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Abstract: Melt mixed high density polyethylene (HDPE)/multi-walled carbon nanotube 

(MWCNT) nanocomposites were prepared via twin-screw extrusion and then compression 

moulded into sheets. The effect of heating temperature, pressing time and cooling rate on the 

structure, electrical and mechanical properties of the compression moulded nanocomposites 

was systematically investigated. Volume resistivity tests indicate that the nanocomposite with 

2 wt% MWCNTs, which is in the region of the electrical percolation threshold, is very 

sensitive to the compression moulding parameters such that heating temperature > pressing 

time > cooling rate. Generally, the resistivity of nanocomposites decreases with increasing 

heating temperature and pressing time. Interestingly, the electrical resistivity of the rapidly 

cooled nanocomposite with 2 wt% MWCNTs is 1~2 orders lower than that of the slowly 

cooled nanocomposite with the same MWCNT loading. This can be attributed to the lower 

crystallinity and smaller crystallites facilitating the formation of conductive pathways. The 



tensile properties of the nanocomposite with 2 wt% MWCNTs are also influenced by the 

compression moulding parameters to some extent, while those of the nanocomposites with 

higher MWCNT loading are insensitive to the changes in processing conditions. The 

predicted moduli from Halpin-Tsai and Mori-Tanaka theoretical models show good 

agreement with the experimental results. This work has important implications for both 

process control and the tailoring of electrical and mechanical properties in the commercial 

manufacture of conductive HDPE/MWCNT nanocomposites.  

Keywords: Polyethylene; Carbon nanotubes; Nanocomposites; Compression moulding; 

Processing 

1. Introduction 

In the last decade, carbon nanotubes (CNTs) have attracted great interest as 

multifunctional nanofillers for polymer nanocomposites as a result of their unique structure 

and excellent thermal, mechanical and electrical properties [1][2]–[4]. Enhanced properties 

can usually be obtained with the addition of a small amount of CNTs due to their very high 

aspect ratio. Polymer/CNT nanocomposites have a wide range of high-end applications, for 

instance, in polymeric solar cells, photovoltaic devices, electrochemical sensors, flat panel 

display screens, electrostatic charge dissipation (ESD) and electromagnetic interference-

shielding (EMI shielding) etc. [5][6][7]. However, the strong Van der Waals force between 

CNTs restricts their disentanglement and dispersion in a polymer matrix [2]. The presence of 

numerous CNT agglomerates can result in rather poor mechanical and electrical properties, 

thus uniform dispersion of CNTs is a significant pre-requisite for success in fabricating 

polymer/CNT nanocomposites with desirable properties [8]. In general, there are three main 

approaches to preparing polymer/CNT nanocomposites: in situ polymerization [9], solution 

mixing [10] and melt mixing [11], in which melt mixing is a simpler and more effective 



method, particularly from an industrial perspective [12]. In recent years, many studies on the 

melt mixing of CNTs into polymers have been carried out which indicate that the mixing 

effectiveness and the dispersion of CNTs depend on many factors including the affinity 

between CNTs and polymer [13], polymer viscosity [14], CNTs concentration [15], residence 

time [15], screw speed [15][16] and screw configuration [17]. 

High density polyethylene (HDPE) is an important, low cost, commodity thermoplastic. 

If the properties of HDPE could be enhanced via the addition of CNTs then the range of 

application areas for this material may be greatly extended. In the past few years, the 

dispersion, structure and properties of melt mixed HDPE/CNT nanocomposites have been 

extensively discussed in previous literature [18][19] [20] [21]. Morcom et al. [18] investigated 

the dispersion and reinforcing effect of multi-walled carbon nanotubes (MWCNTs) on the 

properties of a melt mixed HDPE/MWCNT composite. It was found that the MWCNTs with 

a larger diameter provided the highest reinforcement of 66% and 69% in elastic modulus and 

yield strength respectively at 5 wt% MWCNTs due to better nanotube dispersion. Verge et al. 

[19] compared the dispersion state of different types of MWCNTs in various grades of HDPE 

matrices by melt mixing. It was observed that each combination resulted in a different 

dispersion state so it is very difficult to universally predict the dispersion of nanotubes in a 

given HDPE matrix. Yang’s [20] investigation of injection moulding of HDPE/MWCNT 

nanocomposites showed that MWCNTs nucleated HDPE crystal growth and induced a 

special transcrystalline microstructure (shish-kebab crystal) in a dynamic packing injection 

moulding (DPIM) process. Tao et al. [21] investigated the effect of shear-induced 

crystallization on the electrical properties of melt mixed HDPE/MWCNT composites. A 

similar transcrystalline structure to that observed in Yang’s study [20] was also observed. It 

was found that the electrical conductivity of a composite shear-mixed for 20 minutes was 

significantly lower than that of sample mixed for 10 minutes due to the larger crystals which 



nucleated and grew on the nanotubes with increased shear-mixing time. These crystals 

prevented electrical contact between the nanotubes resulting in a decrease in electrical 

conductivity. Valentino et al. [22] prepared a series of HDPE/MWCNT nanocomposites with 

different loadings of MWCNTs using a micro-twin screw extruder. They observed a low 

electrical percolation threshold of between 1 to 2.5 wt% indicating an effective dispersion of 

nanotubes in the matrix. 

Almost all the conventional polymer processing methods such as compression 

moulding, injection moulding, thermoforming, extrusion, blow moulding and blown film 

extrusion, can be used for processing polymer nanocomposites. Different processing routes 

and parameters to produce a product can result in a significant variation in the structure 

[23][24] and final properties of polymer nanocomposites [25], [26]. By way of example, the 

author’s previous studies of biaxial stretching [2][3] and blown film extrusion [4] of melt 

mixed HDPE/MWCNT nanocomposites have shown that elongational deformation had a 

positive effect on the mechanical properties and a negative effect on the electrical 

conductivity of the composites due to the disentanglement and orientation of MWCNTs. 

