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Forecasting Implied Volatility in Foreign Exchange Markets:

A Functional Time Series Approach

Fearghal Kearney∗ Mark Cummins† Finbarr Murphy‡

23rd February 2016

Abstract

We utilise functional time series (FTS) techniques to characterise and forecast implied volatil-

ity in foreign exchange markets. In particular, we examine the daily implied volatility curves

of FX options, namely; EUR-USD, EUR-GBP, and EUR-JPY. Based on existing techniques in

the literature, the FTS model is shown to produce both realistic and plausible implied volatility

shapes that closely match empirical data during the volatile 2006-2013 period. Furthermore,

the FTS model signi�cantly outperforms implied volatility forecasts produced by tradition-

ally employed parametric models. The evaluation is performed under both an in-sample and

out-of-sample testing framework with our �ndings shown to be robust across various curren-

cies, moneyness segments, contract maturities, forecasting horizons, and out-of-sample window

lengths. The economic signi�cance of the results is highlighted through the implementation of

a simple trading strategy.

Keywords: Exchange rates; implied volatility; forecasting; functional data analysis; functional time

series

JEL Classi�cations: G10; G15; G17

1 Introduction

The Black-Scholes (1973) model assumes that volatility is constant. This assumption, if true,

should result in a �at implied volatility curve; the market's expectation of average price volatility for
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the underlying asset to an option contract between now and its expiry date. Of course in practice,

observed implied volatility di�ers across option contracts, dependent on both moneyness and expiry

date. As well as being a transformation of the option price, and a key parameter in many asset

pricing formulae, implied volatility is of interest due to its informational content (see Corrado and

Miller 2006, Taylor et al. 2010, Muzzioli 2010, and Garvey and Gallagher 2012). Yu et al. (2010)

demonstrate this by �nding superior results using implied volatility to predict future return volatility

of stock index options, when compared to traditional benchmark models in over-the-counter (OTC)

and exchange markets. One such OTC market is that of foreign exchange (FX) options. FX is the

largest asset class in the world with the Bank for International Settlements reporting that trading

levels in FX markets averaged $5.3 trillion per day.1 Many stakeholders are exposed to FX risk

including banks, speculators, traders, multinational �rms, importers, and exporters. Modelling

foreign currency cash �ows, investment decisions, and hedging strategies, are all greatly dependent

on expectations of future FX movements. Our study adds to the existing literature through the novel

proposal of a functional time series-based forecasting model to predict the evolution of the implied

volatility of three major currency pairs. This is achieved by characterising the implied volatility

relationship among option contracts as smooth curves or functions. We not only contribute from an

academic perspective, where insights into the dynamics of implied volatility aid our understanding

of option markets, but also from a market practitioner perspective, by demonstrating the e�cacy

of the approach in a trading context.

Compared to previous studies forecasting the volatility of returns, there is a relative paucity of

literature predicting the evolution of implied volatility. Examples include Gonçalves and Guidolin

(2006), Konstantinidi et al. (2008), Chalamandaris and Tsekrekos (2010), Dunis et al. (2013),

Bernales and Guidolin (2014), and Chalamandaris and Tsekrekos (2014). Gonçalves and Guidolin

(2006), for instance, analyse S&P 500 Index options, using a Dumas et al. (1998) parametric

speci�cation based on moneyness and time to maturity dimensions to characterise the implied

volatility surface. They �nd predictability only on narrow segments of the surface. Konstantinidi

et al. (2008), take a di�erent approach, in that they use a number of economic indicators to

construct a forecasting model that �nds statistically signi�cant predictable patterns in the evolution

of European and U.S. implied volatility indices. Dunis et al. (2013) apply the same economic model

to predict the evolution of implied volatility in the EUR-USD exchange rate, a currency pair which

we also study. They �nd that implied volatility is only predictable at short time horizons of up

to �ve hours ahead. The studies that most closely resemble ours are those by Chalamandaris and

1Bank of International Settlements report available at: http://www.bis.org/publ/rpfx13fx.pdf
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Tsekrekos (2010, 2011, and 2014). Chalamandaris and Tsekrekos (2010) adopt the methodology

of Stock and Watson (2002) to extract latent statistical factors that are then forecast with mixed

results. Chalamandaris and Tsekrekos (2011) extend the Gonçalves and Guidolin (2006) framework

above by explicitly modelling the term structure of the implied volatility surface along the lines

of Diebold and Li (2006). Finally, Chalamandaris and Tsekrekos (2014) compare and contrast

the performance of all three proposed approaches, the principal components model of Stock and

Watson (2002), and the parametric frameworks o�ered in Gonçalves and Guidolin (2006) and

Chalamandaris and Tsekrekos (2011). The primary conclusion from this strand of literature is that

structured parametric forecasting models lead to superior out-of-sample results, a conclusion that

we contest through the use of our �exible functional time series model.

