessing a mean Gʹ of 25.1 Pa and a mean Gʺ of 6.6 Pa. 

Reduced Gʹ and Gʺ in comparison to NpxFFKK is explained by formation of shorter nanotape 

architectures rather than longer nanofiber structures observed in NpxFFKK gels (Figure 3b 

and S8b and S10b). Despite forming what appears to be a self-supporting hydrogel upon 

inversion at a concentration of 2% w/v in deuterated water (Figure 2a), rheology confirms 

IbuFFKK does not form a hydrogel with significant mechanical rigidity. A high dependence 

on frequency shows that it is behaving as a liquid rather than a gel, as gels show no 

dependence on frequency. This is due to reduced aromatic-aromatic (π- π) interactions 

provided by the terminal isopropyl-substituted phenyl group of IbuFFKK (Figure 1a) that are 

only sufficient to allow formation of non-uniform nanoparticle structures. This result is 
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similar to that observed previously by the Xu group where IbuFF demonstrated a low Gʹ value 

of only 13 Pa [25].  

 

Bacterial Susceptibility 

The antibacterial activity of NSAID-peptides was tested using a viable count assay after 24 

hour exposure to varying concentrations of NSAID-peptides. Clinically relevant bacterial 

strains, implicated in a variety of antibiotic resistant nosocomial infections (biomaterial and 

wounds), were selected, namely: methicillin resistant S. epidermidis (ATCC 25984), S. aureus 

(ATCC 6584), P. aeruginosa (PAO1) and E. coli (ATCC 11303). All NSAID-peptides 

demonstrated broad-spectrum antibacterial activity (Gram-positive and Gram-negative) 

(Figure 5 and 6 and S13 and S14). The mechanism of action of our NSAID-peptides is likely 

to follow the key parameters of antimicrobial peptide activity, namely hydrophobic bulk and 

cationic charge enabling interaction with bacterial membranes [13]. The addition of two units 

of cationic charge, in this case lysine, to an ultrashort (less than seven amino acid units) 

peptidomimetic sequence is sufficient to confer antimicrobial activity [34]. As previously 

demonstrated by our group, the ε-amino group of lysine has the ability to interact with 

negatively charged bacterial membranes and their anionic hydroxylated phospholipids 

resulting in detergent-like effects, cell lysis and death [18]. 

 

At least a three Log10 CFU/mL (99.9%) reduction in viable bacteria, commonly employed as a 

threshold for bactericidal efficacy, was observed for each NSAID-peptide at concentrations of 

0.5% w/v and above [45]. Statistical analysis, however, shows NpxFFKK to be the only 

NSAID-peptide that is significantly bactericidal against all four isolates with improved 

activity correlating to increased concentration. For example, significant bacterial kill was 

achieved at concentrations of 1.5% w/v and above for Gram-negative P. aeruginosa and E. 

coli; 1.0% and above for Gram-positive S. epidermidis and 0.5% w/v and above for S. aureus. 
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A reduction greater than 5.5 Log10 CFU/mL was obtained for 2% w/v NpxFFKK against S. 

epidermidis and S. aureus. The improved antimicrobial efficacy of NpxFFKK may be related 

to its ability to form a viscoelastic hydrogel of uniform nanofibrous architecture. Recent 

studies have suggested that that molecular folding, structural conformation, assembly state 

and bulk mechanical properties are important considerations for the rational design of 

antimicrobial selective hydrogels [17,46,47]. We propose our NpxFFKK hydrogel acts 

similarly to the dimethyldecylammonium chitosan-graft-poly(ethylene glycol) methacrylate 

(DMDC-Q-g-EM) ‘anion sponge’ developed by the Chan-Park group [48]. Based on this 

theory, the nanoporous architecture of cationic NpxFFKK allows increased interactions, 

termed ‘suctioning,’ with anionic constituents of the bacterial membrane. Therefore the 

hydrogel acts as a molecular sponge resulting in bacterial membrane disruption and cell death.  