After injection moulding, compression moulding is frequently used to form defined 

geometries such as plates [5]. Although many investigations on the effect of injection 

moulding conditions on structure and electrical properties have been presented for 

polymer/CNT composites [20][27][28], little attention has been paid to the effect of 

compression moulding parameters on the structure and properties of  such nanocomposites. A 

knowledge of the influence of processing conditions on structure/properties of compression 

moulded nonocomposites is important for industrial applications but it is also very important 

for academic research as many samples for research investigations are produced using 

compression moulding. Little attention is generally paid to the processing conditions for these 

samples yet if the structure is influenced by processing, the properties will also be influenced 



and direct comparisons between results from various researchers using compression moulded 

samples will not be entirely valid. Kasaliwal et al. [5] investigated the effect of heating 

temperature and pressing time on the volume electrical resistivity of polycarbonate 

(PC)/MWCNT composites near the percolation threshold (1 wt%). It was observed that the 

resistivity decreased with increasing heating temperature or pressing time due to the presence 

of more nanotube secondary agglomeration facilitated by enhanced molecular relaxation. 

Similar results were also shown in Yu’s study [29] of the surface resistivity of ethylene-vinyl 

acetate (EVA) copolymer/MWCNT composites. The effect of the cooling rate utilised in 

compression moulding on the properties of CNT filled polymers has not to the authors’ 

knowledge been investigated. Cooling conditions can vary in real industrial processing 

operations and in laboratory based investigations using compression moulding and it is 

important to know how robust the structuring (and properties) of nanocomposites is to such 

variations. This paper will therefore examine the influence of processing conditions, 

including cooling rates, on the structure and properties of compression moulded HDPE/CNT 

nanocomposites to help fill this missing gap in the literature. 

In this paper, a high density polyethylene based MWCNT nanocomposite was prepared 

by melt mixing, using an industrial scale twin-screw extruder, at MWCNT loadings of 1~10 

wt%. The extruded pellets were compression moulded at different heating temperatures and 

pressing times followed by slow cooling (SC) or rapid cooling (RC) to produce sheets.  The 

influence of processing conditions on the structure, electrical and mechanical properties of 

the resulting nanocomposite sheets was systematically investigated. As will be shown, 

heating temperature, pressing time and cooling rate in compression moulding can have a 

significant effect on the final mechanical and electrical properties of HDPE/CNT 

nanocomposites when operating in the electrical percolation threshold region. This suggests 

that good process control will be necessary in the commercial processing of such 



nanocomposites as companies will seek to operate near the percolation threshold to reduce 

costs. It also points to the need for standardised testing in research laboratories using 

compression moulding to produce test plaques so that valid comparisons of results can be 

made between laboratories.   

2. Experimental 

2.1 Materials 

High density polyethylene, grade HDPE HTA-108, in pellet form was obtained from 

ExxonMobil. It has an average molecular weight of 123,400 g/mol and a density of 0.961 

g/cm3. The melt flow index (MFI) of the HDPE is 0.7 g/10min (190 ℃/2.16 kg). Multi-

walled carbon nanotubes (Nanocyl NC7000) with a purity of 90%, produced via catalytic 

chemical vapour deposition, were kindly supplied by Nanocyl SA, Belgium. The nanotubes 

have a nominal diameter of 9.5 nm and a nominal average length of 1.5 μm [30]. The density 

of the nanotubes is 1.85 g/cm3 [18]. 

2.2 Preparation and processing 

The HDPE pellets were ground, at room temperature, into a powder using a Wedco SE-

12 UR pilot plant grinder operating at 7000 rpm and with a gap size set to 400 μm. The 

HDPE powder was premixed with the MWCNTs using a PRISM Pilot 3 high speed mixer at 

MWCNT loadings of 1~10 wt%. The dry blends were melt mixed in a Collin ZK 25 twin-

screw extruder with a 30:1 length to diameter ratio (L/D) and a temperature profile of 175, 

220, 220, 215, 210, 200 ℃ from zones 1 to 6. The screw speed was set at 150 rpm and the 

feeding rate was 25%. The residence time of melt in the extruder is about 1.5 min. The 

extruded strand was cooled in a water bath and pelletized. Some strands of the extrudate were 



retained for microscopic analysis and electrical resistivity testing. It should be noted that the 

nanocomposite with 2 wt% MWCNTs is denoted as CNT2 in this paper, and so forth. 

The pellets were compression moulded in a steel mould of 1 mm thickness using a Dr. 

Collin P200P platen press at various heating temperatures, pressing times and cooling rates, 

to investigate the effect of compression moulding parameters on the structure, electrical and 

mechanical properties of the HDPE/MWCNT nanocomposites. Detailed processing 

parameters are listed in Table 1. The internal heating temperature of the mould cavity and 

cooling rates were verified using a thermocouple placed in the middle of the sample. The 

measured temperature profiles are shown in Figure 1. It should be noted that in this work the 

pressing time only includes the heating-up time and holding time, and the pressing pressure is 

kept constant during the entire compression moulding process. 

Table 1 Compression moulding parameters for the HDPE/MWCNT nanocomposites. 

Processing code Heating temperature (℃) Pressing time (min) Cooling rate (℃/min) Pressing pressure (bar) 

CM/150/3/SC 150 3 20 

100 

CM/150/5/SC 150 5 20 

CM/200/3/SC 200 3 20 

CM/200/5/SC 200 5 20 

CM/150/3/RC 150 3 300 

CM/150/5/RC 150 5 300 

CM/200/3/RC 200 3 300 

CM/200/5/RC 200 5 300 



 

Figure 1 Measured temperature profiles in the mould cavity. 