Our functional approach aims to uncover the process underlying a data set and incorporates

the shape of the implied volatility smile into its forecast. By making the simple assumption of

smoothness in the implied volatility smiles, we can produce in�nite dimensional functions that

expose additional dynamics missed by traditional multivariate techniques. Functional time series

analysis also boasts the advantages of being computationally e�cient and of allowing curves to

be evaluated on an arbitrarily �ne grid.2 For these reasons despite being in its relative infancy,

its popularity in terms of �nancial applications is growing. Similar to our paper, Benko et al.

(2009) assume smoothness of the implied volatility smile in order to conduct functional principal

component analysis (FPCA henceforth), analysing similarities in stochastic behaviours between

implied volatility smiles of one and three month option contracts on the German-Swiss exchange

(EUREX). Muller et al. (2011) study high frequency S&P 500 Index levels, and propose a functional

process to characterise volatility trajectories. Their model uncovers patterns in volatility and by

combining it with prediction techniques and functional regression, it can be used to predict future

volatility levels. Kearney et al. (2015) also use the assumption of smoothness in the smile in

order to obtain a measure of implied volatility steepness in oil options using functional techniques.

Other �nancial applications of functional time series include, Kargin and Onatski (2008), Eurodollar

futures; Horvath and Kokoszka (2011), credit card transactions; Kosiorowski (2014), predictions of

economic time series; Shang (2016), intraday S&P 500 index returns. In a related �eld, Antoch et

al. (Prchal, De Rosa, and Sarda 2008), Liebl (2013), and Shang (2013) apply FPCA to electricity

demand forecasting. We also adopt a FPCA framework, speci�cally the methodology of Hyndman

and Shang (2009). Our study is distinct from prior functional time series studies however, in that

2 These and other advantages of FDA are outlined in Ramsay and Silverman (2005).
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we seek to characterise and forecast implied volatility in FX markets. Despite being de�ned in

the functional space, the intuition behind our approach e�ectively builds on elements from popular

implied volatility forecasting models, namely Stock and Watson (2002) and Gonçalves and Guidolin

(2006).

General equilibrium models of the implied volatility surface view its shape as being the result of a

framework that aggregates investor beliefs. Examples include David and Veronesi (2000), Guidolin

and Timmermann (2003), and Garcia et al. (2003). Our functional decomposition is consistent

with these theories as the latent statistical factors we uncover can be interpreted as proxies for

investor uncertainty and learning regarding economic fundamentals that drive the dynamics of the

implied volatility surface. In the empirical analysis the �rst contribution we note is that despite

appearing to su�er from being an unrestricted model the �exible functional time series model

produces realistic and plausible implied volatility surface shapes that mirror market observations

more closely than the much cited parametric models. We show that our proposed functional

time series model outperforms the popular Gonçalves and Guidolin (2006) and Chalamandaris and

Tsekrekos (2011) models with the results being statistically signi�cant in out-of-sample testing.

This is consistent across moneyness levels, forecasting horizons, contract maturities, and multiple

currencies.

As our model is based on latent statistical factors, albeit in a functional context, it provides

evidence against the conclusion in Chalamandaris and Tsekrekos (2014) that structured parametric

forecasting models lead to superior out-of-sample results. A possible explanation for this outper-

formance is the time period analysed; the global �nancial crisis and its aftermath. The primary

models in the literature drew inferences about prescriptive parametric models thriving based only

implied volatility data in the benign period up to January 2007. However our study shows that in

the unstable post-2007 environment the �exibility of the functional time series approach allows it

to adjust more accurately to fast changing investor beliefs, and resultant implied volatility shape.

We further add to the literature by incorporating the use of a contributory data vendor. This miti-

gates the idiosyncratic risk, as highlighted by Chalamandaris and Tsekrekos (2014), associated with

obtaining quotes from a single market participant. The results are of interest to both academics,

given potential market e�ciency implications, and market practitioners, who may seek to exploit

the uncovered patterns.