 

The inclusion of cationic charge density within the hydrogel matrix is a key parameter for 

selective antimicrobial activity as demonstrated by the range of β-hairpin hydrogels (MAX, 

PEP6R and MARG) developed by the Schneider group [49,50,51] Hydrogelation alone is not 

sufficient to bestow antimicrobial activity, for example by restricting the diffusion of 

chemical messengers and nutrients. This is confirmed by the observed lack of efficacy of non-

ionic 2% w/v hydroxypropyl methylcellulose (HPMC) against all bacterial isolates. This is an 

unsurprising observation given that bacteria commonly prefer to exist and successfully 

survive within a surface-attached, extracellular polymeric matrix granted by the biofilm 

phenotype. As the Dong group hypothesized for their multi-domain peptides, the combined 

effect of localized cationic charge on the hydrogel surface and the porous network of 

crosslinked nanofibers (Figure 3c and S8c and S10c) are likely to be responsible for the 

improved antimicrobial efficacy of NpxFFKK [32,47]. Our ultrashort peptide motif possesses 

improved antimicrobial efficacy compared to related peptide-based strategies in the literature 

at a reduced polymer size and increased ease of synthesis.   
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Chronic wounds fail to heal and are characterized by persistent inflammation due in part to 

the presence of bacterial biofilms [52]. Research by Wolcott and Rhodes also demonstrated 

that the presence of bacterial infection in chronic wounds perpetuates a destructive level of 

inflammation [53]. Treatments active against resistant bacteria allowed non-healable, chronic 

wounds to heal. They concluded that topical agents with the ability to disrupt biofilm forming 

microorganisms should be central to the treatment of chronic wounds [54]. Previous work by 

our group demonstrates the significant efficacy of the FFKK-OH peptide motif against 

biofbacterial isolates. They may have a significant clinical benefit for the treatment of chronic 

infected wounds [18]. Whilst NSAIDs have recently been demonstrated to possess 

antibacterial activity alone by specifically targeting DNA Clamp, a key bacterial protein 

involved in multiplication, its inclusion within our motif is primarily to provide potential anti-

inflammatory, analgesic and self-assembly characteristics [55]. The benefits of NSAIDs as 

antibiotic therapy in their own right have to be verified clinically. Such studies provide hope 

to extend the currently available antibiotic formulary utilizing a readily available and licensed 

group of drugs.   

 

These results may inform future strategies whereby the host immune response is controlled in 

combination with antimicrobial and antibiofilm activity. For example IDR-1018, a synthetic 

variant of the host defense peptide LL-37, has an ability to inhibit biofilm formation in 

combination with immunomodulatory effects which prevent tissue damage [56]. Although 

IDR-1018 did not display an ability to self-assemble into supramolecular structures the 

Hancock group did demonstrate antibiofilm peptides could be used to control mediators of the 

immune response, including stimulating monocyte chemoattractant protein (MCP-1) and 

inhibiting lipopolysaccharide induced interleukin-1β (IL-1β) production in peripheral blood 

mononuclear cells [57]. 
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Cyclooxygenase Enzyme Inhibition 

We performed in vitro inhibition assays for both COX-1 and COX-2 in the presence of 

varying concentrations of NSAID-peptides. Molecular modeling, utilizing the crystal structure 

of COX enzymes, has previously shown that the NSAID carboxylate end is available for 

peptide modification due to the large open space in the structure of COX [46,58]. Addition of 

the peptide sequence FFKK-OH to the NSAID motif increases respective IC50 values relative 

to NSAID only values. However, the NSAID-peptide motifs retain significant inhibitory 

activity with IC50 values within the μM range. For example, NpxFFKK exhibits IC50 values of 

204.20 μM and 73.47 μM against COX-1 and COX-2 respectively compared with naproxen 

only values of 13.26 μM (COX-1) and 8.365 μM (COX-2) (Figure S15). NSAID-peptides 

also demonstrate increased selectivity for inhibiting COX-2 compared to NSAID alone. 