2.3 Characterization 

2.3.1 Scanning electron microscopy (SEM) 

The samples were first plasma etched for 1 min at an etching power of 100 W using a 

reactive ion etching system (STS Cluster C005) to remove the amorphous phase of the 

polymer matrix in order to observe the morphology of the nanotubes more clearly. The 

plasma etched samples were gold sputtered and then examined using a JEOL 6500F SEM 

with an operating voltage of 5.0 kV. 

2.3.2 High resolution transmission electron microscopy (HRTEM) 

The dispersion of MWCNTs in the compression moulded nanocomposite sheets 

produced at different cooling rates was further examined using a FEI Tecnai G2 Spirit TEM 

at 100 kV. Ultrathin sections with a thickness of less than 100 nm were cryo-ultramicrotomed 

using a Leica EMUG6 ultramicrotome. 

2.3.3 Conductive atom force microscopy (CAFM) 

Microscopic current measurements for the compression moulded composite sheets with 

different cooling rates were performed using a Dimension 3100 CAFM equipped with a 



TUNA head in contact mode at a bias of 1 V. A Pt-coated PPP-EFM tip and silicon cantilever 

were used in the CAFM tests. 

2.3.4 Wide angle X-ray diffraction (XRD) 

Wide-angle X-ray diffraction was performed using a PANalytical X'Pert PRO 

diffractometer to characterise the structure of the compression moulded samples. Cu-Kα 

radiation with a wavelength of 1.54 Å was used. Data were recorded from 2 to 60° with a 

step size of 0.016° (2𝜃𝜃) and a scan speed of 0.021 °/s. Jade XRD analysis software was 

employed to analyse the experimental data. The crystallinity of nanocomposites was obtained 

by calculating the areas of the amorphous and crystalline phases (Equation 1). The average 

crystallite sizes ( 𝐿𝐿110  and 𝐿𝐿200 ) in (110) and (200) were calculated using the Scherrer 

equation (Equation 2) [31]. 

𝑋𝑋𝐶𝐶 =
𝐼𝐼𝐶𝐶

𝐼𝐼𝐴𝐴 + 𝐼𝐼𝐶𝐶
× 100% (1) 

where 𝐼𝐼𝐶𝐶 is the crystalline area, and 𝐼𝐼𝐴𝐴 is the amorphous area. 

𝐿𝐿ℎ𝑘𝑘𝑘𝑘 =
𝐾𝐾𝐾𝐾

𝛽𝛽 cos 𝜃𝜃
 

(2) 

where 𝐾𝐾 is the shape factor of the crystal, 𝜆𝜆 is the wavelength of incident X-ray (𝜆𝜆 = 

0.15405 nm),  𝛽𝛽 is the full width at half maximum of the ℎ𝑘𝑘𝑘𝑘 peak and 𝜃𝜃 is the incident angle. 

2.3.5 Differential scanning calorimetry (DSC) 

A Perkin-Elmer DSC model 6 was used to measure the percentage crystallinity, melting 

and crystallization behaviour of the HDPE and HDPE/MWCNT nanocomposites under an 

inert nitrogen atmosphere. Samples with a typical mass of 7~10 mg were cut from the middle 

of the compression moulded sheets. The samples were heated from 30 ℃ to 200 ℃ at a 

heating rate of 10 ℃/min, held at 200 ℃ for 3 min, followed by a cooling process from 200 ℃ 



to 30 ℃ at a cooling rate of 10 ℃/min. Then the samples were reheated to 200 ℃ again at 

10 ℃/min. The melting temperatures in both heating processes and the crystallization 

temperature in the cooling process were recorded. Three repeated tests were conducted for 

each sample.  

In this work, the heat of fusion of 100% HDPE crystal (𝛥𝛥𝛥𝛥𝑚𝑚
° ) was taken as 293 J/g [32], 

and then the degree of crystallinity (𝑋𝑋𝑋𝑋) was calculated using Equation 3: 

                      𝑋𝑋𝑋𝑋 = 𝛥𝛥𝛥𝛥𝑚𝑚
(1−𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶)𝛥𝛥𝛥𝛥𝑚𝑚

° × 100%                        (3) 

where 𝛥𝛥𝛥𝛥𝑚𝑚is the enthalpy of fusion of sample (J/g); 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶  is the weight fraction of 

carbon nanotubes. 

2.3.6 Electrical resistivity testing 

Volume electrical resistivity testing was carried out for the extruded and compression 

moulded samples. For the samples with a high resistivity (>108 Ω), volume resistivity testing 

was performed using a Keithley 6517A high resistivity electrometer equipped with a Keithley 

8009 resistivity test fixture according to ASTM-D257. In this method, the circular samples 

cut from the compression moulded sheets have a diameter of 70 mm. For more conductive 

samples (≤108 Ω), two-point probe measurements were conducted using a Keithley 

DMM2000 multimeter. In the two-point probe measurements, strips with dimensions of 50 

mm × 10 mm were cut from the compression moulded sheets, and cylindrical specimens with 

dimensions of Ø2.5 mm × 10 mm were cut from the extruded strands. Silver paste was 

introduced to minimise contact resistance . Two specimens for each type were tested, and the 

average value was calculated. 

2.3.7 Tensile testing 



Tensile tests were conducted for the compression moulded sheets using an Instron 5564 

Universal Tester at room temperature (BS EN ISO 527:1996). The test samples were cut 

from the middle of the sheets. Young’s modulus and stress at yield were determined using a 

clip-on extensometer at a crosshead speed of 5 mm/min. Stress at break and strain at break  

were taken at a crosshead speed of 50 mm/min. Five samples were tested for each sheet and 

average values were calculated. 