The remainder of the paper is organised as follows. Section 2 provides a background to the

functional time series methodology and the forecast evaluation procedure. Section 3 introduces

the FX options data set. Section 4 presents and discusses the empirical results, with Section 5

4



concluding the paper.

2 Methodology

2.1 Functional time series

Functional data analysis provides a functional representation of the process underlying a data

set. The functional data methodology has many advantages; it accurately captures implied volatility

dynamics (Benko et al. 2009; Kearney et al. 2015), there is no assumed parametric structure, it

is computationally e�cient, and it results in a process that can be evaluated on an arbitrarily

�ne grid. These and other advantages of functional data analysis are outlined in Ramsay and

Silverman (2005). A subset of the functional data analysis literature examines models of functional

observations that exhibit a temporal relationship; functional time series (FTS). In this paper the

functions are de�ned in the moneyness domain, as we characterise and forecast the evolution of the

implied volatility process. The approach applied here e�ectively blends together elements of two

predominant models in the implied volatility modelling literature; namely, the Stock and Watson

(2002) principal components approach as adopted by Chalamandaris and Tsekrekos (2010), and the

second step of the two-step framework proposed by Gonçalves and Guidolin (2006) and Diebold

and Li (2006).

We begin by outlining the process of producing a functional representation of the individual

implied volatility smiles (and ultimately a constructed implied volatility surface) at each time point

using functional principal component regression from Shang (2013). The approach is similar in

spirit to the Stock and Watson (2002) principal component analysis (PCA) decomposition that is

used for forecasting purposes by Chalamandaris and Tsekrekos (2010). The advantages of PCA is

that it reduces the dimensionality of the data whilst preserving the maximum amount of dataset

information. The most important distinction between this and our functional time series approach

is the concept of smoothness. In line with Benko et al. (2009) and Kearney et al. (2015) we make

the assumption that the implied volatility smile process is both continuous and a smooth curve.3

The assumption helps to ensure the implied volatility surface shape produced is a plausible one.

It allows us to view the discrete implied volatility data as a in�nite dimensional function upon

which we can apply dimension reduction functional principal component regression (FPCR). The

implementation requires slight modi�cation from the traditional multivariate PCA method of Stock

3We only assume smoothness across the implied volatility smile as prior functional data literature has yet to
establish smoothness of the implied volatility surface term structure.
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and Watson (2002) as we will outline.

Firstly, we need to de�ne the problem more explicitly. We have discrete option implied volatil-

ity data observed at a daily frequency for each day t, xt(m). The continuous domain, m, is that

of the moneyness level (in terms of delta) of the option contract. Applying our assumption of

smoothness we seek to uncover a continuous function without jumps, denoted x̃t(m), that charac-

terise (with error) the discretised daily implied volatility smile dynamics. In practice, we observe

{mk, xt (mk)} for t = 1, 2, ..., n and k = 1, 2, ..., q, from which we extract a smooth function x̃t(m),

given by

xt (mk) = x̃t(mk) + σt (mk) εt,k, (1)

where εt,k is an independent and identically distributed standard normal random variable, σt (mk)

allows the amount of noise to vary with mk, and {m1,m2, ...,mq} is the set of discrete delta values.
Given a set of functional data, denoted x̃ (m), where x̃ (m) = [x̃1 (m) , x̃2 (m) , ..., x̃t (m)]

>
, we seek

to produce a realistic reduced form parsimonious model with orthogonal regressors and uncorrelated

regression coe�cients using FPCR.

We will now introduce functional principal component analysis for the reader. FPCA commences

with the search for weight functions, φj(m) , that correspond to probe or functional principal com-

ponent scores, βt,j , with the highest possible levels of variation. To ensure that each new principal

component function captures a distinct mode of variation, they are required to be orthogonal to

those computed previously:

ˆ
φr(m)φl(m)dm = 0 r = 1, ..., l − 1.

In our sample we observe n = 2055 realisations of x̃ (m) evaluated on a compact interval of

delta, m ∈ [5, 95] , for each contract maturity. Therefore, at a sample level, the functional principal

component decomposition can be represented as:

x̃t (m) = ¯̃xt (m) +

J∑
j=1

β̂t,j φ̂j (m) + ε̂t (m) , (2)

where ¯̃xt (m) = 1
n

∑n
t=1 x̃t (m) is the estimated mean function, φ̂j (m) is an estimate of the jth

orthonormal eigenfunction of the empirical covariance operator, de�ned as:

Γ̂ (m) =
1

n

n∑
t=1

[x̃t (m)− ¯̃xt (m)] [x̃t (m)− ¯̃xt (m)] .