Selectivity (S) values, related to the ratio of IC50 COX-1: IC50 COX-2, are highest for 

NpxFFKK (S = 2.78) compared to naproxen only (S = 0.19). This correlates to previous work 

on NSAID-peptide hydrogelators where it was proven that addition of a peptide moiety 

increased COX-2 selectivity [25,26]. Replacing L-amino acid enantiomers with their 

respective D-forms may increase inhibition of COX-2 further [46]. Selective COX-2 

inhibition is preferred clinically, especially for systemic administration of NSAIDs, due to a 

reduction in renal and gastrointestinal side effects linked to COX-1 inhibition but may also 

have potential value in the chronic wound environment [59]. Studies have shown that upon 

degradation, the pharmaceutical efficacy of NSAIDs in theory should be maintained and 

pharmacological activity exhibited until the hydrogel has completely degraded. Therefore an 

extended profile of anti-inflammatory activity should be possible [60]. 

 

COX-2 and its enzymatic product prostaglandin E2 (PGE2) demonstrate an important role in 

the early acute host response to stimuli such as wounds and are responsible for the 
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upregulation of inflammatory mediators. Separate studies in murine and rat wound models by 

Blomme and Futagmi showed a significant induction of COX-2 expression after 12 hours, 

peaking three days after injury [61,62]. However within chronic wounds, COX-2 has recently 

been associated with the unwanted development of scar tissue in the latter stages of adult 

wound repair [63,64]. Therefore NSAID-peptide conjugates with increased selectivity for 

COX-2 inhibition may be of benefit in the chronic stages of wound healing, replicating fetal 

wound healing where scarless healing is linked to a reduced inflammatory response [64]. 

Despite this there is an appreciation that wound healing is a complex pathway and the exact 

role of multiple inflammatory mediators (cytokines, macrophages, matrix metalloproteinases) 

has not yet been fully elucidated [6]. In particular, the diverse nature of the immune and 

inflammatory response to foreign medical implants favors the use of corticosteroids, rather 

than NSAIDs, due to their broad-spectrum of activity against inflammatory mediators such as 

leukotrienes [65]. NSAID-peptides may serve a greater purpose within chronic wound healing, 

providing localized pain relief, antimicrobial and anti-inflammatory activity. Removal of an 

avascular fibrous capsule that surrounds implanted medical devices may be promoted by 

inclusion of pro-angiogenic factors including vascular endothelial growth factor (VEGF). Our 

nanomaterials have the potential to act as a drug delivery platform for the design of future 

medical device coatings incorporating such factors [11]. The effect of NSAID-peptides 

nanostructures on mediators of the immune response. The overall wound healing pathway and 

foreign body response to medical implants warrants further clinical investigation. A more 

obvious therapeutic benefit for NSAID-peptides is provided via inhibition of nociception and 

pain receptors linked to COX [66]. Reduction in pain can be linked to improvement in wound 

healing and patient prognosis [67]. 
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Hemolysis and Cell Viability 

To evaluate cell biocompatibility of NSAID-peptides, they were incubated with an 

International Standard (ISO) cell line utilized for biomaterial testing (NCTC 929 murine 

fibroblast subcutaneous connective tissue). Fibroblasts are appropriate as they are one of the 

major cell types involved both in wound healing and adherence to implanted medical devices 

[11]. The results suggest that NSAID-peptide nanomaterials are biocompatible and may be 

suitable for use within a range of biomaterial and topical applications. No significant 

reduction was observed in cell viability after 24 hour exposure to varying concentrations of 

NSAID-peptides (20-500 mM) utilizing an alamarBlue® cell viability assay (Figure 7). 

Cationic NSAID-peptides demonstrate reduced toxicity against mammalian cells due to 

inherent differences in the membrane potential gradient and lipid composition of bacterial and 

mammalian cell membranes. Eukaryotic cells are composed of zwitterionic lipids (sterols, 

cholesterol, phosphatidylcholine, sphingomyelin) whereas bacterial cells are derived from 

anionic phospholipids [68]. Positively charged NSAID-peptide therefore interact 

preferentially with negatively charged bacterial cell membranes as confirmed by a hemolysis 

assay (Figure S16), commonly utilized to determine the membrane selectivity of antimicrobial 

peptides [18,32,69]. No significant hemolysis was observed upon NSAID-peptide (20-500 

mM) exposure to equine erythrocytes relative to a PBS negative control.   