3. Results and discussion 

3.1 Morphological analysis 

Figure 2 shows the morphologies of extruded and compression moulded composites 

containing 2 wt% and 4 wt% MWCNTs. The SEM image shown in Figure 2a is from the 

extruded sample taken in the extrusion direction. It can be observed in Figure 2a that the 

MWCNTs align along the material flow direction, while the polymer lamellae are 

perpendicular to the flow direction. A similar alignment of nanotubes along the flow direction 

was also observed in other literature [33][34]. From Figure 2b for the compression moulded 

samples at 150 ℃ for 3 min followed by a SC (CM/150/3/SC)   one can see the individual 

nanotubes and that agglomerates have not formed obvious network structures yet. The 

polymer lamellae are also randomly aligned. A network-like structure of nanotubes can be 

observed in Figure 2c and Figure 2d due to the relaxation of nanotubes after compression 

moulding at 200 ℃ for 3 and 5 min respectively, followed by SC (CM/200/3/SC and 

CM/200/5/SC). These individual MWCNTs and secondary agglomerates which can enhance 

the formation of conductive networks [14] are homogeneously distributed in the HDPE 

matrix. From Figure 2c and Figure 2d, it appears that the nanocomposite containing 2 wt% 

MWCNTs compression moulded at 200 ℃ for 5 min is apt to form larger nanotube 

agglomerates compared to that compression moulded at 200 ℃ for 3 min as a result of the 



increased relaxation time for the MWCNTs. Figure 2e shows the morphology of the 

nanocomposite containing 2 wt% MWCNTs compression moulded at 200 ℃ for 5 min 

followed by RC (CM/200/5/RC). The polymer lamellae are less clear due to the presence of 

numerous imperfect crystallites. This is also supported by the XRD and DSC results in the 

next section.  More compact secondary agglomerates can be observed in Figure 2f for the 

nanocomposite containing 4 wt% MWCNTs compression moulded at 200 ℃ for 5 min 

followed by SC, indicating that it is more difficult to disperse this loading of nanotubes in the 

high viscosity matrix. 

   

   

Figure 2 SEM micrographs of the HDPE/MWCNT nanocomposites at different 

compression moulding conditions and MWCNT loadings: (a) extruded, 2 wt% MWCNTs; (b) 

CM/150/3/SC, 2 wt% MWCNTs; (c) CM/200/3/SC, 2 wt% MWCNTs; (d) CM/200/5/SC, 2 

wt% MWCNTs; (e) CM/200/5/RC, 2 wt% MWCNTs; (f) CM/200/5/SC, 4 wt% MWCNTs 

(the agglomerated nanotubes are circled and the individual nanotubes are indicated by arrows 

in the micrographs). 

(a) (b) (c) 

(d) (e) (f) 

Flow direction 



In order to more clearly observe the dispersion and morphological details of 

nanocomposites under SC and RC, TEM tests were also conducted for the HDPE/MWCNT 

nanocomposites with 2 wt% MWCNTs compression moulded at 200℃ for 5 min followed by 

SC and RC, as shown in Figure 3. It can be seen in Figure 3a and Figure 3b that the 

nanocomposite under SC has a less homogeneous dispersion state of MWCNTs with larger 

secondary nanotube agglomerates compared to that under RC. This can be mainly attributed 

to an increased relaxation time for the MWCNTs to agglomerate in the polymer matrix under 

SC.  

  

Figure 3 TEM micrographs of the HDPE/MWCNT nanocomposites with 2 wt% 

MWCNTs compression moulded at 200 ℃ for 5 min followed by SC (a) and RC (b). 

3.2 XRD and DSC results 

The crystallization behaviour of the polymer matrix can be markedly influenced by the 

cooling rates, while it may be independent on the heating temperatures and pressing time 

during compression moulding. The crystallinity and average crystallite sizes of the 

compression moulded nanocomposites at different cooling rates can be shown by XRD and 

DSC. Figure 4a and Figure 4b respectively show the XRD patterns and DSC thermograms of 

the HDPE/MWCNT nanocomposites compression moulded at 200 ℃ for 5 min followed by 

SC and RC. It can be seen in Figure 4a that the HDPE exhibits a strong reflection peak at 

(a) (b) 

CNT agglomerates CNT agglomerates 



21.6°, followed by a less intensive peak at 24.0°, which correspond to the typical 

orthorhombic unit cell structure of the (110) and (200) reflection planes respectively. The 

XRD pattern of MWCNTs shows a reflection peak at 25.6° derived from the ordered 

arrangement of concentric cylinders of MWCNTs [35], as shown in the insert of Figure 4a. 

The average crystallite sizes (𝐿𝐿110  and 𝐿𝐿200 ) in (110) and (200) calculated according to 

Scherrer equation [31] and crystallinity (𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿) from XRD are listed in Table 2. The reduced 

crystallinity and crystallite sizes of all the samples after RC indicate that it had a suppression 

effect on the polymer mobility [36]. The XRD results are supported by the DSC results in the 

first heating stage. Figure 4b shows that the melting peaks in the first heating stage of DSC 

testing for the samples after RC shifts to a lower temperature, indicating a decreased melting 

temperatures (𝑇𝑇𝑚𝑚
1𝑠𝑠𝑠𝑠) due to the smaller crystallites formed. The crystallinity in the first heating 

stage (𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷
1𝑠𝑠𝑠𝑠 ) also decreases after RC according to the DSC results. However, there is no 

significant difference in the crystallinity (𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷
2𝑛𝑛𝑛𝑛) and melting temperature (𝑇𝑇𝑚𝑚

2𝑛𝑛𝑛𝑛) from the 

second heating stage of DSC testing between the samples after SC and RC due to the removal 

of the processing history. The crystallization temperature (𝑇𝑇𝑐𝑐) increases by about 2 ℃ with 

the addition of MWCNTs, indicating that MWCNTs are acting as nucleation sites [37]. The 

detailed melting temperatures, crystallization temperatures and crystallinity from DSC are 

also shown in Table 2.  