The coe�cient βt,j is the j
th principal component score for day t.4 Based on Chalamandaris and

4 Further technical detail of FPCR implementation are provided in Hyndman and Shang (2009).
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Tsekrekos (2010, 2014) who decompose the implied volatility surface into three principal components

we specify J = 3.

The forecasting portion of the functional methodology follows the second step of the Gonçalves

and Guidolin (2006) two-step forecasting method. We explicitly account for the dependency struc-

ture between sequential functional observations by modelling the evolution of the coe�cients as a

univariate time series. Speci�cally, we condition on the observed data,

x̃ (m) = [x̃1 (m) , x̃2 (m) , ..., x̃t (m)]
>, and the �xed functional principal components

Φ (m) =
[
φ̂1(m), φ̂2(m), ..., φ̂J(m)

]>
, to produce the h step ahead forecasts of xn+h (m):

x̂n+h (m) = E [xn+h (m) | x̃ (m) ,Φ (m)] = ¯̃xt (m) +

J∑
j=1

β̂n+h|n,j φ̂j (m) ,

where β̂n+h|n,j denotes the h step ahead forecasts of βn+h,j using an autoregressive univariate model

of order h.

2.2 Forecast evaluation

We assess the forecast performance of the FTS model using the following measures:

1. Mean absolute error (MAE) is the average of the absolute di�erences between the forecast,

x̂t+1(mk), and the corresponding observation, xt+1(mk). It measures the average error mag-

nitude in the forecasts, regardless of error direction and serves to aggregate the errors into a

single measure of predictive power.

MAE =
1

n

n−1∑
i=1

|xt+1(mk)− x̂t+1(mk)| ,

where xt+1(mk) are the observed values and x̂t+1(mk) are the values predicted from the model.

2. Root mean squared error (RMSE) is a measure of the di�erence between values predicted by

a model and realised values. The RMSE is de�ned as the square root of the mean squared

error, and again serves to aggregate the errors into a single measure of predictive power.

RMSE =

√∑n−1
i=1 (xt+1(mk)− x̂t+1(mk))2

n
,

where xt+1(mk) are the observed values and x̂t+1(mk) are the values predicted from the model.
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3. Mean mixed error (MME) is an asymmetric loss function. MME(U) penalises under-predictions

more heavily, while MME(O) penalises over-predictions more heavily. This is very important

for investors in option markets, as an under (over)-prediction of implied volatility is more

likely to be of greater concern to a seller (buyer) than a buyer (seller). The measure has been

employed previously in studies evaluating volatility forecasting techniques such as Brailsford

and Fa� (1996) and Fuertes et al. (2009).

MME(U) =
1

n

 tON∑
t=tO1

|xt+1(mk)− x̂t+1(mk)|+
tUN∑

t=tU1

√
|xt+1(mk)− x̂t+1(mk)|


and

MME(O) =
1

n

 tON∑
t=tO1

√
|xt+1(mk)− x̂t+1(mk)|+

tUN∑
t=tU1

|xt+1(mk)− x̂t+1(mk)|

 ,

where tUN is the number of under-predictions and tON is the number of over-predictions. tO1 ,...,t
O
N

represent the indices of the over-predictions, and tU1 ,...,t
U
N represent the indices of the under-

predictions.

4. The mean correct predictor of direction of change (MCPDC) is the percentage of predic-

tions for which the forecast, x̂t+1(mk), has the same sign as the corresponding observation,

xt+1(mk). MCPDC measures how well the model can forecast the direction of movement,

regardless of error magnitude. It is also employed in Bernales and Guidolin (2014).5

The out-of-sample performance of the FTS prediction is benchmarked against the two leading fore-

casting models used in the literature, namely, Gonçalves and Guidolin (2006) and Chalamandaris

and Tsekrekos (2011). Gonçalves and Guidolin (2006) model daily implied volatility surfaces using

Dumas et al. (1998) parametric speci�cations based on moneyness and time to maturity. Forecasts

of this �tted model are produced by assuming the coe�cients evolve according to standard time

series techniques. A predicted implied volatility surface is then reconstructed using these forecasted

coe�cients. Chalamandaris and Tsekrekos (2011) also adopt the Dumas et al. (1998) parametric

structure but extend their work by stating that the linear approximation of maturity is not suf-