 

Conclusions 

In conclusion, we have created a new class of NSAID-peptides with the ability to form 

defined nanostructures with multiple biofunctional properties (antimicrobial, anti-

inflammatory, hydrogel forming). NpxFFKK displays particular promising forming a 

viscoelastic biocompatible hydrogel with improved COX-2 selectivity and the ability to target 

antimicrobial resistant bacteria implicated in the most severe nosocomial infections. These 

hydrogel formulations may be beneficial in the treatment of chronic infected wounds, where a 
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heightened inflammatory response to infection leads to impaired healing. Their ultrashort, low 

molecular weight structure makes their synthesis more amenable to cost-effective upscale by 

the pharmaceutical industry compared to larger peptides and proteins. This work provides an 

example of multifunctional peptide hydrogelators that will contribute to the development of 

future biofunctional nanomaterial therapies, especially within biomaterial applications (wound 

dressings, medical implants, prostheses), thereby increasing the available treatment options to 

clinicians and patients and limiting the increasing threat of antimicrobial resistance.   
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Figure 1. Chemical structures of NSAID-peptides investigated: (a) IbuFFKK, (b) IndFFKK, 

(c) NpxFFKK. 
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Figure 2. Gel inversion assay for 2% w/v pH 7.4 (a) IbuFFKK, D2O primary vehicle, (b) 

IndFFKK, H2O primary vehicle (c) NpxFFKK, H2O primary vehicle. 

 

 

 

Figure 3. Transmission electron microscopy (TEM) images of 2% w/v (a) IbuFFKK (28,000x, 

D2O), (b) IndFFKK (18,000x, H2O), (c) NpxFFKK (28,000x, H2O). 
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Figure 4. Oscillatory frequency sweep 2% w/v NSAID-peptides. Key: black triangle: Gʹ 

IbuFFKK, white triangle: Gʺ IbuFFKK , black circle: Gʹ IndFFKK, white circle: Gʺ IndFFKK, 

black square: Gʹ NpxFFKK, white square: Gʺ NpxFFKK. 
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Figure 5. Logarithmic reduction in S. aureus (ATCC 6584) viable count (Log10 CFU/mL) 

after 24 hour incubation with varying concentrations of NSAID-peptides.  Results are 

displayed as a mean of six replicates.  Key: grey column: IbuFFKK, striped column: 

IndFFKK, white column:  NpxFFKK, dotted line: PBS control, black line: 2% w/v HPMC 

control. NS: no significant difference (P≥0.05), *: P<0.05, **: P<0.01 significant difference 

between Log10 CFU/mL of NSAID-peptide and the negative control (PBS). 
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Figure 6. Logarithmic reduction in P. aeruginosa (PAO1) viable count (Log10 CFU/mL) after 

24 hour incubation with varying concentrations of NSAID-peptides.  Results are displayed as 

a mean of six replicates.  Key: grey column: IbuFFKK, striped column: IndFFKK, white 

column:  NpxFFKK, dotted line: PBS control, black line: 2% w/v HPMC control. NS: no 

significant difference (P≥0.05), *: P<0.05, **: P<0.01 significant difference between Log10 

CFU/mL of NSAID-peptide and the negative control (PBS). 
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Figure 7. Percentage cell viability of NCTC clone 929 (ATCC CCL 1) cells after 24 hour 

exposure to varying concentrations of NSAID-peptides. Key: striped: IbuFFKK, white: 

IndFFKK, grey: NpxFFKK, ns: no significant difference (P≥0.05) between the NSAID-

peptide and the negative control (PBS). 
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Table 1. Stepwise formulation of a self-assembling pH-triggered 2% w/v NSAID-peptide 

(500 µL). 