   

Figure 4 XRD patterns (a) and DSC thermograms in the 1st heating stage (b) of 

HDPE/MWCNT nanocomposites compression moulded at 200 ℃ for 5 min followed by SC 

and RC (the curves in this figure are vertically offset for clarity). 

Table 2 XRD and DSC results of HDPE/MWCNT nanocomposites compression 

moulded at 200 ℃ for 5 min followed by SC and RC. 

Sample 

XRD  DSC 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  

(%) 

𝐿𝐿110 

(nm) 

𝐿𝐿200 

(nm) 

 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷
1𝑠𝑠𝑠𝑠   

(%) 

𝑇𝑇𝑚𝑚
1𝑠𝑠𝑠𝑠  

(℃) 

𝑇𝑇𝑐𝑐  

(℃) 

𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷
2𝑛𝑛𝑛𝑛  

(%) 

𝑇𝑇𝑚𝑚
2𝑛𝑛𝑛𝑛  

(℃) 

HDPE-CM/200/5/SC 71.5 27.3 22.5  74.0(±1.9) 133.9(±0.2) 114.0(±0.2) 70.4(±1.3) 134.1(±0.1) 

HDPE-CM/200/5/RC 65.8 24.0 19.8  66.5(±2.5) 132.8(±0.2) 113.6(±0.2) 71.4(±2.0) 134.8(±0.3) 

CNT2-CM/200/5/SC 71.9 28.3 22.8  71.4(±4.1) 134.4(±0.3) 115.7(±0.5) 69.2(±2.2) 134.6(±0.4) 

CNT2-CM/200/5/RC 62.8 25.1 20.4  69.2(±1.8) 131.9(±0.5) 115.5(±0.1) 70.8(±3.2) 134.9(±0.4) 

CNT4-CM/200/5/SC 71.0 27.7 23.2  73.0(±4.8) 134.0(±0.1) 116.0(±0.2) 70.7(±2.4) 134.3(±0.2) 

CNT4-CM/200/5/RC 62.7 24.8 20.3  68.0(±2.4) 132.1(±0.3) 115.6(±0.2) 70.2(±2.3) 134.7(±0.2) 

3.3 Electrical properties 

The electrical properties of HDPE/MWCNT nanocomposites made at different heating 

temperatures and pressing time followed by SC were characterized by measuring the volume 

resistivity of extruded and compression moulded samples, as shown in Figure 5. According to 

(a) (b) 



the classic percolation theory of highly dispersed conductive additives in an isolating polymer 

matrix, conductive fillers can form conductive networks in the bulk of the matrix thus 

causing a decrease of the resistivity when the content of the conductive additive reaches the 

percolation threshold. In this work, it can be observed that the resistivity of extruded strands 

with 2 wt% MWCNTs is still beyond the full scale of the multimeter showing a high 

resistance (>108 Ω), but it decreases when the MWCNT loading reaches 4 wt%. Furthermore, 

the resistivity of all the extruded strands is higher than that of the compression moulded 

nanocomposites. The difference in resistivity between the extruded and compression moulded 

samples may be attributed to the difference in alignment of the MWCNTs in the samples 

(Figure 2) with alignment being greater in the extruded strands and thus having a lower 

potential to form a conductive network [38]. 

The scaling law of classical percolation theory (Equation 4) [33] was used to further 

analyse the conductive network in the HDPE/MWCNT nanocomposites: 

𝜌𝜌 ∝ (𝜙𝜙 − 𝜙𝜙𝑡𝑡)−𝑡𝑡 (4) 

where 𝜙𝜙 is the filler weight fraction, 𝜌𝜌 is the volume resistivity of the nanocomposite, 

𝜙𝜙𝑡𝑡 is the critical concentration and 𝑡𝑡 is the critical exponent which reflects the dimensionality 

of the conductive network in the system. It follows a power-law dependence of 

approximately 1~1.3 in a two dimensional system and 1.6~2 in a three dimensional system 

[39]. The critical concentration 𝜙𝜙𝑡𝑡  and the critical exponent 𝑡𝑡 of the nanocomposites were 

determined by a least square fitting of the experimental data in MATLAB, and the results are 

listed in Table 3. One can see a critical concentration of 3.9 wt% and a critical exponent of 

1.3 for the extruded nanocomposites. This low critical exponent indicates that the extruded 

nanocomposites generally follow a two dimensional model due to the restraint for charge 

transportation between the MWCNTs in the transverse direction [3]. The critical 



concentration decreases and the critical exponent increases with increasing heating 

temperatures and pressing time. The nanocomposite compression moulded at a heating 

temperature of 200 ℃ and a pressing time of 5 min followed by SC shows a critical 

concentration of 1.9 wt% and a critical exponent of 1.9. It is evident that the decrease in 

critical concentration means an improvement in conductivity in the compression moulded 

samples, and the increase in critical exponent reveals the steady transformation from a two 

dimensional system to a three dimensional system after compression moulding.  

 

Figure 5 Volume resistivity of extruded HDPE/MWCNT nanocomposites and 

compression moulded HDPE/MWCNT nanocomposites with different heating temperatures 

and pressing time followed by SC as a function of MWCNT loading (Inset: a partial enlarged 

view for the resistivity of the nanocomposites containing 4~8 wt% MWCNTs). 