�cient, proposing the use of Nelson-Siegel term structure factors in the spirit of Diebold and Li

(2006) to produce �tted implied volatility surfaces. Again, as in Gonçalves and Guidolin (2006), a

two-step framework is proposed where forecasts are produced by modelling the �tted coe�cients

5Bekiros and Georgoutsos (2008) also incorporate directional metrics when studying the dynamics of the CBOE
volatility index.
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from the �tting stage. Given the success in both Gonçalves and Guidolin (2006) and Chalamandaris

and Tsekrekos (2011) of modelling the coe�cients using a standard univariate autoregressive model

we adopt same. The reader is directed to Chalamandaris and Tsekrekos (2014) for further technical

implementation details for both models. Despite showing promising results in terms of predictable

segments of the implied volatility surface, forecasts from previous models (including Gonçalves and

Guidolin 2006; Konstantinidi et al. 2008; Chalamandaris and Tsekrekos 2010, 2011, and 2014; and

Bernales and Guidolin 2014) have been unable to consistently outperform univariate benchmarks.

For this reason we qualify our functional time series results by implementing the Diebold-Mariano

(1995) test of superior forecasting ability versus an autoregressive benchmark model also.

To control for sensitivity to speci�c out-of-sample periods, various window lengths are tested:

100 day (out-of-sample: July 2013 to November 2013), 200 day (out-of-sample: February 2013

to November 2013), 500 day (out-of-sample: December 2011 to November 2013), and 1000 day

(out-of-sample: January 2010 to November 2013). The out-of-sample forecast, between the end

of the in-sample period and November 2013, are obtained using a recursive scheme. Each day an

additional observation is added to an expanding training window and the models are re-estimated.

This is in line with Chalamandaris and Tsekrekos (2010) who adopt a recursive 1-day strategy

scheme. Konstantinidi et al. (2008) and Gonçalves and Guidolin (2006), also implement out-of-

sample recursive schemes by expanding the training window size at 100-day intervals. We choose

to expand the training set and re-estimate the model at each time step, daily, to incorporate all

available up-to-date information into our prediction. This approach more accurately simulates the

action likely to be taken by a market practitioner who seeks to predict the following day's movement.

The accuracy of these predictions are evaluated using the measures outlined in Section 2.2.

3 Data description

The data set comprises, at-the-money, risk reversal, and butter�y composition implied volatil-

ity quotes for the Euro/United States Dollar (EUR-USD), Euro/British Pound (EUR-GBP), and

Euro/Japanese Yen (EUR-JPY) currency pairs obtained from Bloomberg. These four currencies

represent almost 78% of total global foreign exchange market turnover6 and are also considered

by Chalamandaris and Tsekrekos (2011). Focus on these heavily traded currency pairs minimise

issues around data quality (i.e., stale and out-of-context quotes). They constitute developed pairs

6Bank of International Settlements report available at: http://www.bis.org/publ/rpfx13fx.pdf
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whereby option contracts are the main avenue through which investors exploit the interest rate dif-

ferentials between the di�erent countries. The use of a contributory data vendor such as Bloomberg,

mitigates the idiosyncratic e�ect speci�c to individual market participants providing quotes. This

issue is cited by Chalamandaris and Tsekrekos (2014), with Bloomberg being used to validate their

proprietary J.P. Morgan data set. Through the use of this J.P. Morgan database, Chalamandaris

and Tsekrekos (2014) �nd that implied volatility is more predictable for very liquid currency pairs,

citing EUR-USD as an example. EUR-USD is also the sole focus of the study by Dunis et al. (2013).

Using only option expiry dates of less than a year; constant option maturities of one, three, six,

and nine months showcases the stark improvement of exploiting the information along the implied

volatility smile using our functional techniques. This echoes Chalamandaris and Tsekrekos (2011)

who state that a linear approximation of the implied volatility term structure is unproblematic

when modelling and forecasting future implied volatility movements for options with expiries of

less than a year. It also mitigates any remaining concerns around illiquidity in the less actively

traded long term maturity option contracts. Delta values of 5, 10, 15, 25, 35, 50, 65, 75, 85, 90,

95 are constructed from the at-the-money, risk reversal, and butter�y implied volatility quotes us-

ing the Black-Scholes (1973) and its Garman and Kohlagen (1983) option pricing extension. Log

changes in implied volatility are calculated for the January 2006 to November 2013 period. As

in Chalamandaris and Tsekrekos (2011), we limit our forecast prediction to the surfaces with the

highest levels of liquidity. The most liquid contracts are delta values of 10, 25, 50, 75, and 90. It

is for this reason that our forecasts concentrate on these particular contracts.