Formulation step Constituent a)  Quantity 

1 NSAID-peptide 10mg pre-weighed 

2 Deionized H2O or D2O 200 µL (in 50 µL aliquots) 

3 1M NaOH or NaOD 50 µL (in 10 µL aliquots) 

4 Deionized H2O or D2O 200 µL (in 50 µL aliquots) 

5 0.5M HCl or DCl 20 µL (in 10 µL aliquots) 

6 Deionized H2O or D2O to 500 µL 

a) Deuterated solvents employed for FTIR purposes and IbuFFKK where relevant in text 

 

Table 2. Critical gelation concentrations (% w/v) for each NSAID-peptide. Observation via 

inversion test. 

NSAID-peptide Critical gelation concentration (% w/v) 

IbuFFKK 2 a) 

IndFFKK 1.5 

NpxFFKK 0.4 

a) Deuterated solvents employed 
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Self-assembling Ultrashort NSAID-Peptides: Multifunctional Antimicrobial and Anti-

inflammatory Nanomaterials  

 

Alice P. McCloskey, Sophie M. Gilmore, Jie Zhou, Emily R. Draper, Brendan F. Gilmore, 

Bing Xu, Garry Laverty*  

 

Ibuprofen-L-phenylalanine-L-phenylalanine-L-Lysine-L-Lysine-COOH (IbuFFKK). 1H NMR 

(400 MHz, DMSO-d6, δ): 8.21-8.02 (m, J = 4.06, 4H; NH), 7.66 (s, J = 4.13, 4H; NH2), 7.25-

6.99 (m, J = 14.26, 14H; Ar H), 4.57-4.18 (m, J = 4.40, 4H, CHNH), 3.03 (q, J = 1.08, 1H; 

CHCH3), 2.84-2.68 (m, J = 10.75, 8H; CH2Ar, 2H; CH2NH2), 2.39 (d, J = 3.23, 3H; CH3), 

1.54-1.07 (m, J = 17.54, 2H; Ar CH2CH(CH3)2 , 1H; CH2CH(CH3)2, 12H; CH2), 0.86-0.83 (m, 

J = 6.51, 6H; CH3). EIMS m/z (%): 756.46 (100) [M+], 757.46 (46.5) [M+ +H]+, 758.46 (10.6) 

[M++2H]+; (ESI) m/z: [M + H]+ calcd for C43H60N6O6, 756.99; found, 756.46.  
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Figure S1. 1H NMR.spectra for IbuFFKK (C2D6OS, TMS standard, 400MHZ). 

 

Indomethacin-L-phenylalanine-L-phenylalanine-L-Lysine-L-Lysine-COOH (IndFFKK). 

1H NMR (400 MHz, DMSO-d6, δ): 8.21-8.16 (m, J = 2.59, 1H; NH, 1H; Ar H), 7.63-7.55 (m, 

J = 4.16, 1H; Ar H, 2H; NH), 7.22-6.62 (m, J = 17.33, 14H; Ar H, 1H; NH, 4H; NH2), 4.56-

4.16 (m, J  = 5.49, 4H; CHNH), 3.74-3.67 (m, J = 4.41, 3H; CH3, 2H; CH2CO), 3.03-2.68 (m, 

J = 14.50, 4H; CH2NH2, 4H; CH2 Ar), 2.33 (s, J = 3.02, 3H; CH3), 1.89-1.24 (m,  J = 21.08, 

12H; CH2). EIMS m/z (%): 893.39 (100) [M+], 894.39 (51.9) [M+ − H], 895.38 (32) [M+ − 

2H], 896.39 (16.6); (ESI) m/z: [M + H]+ calcd for C49H58ClN7O8, 894.47; found, 893.39.  
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Figure S2. 1H NMR.spectra for IndFFKK (C2D6OS, TMS standard, 400MHZ). 

 

Naproxen-L-phenylalanine-L-phenylalanine-L-Lysine-L-Lysine-COOH (NpxFFKK). 