Table 3 Critical concentration 𝜙𝜙𝑡𝑡 and critical exponent 𝑡𝑡  for the extruded 

nanocomposites and compression moulded nanocomposites at SC. 

Percolation parameters Extruded CM/150/3/SC CM/150/5/SC CM/200/3/SC CM/200/5/SC 

𝜙𝜙𝑡𝑡  (wt%) 3.9 3.5 3.3 2.0 1.9 

𝑡𝑡 1.3 1.5 1.5 1.7 1.9 



It can be seen in Figure 5 that the electrical properties of nanocomposites with a 

MWCNT loading in the percolation threshold region are significantly influenced by 

compression moulding conditions. The details of the resistivity of nanocomposites containing 

1, 2 and 4 wt% MWCNTs are shown in Figure 6, and the volume electrical resistivity of 

nanocomposites compression moulded at SC and RC are compared. It can be observed that 

the resistivity of the nanocomposite containing 2 wt% MWCNTs decreases by 6~9 orders of 

magnitude when the heating temperature increases from 150 to 200 ℃. The pressing time 

only has an evident effect on the resistivity of the nanocomposite with 2 wt% MWCNTs 

compression moulded at 150 ℃, and the resistivity of the nanocomposite decreases by 3 

orders of magnitude when the pressing time increases from 3 min to 5 min at this heating 

temperature irrespective of cooling rate. It appears that a pressing time of 3 min is sufficient 

for the nanocomposite containing 2 wt% MWCNTs to complete the construction of 

conductive network at 200 ℃, therefore there is no significant change in the resistivity of the 

nanocomposite when the pressing time increases from 3 to 5 min at this temperature. 

Interestingly, the electrical resistivity of the rapidly cooled nanocomposites with 2 wt% 

MWCNTs is 1~2 orders lower than that of the slowly cooled nanocomposites with the same 

MWCNT loading. This should not be simply attributed to the increased nanotube 

agglomerate size under SC (Figure 3) with longer relaxation time for the MWCNTs 

otherwise one would expect that the resistivity of nanocomposites compression moulded at 

200 ℃  would increase with increasing pressing time. This is obviously in conflict with the 

experimental results shown in Figure 6.  



 

Figure 6 Resistivity variations of the HDPE/MWCNT nanocomposites under different 

compression moulding conditions. 

In order to further analyse the reason for the decrease in resistivity at RC, microscopic 

current measurements for the nanocomposite with 2 wt% MWCNTs compression moulded at 

200 ℃ for 5 min followed by SC and RC were performed using a CAFM. The CAFM tip 

measures the current throughout the volume of the nanocomposite specimen at a given 

voltage, which is running via the nanotube network to the ground contact. Only nanotubes 

that are connected with the ground contacts can be monitored. The current distribution 

images from the CAFM tests are shown in Figure 7. These bright spots and patches in Figure 

7 reflect the regions with a high current density which mainly involve the secondary nanotube 

agglomerates in the matrix. In previous literature [5][14], it has been proposed that these 

secondary agglomerates can facilitate the formation of conductive networks. However, to the 

best of our knowledge, in this work this is the first time to directly confirm the significance of 

secondary nanotube agglomerates in the formation of conductive networks in a polymer by 

CAFM. It can be observed in Figure 7 that the nanocomposite containing 2 wt% MWCNTs 

under RC exhibits a slightly higher maximum current of 20.77 nA and more conductive 

regions uniformly distributed in the matrix compared to that under SC, indicating more 



conductive networks formed. This may be due to the lower crystallinity and smaller 

crystallites at RC facilitating the formation of conductive pathways [21][40]. The information 

on the crystallinity and crystallite sizes of HDPE/MWCNT nanocomposites was presented 

via the XRD and DSC results in the previous section (Table 2). Numerous imperfect 

crystallites for the nanocomposite under RC can be observed in the SEM image (Figure 2e). 

In contrast, with respect to the nanocomposite containing 2 wt% MWCNTs under SC, the 

conductive pathways formed in the heating-up and holding stages during compression 

moulding are more readily interrupted under SC due to the increase in the number and size of 

crystallites which would be located between the secondary nanotube agglomerates. This 

would result in fewer secondary nanotube agglomerates being connected in a conductive 

network and a relatively higher resistivity than the nanocomposite under RC. It is reasonable 

that a slight change in the crystal structure of the polymer can influence the resistivity of the 

nanocomposite because the critical maximum distance for electron hopping between the 

nanotubes is just about 1.8 nm [41]. A schematic diagram of the conductive pathways formed 

in the nanocomposite with a MWCNT loading in the region of the electrical percolation 

threshold under SC and RC is shown in Figure 8. 

The effect of cooling rate on resistivity is much less significant for the nanocomposite 

with 4 wt% MWCNTs as a result of the abundant conductive networks formed in the HDPE 

matrix. This result indicates that cooling rate can be a significant parameter in influencing 

electrical conductivity when operating in the region of the percolation threshold. 



   

Figure 7 Current distribution images for the nanocomposite samples with 2 wt% 

MWCNTs compression moulded at 200 ℃ for 5 min followed by SC (a) and RC (b). 

 

Figure 8 Schematic diagram of the conductive pathways formed in the nanocomposite 

with a MWCNT loading in the region of the electrical percolation threshold under SC (a) and 

RC (b). 