4 Empirical results

This section presents the results of modelling the evolution of implied volatility using the functional

time series model (FTS, henceforth), the Chalamandaris and Tsekrekos (2011) model (CT11, hence-

forth), and the Gonçalves and Guidolin (2006) model (GG06, henceforth) for the entire sample,

January 2006 to November 2013. Firstly, the models are �tted in-sample to ascertain how well

they capture the empirical dynamics of the implied volatility surfaces for each currency during the

period. The resultant three-dimensional surfaces are plotted and used as an exploratory tool to

provide an intuitive graphical demonstration of which models best �t the underlying dataset. The

focus of the paper is on analysing the predictive capacity of the models however. To this end, the

in-sample forecasts are initially compared and evaluated using the measures outlined in Section 4.2.
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Figure 1: EUR-USD average observed and �tted implied volatility
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November 2013 period. Option maturity=1 month. �IV� is used as an abbreviation for implied volatility.

Finally, we move to an out-of-sample testing environment where the predictions are analysed across

various contract maturities and moneyness levels. To formally establish if the functional model out-

performs the benchmark models in terms of forecast accuracy, the Diebold-Mariano (1995) test for

superior predictive ability is set out in Section 4.3.

4.1 Model �tting

FTS (equation 2), CT11, and GG06 models are �tted to the underlying implied volatility data

outlined in Section 3, for each day over the full sample of January 2006 to November 2013. Implied

volatility surface graphs averaged over the period are then produced and plotted in Figures 1, 2,

and 3 to facilitate a cross comparison of models.

Firstly, turning our attention to the EUR-USD plots in Figure 1, we analyse the empirically observed
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Figure 2: EUR-GBP average observed and �tted implied volatility
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Figure 3: EUR-JPY average observed and �tted implied volatility
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surface plot in the the top left panel. The underlying pair traded in the $1.15 to $1.60 range over

the period with a high being hit in 2008 and a gradual decrease in the strength of the Euro after

that point. The elevated level of implied volatility, ranging from 10.5% to 13.5% highlights investor

uncertainty about economic fundamentals and related future currency movements. Analysing the

shape, the predominant feature is the asymmetric implied volatility smile. The negative skew,

whereby out of the money (OTM) Euro puts (conversely Dollar calls) demonstrate a much higher

implied volatility than OTM Euro calls (conversely Dollar puts), conveying investor beliefs that the

Euro is set to depreciate versus the Dollar. Scanning the implied volatility surface term structure

we can see that the market's expectation of future realised volatility is even higher for medium

term maturity options, between six and nine months, than for short term options. That being said,

increases in implied volatility occurs most sharply between one and three months maturity, whereas

the rate of increase between higher maturity levels is not as pronounced.

Now that we have examined the dynamics at play in the observed implied volatility data we analyse

how well the various models perform in capturing these dynamics. Firstly, we can see that the skew

in the implied volatility smile is most closely captured by the functional time series model in the

top right panel of Figure 1. The lowest point in the implied volatility smile of the observed data

is at a delta value of greater than 60. The functional time series model mirrors this whereas both

CT11 and GG06 show the 50 delta region as being the lowest point, more in line with traditional

symmetric implied volatility smiles. Comparing the three models in terms of modelling the term

structure shows more subtle di�erences than across the moneyness domain. GG06 use a linear

approximation which, graphically at least, does not appear to be su�cient. CT11 demonstrates the

advantages of a non-linear �t of the term structure, yet it does not capture the shape as accurately

as the FTS model.

Secondly, we focus on the EUR-GBP pair. The underlying pair traded in the ¿0.65 to ¿0.95

range over the sample, however the 2009 to 2013 period is relatively benign, within which Sterling

appreciates slightly reversing some of the depreciation seen during the crisis period. The EUR-GBP

implied volatility surface is depicted in Figure 2. Lower implied volatility levels are observed, with

values ranging from 8.5% to 10%. The observed plot does not exhibit the same negative skew

as exhibited by the EUR-USD surface. The smile observed for EUR-GBP is almost symmetric

with the turning point being located in the ATM 50 delta region. Increased uncertainty for longer

dated maturities is also observed, as in the case of the EUR-USD. Increasing contract maturity

we observe a sharp increase in implied volatility up to six months maturity with a levelling o� of

increases between the six and nine month maturities. The question we now ask is how well do our

14



models capture this implied volatility shape?