1H NMR (400 MHz, DMSO-d6, δ): 8.22-8.04 (m, J = 5.53, 3H; NH, 2H; Ar H), 7.75-7.05 (m, 

J = 21.43, 14H; Ar H, 4H; NH2), 4.50-3.71 (m, J = 6.20, 4H; CHNH, 1H; Ar CHCH3), 2.98-

2.68 (m, J = 9.97 4H; Ar CH2, 4H; CH2NH2), 2.33 (s, J = 3.10, 3H; CH3), 1.73-1.03 (m, J = 

21.71, 12H; CH2, 3H; CH3). EIMS m/z (%): 780.42 (100) [M+], 781.42 (47.6) [M+ − H], 

782.43 (11.1) [M+ − 2H]; (ESI) m/z: [M + H]+ calcd for C44H56N6O7, 780.97; found, 780.42.  

 

 



  

40 

 

 

Figure S3. 1H NMR.spectra for NpxFFKK (C2D6OS, TMS standard, 400MHZ). 

 

 

 
Figure S4. Gel inversion assay for IbuFFKK pH 7.4, H2O primary vehicle. 
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Figure S5. Gel inversion assay for IbuFFKK pH 7.4, D2O primary vehicle. 

 

 

Figure S6. Gel inversion assay for IndFFKK pH 7.4, H2O primary vehicle. 



  

42 

 

 

Figure S7. Gel inversion assay for NpxFFKK pH 7.4, H2O primary vehicle. 

 

 

Figure S8. Cryo-SEM images of 2% w/v (a) IbuFFKK (D2O), (b) IndFFKK (H2O), (c) 

NpxFFKK (H2O). 
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Figure S9. Cryo-SEM images of 2% w/v IbuFFKK (H2O primary vehicle). 

 

 

Figure S10. TEM images of 2% w/v (8900x) (a) IbuFFKK (D2O), (b) IndFFKK (H2O), 

(c)NpxFFKK (H2O). 
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Figure S11. FTIR spectra displaying amide band of 2% w/v NSAID-peptides in deuterated 

solvents. Key: dotted line: IbuFFKK, dashed line: IndFFKK , full line: NpxFFKK. 
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Figure S12. FTIR spectra displaying amide band of 0.5-2% w/v NpxFFKK peptide. Key: 

dotted line: 0.5% w/v, dashed line: 1.5% w/v, full line: 2% w/v. 

 

 

 

 

 
 

Figure S13. Logarithmic reduction in S. epidermidis (ATCC 35984) viable count (Log10 

CFU/mL) after 24 hour incubation with varying concentrations of NSAID-peptides. Results 

are displayed as a mean of six replicates.  Key: grey column: IbuFFKK, striped column: 

IndFFKK, white column: NpxFFKK, dotted line: PBS control, black line: 2% w/v HPMC 

control. NS: no significant difference (P≥0.05), *: P<0.05, **: P<0.01 significant difference 

between Log10 CFU/mL of NSAID-peptide and the negative control (PBS). 
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Figure S14. Logarithmic reduction in E. coli (ATCC 11303) viable count (Log10 CFU/mL) 

after 24 hour incubation with varying concentrations of NSAID-peptides. Results are 

displayed as a mean of six replicates. Key: grey column: IbuFFKK, striped column: IndFFKK, 

white column:  NpxFFKK, dotted line: PBS control, black line: 2% w/v HPMC control. NS: 

no significant difference (P≥0.05), *: P<0.05, **: P<0.01 significant difference between Log10 

CFU/mL of NSAID-peptide and the negative control (PBS). 

 

 

 



  

47 

 

 

Figure S15. IC50 values of NSAID-peptide and NSAIDs only molecules corresponding to 

inhibition of COX-1 (black column) and COX-2 (white column) enzymes. Selectivity (S) is 

defined as the ratio of the IC50 values relative to COX-1: COX-2.  

 

 

 

Figure S16. Percentage hemolysis of equine erythrocytes after 1 hour exposure to varying 

concentrations of NSAID-peptides. Key: striped: IbuFFKK, white: IndFFKK, grey: 

NpxFFKK, NS: no significant difference (P≥0.05) between the NSAID-peptide and the 

negative control (PBS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