3.4 Tensile properties 

Tensile tests were carried out for the compression moulded samples to investigate the 

effects of the introduction of MWCNTs and the compression moulding conditions on the 

mechanical properties of HDPE/MWCNT nanocomposites, as shown in Table 4. Some 

representative tensile stress-strain curves of the nanocomposites compression moulded at 

 20.40 nA

 0.00 nA

820nm

 20.77 nA

 0.00 nA

820nm

(a) (b) 



200 ℃ for 5 min followed by SC and RC are shown in Figure 9. It can be observed in Figure 

9 that the nanocomposites are much more brittle than the pure HDPE due to the presence of 

MWCNT agglomerates which act as the stress concentration sites in the matrix. In general, 

regardless of the compression moulding conditions, the stress at break (𝜎𝜎𝑏𝑏) and strain at break 

(𝜀𝜀𝑏𝑏) decreased by over 40% and 90% respectively for all the nanocomposites with 2 and 4 wt% 

MWCNTs according to Table 4. However, the stress at yield (𝜎𝜎𝑦𝑦) of the nanocomposites 

increased by 8~10% and 12~15% for the nanocomposites with 2 and 4 wt% MWCNTs. In 

addition, the Young’s modulus (𝐸𝐸) of the nanocomposites increased by about 25~50% and 

110~130% with the addition of 2 and 4 wt% MWCNTs. The significant increases in modulus 

indicate an effective stress transfer between the matrix and MWCNTs. The measured moduli 

of the HDPE/MWCNT nanocomposites were compared with the values predicted by Halpin-

Tsai and Mori-Tanaka composite theories.  

For the randomly aligned composites, the Halpin-Tsai model can be expressed as the 

following formulas: 
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(6) 
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𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ − 1
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(7) 

where 𝐸𝐸,  𝐸𝐸𝑓𝑓  and 𝐸𝐸𝑚𝑚  are the Young’s modulus of the composites, filler and matrix, 

respectively. 𝐸𝐸𝑓𝑓  is set as 200 GPa according to the previous literatures [18][42]. 𝜙𝜙𝑓𝑓  is the 

volume fraction of filler. 𝛼𝛼 is the aspect ratio of the filler, which is set as 150 according to the 

MWCNT dimensional parameters. 



According to the Mori-Tanaka model and reformulated by Tandon and Weng [43], the 

Young’s modulus of randomly aligned composites can be calculated using Equation 8-10 

[34][43][44]. 

𝐸𝐸 = 0.184𝐸𝐸11 + 0.816𝐸𝐸22 (8) 

𝐸𝐸11

𝐸𝐸𝑚𝑚
=

𝐴𝐴
𝐴𝐴 + 𝜙𝜙𝑓𝑓(𝐴𝐴1 + 2𝑣𝑣𝑚𝑚𝐴𝐴2)

 
(9) 

𝐸𝐸22

𝐸𝐸𝑚𝑚
=

2𝐴𝐴
2𝐴𝐴 + 𝜙𝜙𝑓𝑓(−2𝑣𝑣𝑚𝑚𝐴𝐴3 + (1 − 𝑣𝑣𝑚𝑚)𝐴𝐴4 + (1 + 𝑣𝑣𝑚𝑚)𝐴𝐴5𝐴𝐴)

 
(10) 

where 𝑣𝑣𝑚𝑚 are the Poisson’s ratio of marix, and the functions of Eshelby’s tensor (𝐴𝐴, 𝐴𝐴1, 

𝐴𝐴2 , 𝐴𝐴3 , 𝐴𝐴4 and 𝐴𝐴5 ) depend on the properties of filler and matrix; more details of these 

equations are given elsewhere [43]. The modulus values predicted by Halpin-Tsai and Mori-

Tanaka models are also shown in Table 4. One can see that the predicted values from both 

theoretical models agree well with the experimental data.  

 

Figure 9 Tensile stress-strain curves of HDPE/MWCNT nanocomposites compression 

moulded at 200 ℃ for 5 min followed by SC and RC (Inset: a partial enlarged view of elastic 

and yield regions). 



As can be seen in Table 4, the tensile properties of the unfilled HDPE and 

HDPE/MWCNT nanocomposites are affected by the compression moulding conditions to 

some extent. Rapid cooling reduced the modulus and stress at yield by 10.4% and 8.8% for 

the unfilled HDPE samples compression moulded at 200 ℃ for 5 min due to a lower 

crystallinity level and imperfect crystallites, but the stress at break and strain at break are 

improved by 30.4% and 26.6% indicating that the toughness of the rapidly cooled HDPE 

samples is enhanced. In Table 4, heating temperature and pressing time do not show evident 

effects on the tensile properties of the unfilled HDPE samples because the crystallinity and 

crystal sizes mainly depend on the cooling condition in compression moulding. It appears that 

the effect of compression moulding conditions on the tensile properties of the nanocomposite 

containing 2 wt% MWCNTs are more complicated. It can be seen in Table 4 that the tensile 

properties of the nanocomposite with 2 wt% MWCNTs were hardly influenced by pressing 

time, but modulus was improved by 12.6% when the heating temperature increased from 150 

to 200 ℃ probably due to the formation of abundant MWCNT network structures leading to 

more effective stress transfer. The modulus reached a maximum value for the nanocomposite 

with 2 wt% MWCNTs compression moulded at 200 ℃ for 5 min followed by SC in this 

study, which increased by 42.0% compared with the unfilled HDPE sample. Rapid cooling 

reduced the stress at yield by 9.9% for the nanocomposite with 2 wt% MWCNTs 

compression moulded at 200 ℃ for 5 min, but it significantly improved the strain at break by 

119.9% indicating cooling rate is an important parameter in determining the stress at yield 

and strain at break of nanocomposites with a relatively low MWCNT loading. The significant 

increase in the strain at break of the rapidly cooled nanocomposite containing 2 wt% 

MWCNTs can be mainly attributed to the polymer matrix with enhanced toughness and 

smaller secondary nanotube agglomerates (Figure 3). However, rapid cooling does not show 

a significant effect on the modulus and stress at break of the nanocomposite containing 2 wt% 



MWCNTs. The stress at yield of the rapidly cooled nanocomposite with 4 wt% MWCNTs 

also decreased by 10.2%. Overall, the compression moulding conditions have no significant 

effects on the tensile properties of the nanocomposite with 4 wt% MWCNTs, as shown in 

Table 4. It indicates that the changes in the tensile properties of nanocomposites are mainly 

dominated by the MWCNT loading rather than the compression moulding conditions at 

MWCNT loadings greater than 2 wt%. 