The short answer is, rather well. Across the moneyness dimension all three models perform well,

capturing the turning point of the smile and the extreme OTM implied volatilities accurately.

This more traditional shape appears to suit the parametric CT11 and GG06 models, however the

FTS still matches their accuracy (at least in this graphical representation). Analysing the term

structure, GG06 is again let down by approximating only a linear relationship between options of

di�erent maturities, whilst CT11 shows limited deviation from the straight line in this case. The

FTS model on the other hand successfully captures the term structure relationship, demonstrating

a steep incline up to and including six month maturity and less steep thereafter.

Lastly, we analyse the EUR-JPY pair. Over this period the underlying currency rate for EUR-JPY

trades in the 95 Yen to 170 Yen range and exhibits large swings throughout. The implied volatility

surface is shown in Figure 3.. The observed implied volatility data demonstrates a strong negative

skew. This indicates that market expectations over the period are that the Yen will appreciate, in

both short and medium term forecasts. The absolute level of implied volatility for the pair is very

high, with values ranging from 12% to 18%. The empirical term structure is relatively �at showing

that the expectation of JPY appreciation dominates option pricing, having broadly similar a�ects

for all option contracts. All three models perform well in terms of �tting to this data. One criticism

of the CT11 and GG06 models in comparison to the FTS model are that their smile turning points

are at implied volatility levels that are too low when compared to the observed curve whose lowest

implied volatility level is in the 80 delta region. Despite the term structure not being a primary

driver of the shape of the implied volatility surface for this pair, the simplest parametric model,

GG06, thrives in this environment due to it's linear approximation of the maturity.

The aim of these �gures is to provide an intuitive and accessible representation for a general audience

of some of the strengths and weaknesses of each model adopted. In summary, the FTS model

performs well in modelling the dynamics across the moneyness for each of the three currencies. Both

the parametric models from the literature, the GG06 and CT11 underperform, in particular in the

extreme cases of stressed market environments, however, they perform relatively well in modelling

the implied volatility surface of the less volatile EUR-GBP pair. The improvement in term structure

modelling exhibited by the FTS model may surprise some given that both parametric models

simultaneously exploit information from the full implied volatility surface whereas the FTS model

reconstructs the surface by extracting information from isolated smiles separately. We hypothesize

two reasons for this outperformance; �rstly, that the parametric speci�cations characterising the

entire surface, may not be as appropriate under stressed market conditions, and secondly, that the

15



Table 1: In-sample performance measures

Model RMSE MCPDC RMSE MCPDC RMSE MCPDC RMSE MCPDC

1 Month 3 Month 6 Month 9 Month

USD

FTS 0.0377 0.5158 0.0284 0.4925 0.0230 0.4658 0.0223 0.4220

CT11 0.0422 0.4805 0.0753 0.4321 0.1253 0.4406 0.1464 0.4547

GG06 0.0388 0.4591 0.0299 0.4771 0.0241 0.4915 0.0229 0.4767

GBP

FTS 0.0341 0.5164 0.0267 0.4506 0.0230 0.4531 0.0215 0.3767

CT11 0.0407 0.4249 0.0765 0.3664 0.1263 0.3745 0.1476 0.3387

GG06 0.0419 0.4416 0.0351 0.4135 0.0317 0.4226 0.0298 0.3502

JPY

FTS 0.0532 0.4825 0.0400 0.4775 0.0322 0.4607 0.0289 0.4233

CT11 0.0568 0.5041 0.0821 0.4577 0.1313 0.4481 0.1519 0.4539

GG06 0.0657 0.4517 0.0538 0.4659 0.0467 0.4589 0.0439 0.4321

RMSE and MCPDC represent RMSE and MCPDC performance metrics averaged across the delta values available for a one-day ahead

forecast of EUR-USD, EUR-GBP, and EUR-JPY implied volatility data. The period covered is the in-sample of January 2006 to the January

2006 to January 2010 period. The values are provided for the Functional Time Series (FTS), CT11 model, and the GG06 model.. Option

maturities of 1, 3, 6, and 9 months are given separately.

individual contract maturities exhibit bespoke dynamics in this period, a feature that analysing

each smile separately exploits most e�ectively. To ascertain if this �tting accuracy translates into

strong predictive capabilities, we now move to in-sample testing of forecasts to determine if there

is a dependency between implied volatility functions over time.