Table 4 Effects of of MWCNT loading and compression moulding conditions on the 

tensile properties of HDPE/MWCNT nanocomposites. 

Sample 
𝐸𝐸 (MPa) 

𝜎𝜎𝑦𝑦 (MPa) 𝜎𝜎𝑏𝑏 (MPa) 𝜀𝜀𝑏𝑏 (%) 
Experimental Halpin-Tsai Mori-Tanaka 

HDPE-CM/150/3/SC 890.5(±78.3) 

  

24.6(±0.9) 28.3(±2.2) 910.2(±88.1) 

HDPE-CM/150/5/SC 903.8(±82.5) 24.7(±1.2) 27.5(±2.6) 898.7(±73.4) 

HDPE-CM/200/5/SC 900.6(±61.1) 25.0(±0.7) 27.9(±3.0) 907.0(±58.0) 

HDPE-CM/200/5/RC 807.1(±69.7) 22.8(±0.6) 36.4(±1.6) 1148.1(±47.4) 

CNT2-CM/150/3/SC 1127.2(±59.5) 

1371.1 1381.1 

27.1(±0.2) 17.2(±0.5) 73.1(±16.7) 

CNT2-CM/150/5/SC 1135.3(±53.3) 27.0(±0.4) 16.9(±0.8) 70.8(±21.2) 

CNT2-CM/200/5/SC 1278.9(±27.4) 27.3(±0.2) 17.1(±0.7) 70.0(±16.0) 

CNT2-CM/200/5/RC 1211.8(±84.5) 24.6(±0.3) 18.0(±0.4) 153.9(±36.7) 

CNT4-CM/150/3/SC 1889.2(±112.6) 

1856.0 1814.9 

28.2(±0.2) 16.7(±0.6) 47.3(±11.2) 

CNT4-CM/150/5/SC 1902.4(±172.3) 28.1(±0.1) 16.5(±0.4) 46.8(±10.1) 

CNT4-CM/200/5/SC 1905.8(±149.3) 28.4(±0.3) 16.6(±0.3) 46.9(±8.8) 

CNT4-CM/200/5/RC 1878.1(±213.6) 25.5(±0.1) 17.5(±0.6) 69.6(±10.3) 

4. Conclusions 

Melt mixed HDPE/MWCNT nanocomposites were prepared at MWCNT loadings of 

1~10 wt% using a twin-screw extruder and then compression moulded into sheets. The effect 

of compression moulding conditions on the structure, electrical and mechanical properties of 

the nanocomposites was systematically investigated. A network-like structure of nanotubes in 



the matrix was formed with increases in heating temperature and pressing time. The addition 

of MWCNTs did not have an evident influence on the crystallinity, average crystallite sizes 

and melting temperature, but a rapid cooling process during compression moulding reduced 

the crystallinity, average crystallite sizes and melting temperature slightly. Electrical 

resistivity tests indicate that the resistivity of all the compression moulded HDPE/MWCNT 

nanocomposites is lower than that of the extruded strands. According to the scaling law of 

classical percolation theory, the critical concentration decreases and the critical exponent 

increases with increasing heating temperature and pressing time during compression 

moulding. The composite compression moulded at a heating temperature of 200 ℃ and a 

pressing time of 5 min followed by SC shows a low critical concentration of 1.9 wt% and a 

critical exponent of 1.9. The nanocomposite with 2 wt% MWCNTs which is in the region of 

the electrical percolation threshold is very sensitive to the compression moulding conditions. 

Interestingly, the electrical resistivity of the rapidly cooled nanocomposite with 2 wt% 

MWCNTs is 1~2 orders lower than that of the slowly cooled composites with the same 

MWCNT loading. This can be attributed to the lower crystallinity and smaller crystallites 

facilitating the formation of conductive pathways. The stress at break and strain at break of 

the nanocomposites drastically decrease due to the presence of MWCNT agglomerates, while 

the Young’s modulus of the nanocomposites increase by about 25~50% and 110~130% 

respectively with the addition of 2 and 4 wt% MWCNTs. The predicted moduli from Halpin-

Tsai and Mori-Tanaka models show good agreement with the experimental results. The 

tensile properties of nanocomposites with 2 wt% MWCNTs were hardly influenced by 

pressing time, but modulus was improved by 12.6% when heating temperature increased 

from 150 ℃ to 200 ℃ probably due to the formation of abundant MWCNT network 

structures leading to more effective stress transfer. Rapid cooling slightly reduced the stress 

at yield by 9.9% for the nanocomposite with 2 wt% MWCNTs, but it significantly improved 



the strain at break by 119.9% indicating cooling rate would be an important parameter for 

controlling the stress at yield and strain at break of nanocomposites with a relatively low 

MWCNT loading. Overall, the compression moulding conditions have no significant effects 

on the tensile properties of the nanocomposite with 4 wt% MWCNTs, while the stress at 

yield of the rapidly cooled nanocomposite with 4 wt% MWCNTs decreased by 10.2%. It 

indicates that the changes in the tensile properties of nanocomposites are mainly dominated 

by the effect of MWCNTs rather than the compression moulding conditions at higher 

MWCNT loadings. This study may have significant implications for both process control and 

the tailoring of electrical and mechanical properties in the preparation of conductive polymer 

based CNT nanocomposites. 
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