4.2 In-sample predictions

The promising �tting results for the FTS model across each of the currencies lead us �rst of all, to

test if it can be employed to establish an intertemporal dependency across implied volatility surfaces

on subsequent days. We go about this in two stages, �rstly, we test the predictions produced by our

models in-sample, and secondly, we split the sample into both training and out-of-sample segments

to see how well each performs. We begin by looking at the performance metrics produced from

comparing our forecasts with the actual values.

For brevity, Table 1 lists RMSE and MCPDC values averaged across the implied volatility smile.

Metrics are calculated separately for each of the contract maturities. For one month EUR-USD and

EUR-GBP options the FTS most accurately forecasts based on both direction of change and RMSE

metrics. It correctly identi�es the direction of the subsequent days change in implied volatility in

over 51.50% of cases for these two currencies. The results for the longer dated maturity options also

demonstrate the advantages of adopting the FTS forecasts. The average RMSE �gures seen here
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are consistently lower than those calculated for the one month maturity, and more importantly in

comparison with the other parametric models from the literature the FTS forecasts exhibit a lower

average error. It should be noted however that the GG06 model exhibits strong RMSE metrics

for both six and nine month EUR-USD options, with values of 0.0241 and 0.0223 respectively

(versus 0.0230 and 0.0223 for the FTS framework). Success in terms of minimising error does

not directly map into accurately predicting directional change, as can be see by the FTS model

being out performed by the CT11 model in terms of MCPDC for two nine month maturity options,

namely USD (0.4547 versus 0.4220) and JPY (0.4539 versus 0.4233). In both cases the GG06

model also outperforms the FTS framework in terms of directional forecasting accuracy. The

CT11 model however exhibits average RMSE values that actually increase signi�cantly for longer

maturity options, an indication that the linear approximation of the term structure is su�cient

over this volatile in-sample period of January 2006 to January 2010. The Diebold and Li (2006)

inspired adaptation of the Nelson-Siegel factors do not appear to be as e�ective in the environment

as they might be during a more benign period.

4.3 Out-of-sample forecast evaluation

It is established in the previous section that the FTS model provides a good in-sample �t for

modelling the evolution of implied volatility. We now turn our attention to out-of-sample fore-

casting. A summary of the out-of-sample forecast measures calculated for at-the-money implied

volatility under a recursive parameter estimation scheme and 500 day out-of-sample window length

are presented in Table 2. To assess performance across the implied volatility smile, measures for

one month maturity for other delta values are given in Table 3.7 The results from both tables give

clear indications that the FTS model outperforms the traditionally used GG06 and CT11 models

in forecasting implied volatility out-of-sample over the December 2011 to November 2013 period

where a one-day ahead forecasting horizon is implemented.

Firstly, we analyse Table 2. When conducting a straight comparison of metrics, the FTS model

outperforms in terms of both RMSE and MAE across all currencies and maturity lengths. The

MCPDC results are also positive, specifying that the FTS correctly predicts the direction of implied

volatility change up to 53.40% of the time as seen for one month maturity EUR-USD options.

In the previous in-sample section however, we established that minimising the prediction error

7Other out-of-sample window periods, of 100, 200 and 1000 days, are utilised with similar results obtained.
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Table 2: ATM out-of-sample forecast performance measures

Model RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

USD

1 Month 3 Month

FTS 0.0323 0.0251 0.5340 0.0803 0.0895 0.0243 0.0183 0.4960 0.0641 0.0762

CT11 0.0404 0.0305 0.4820 0.0771 0.1121 0.0717 0.0605 0.4420 0.1736 0.1153

GG06 0.0353 0.0273 0.4860 0.0845 0.0925 0.0275 0.0212 0.4640 0.0732 0.0810

6 Month 9 Month

FTS 0.0193 0.0144 0.514 0.0565 0.0661 0.0176 0.0132 0.4440 0.0520 0.0650

CT11 0.1216 0.0959 0.4580 0.2251 0.1456 0.1441 0.1094 0.4800 0.2462 0.1470

GG06 0.0225 0.0171 0.5080 0.0639 0.0723 0.0200 0.0152 0.5220 0.0594 0.0681

GBP

1 Month 3 Month

FTS 0.0323 0.0246 0.4840 0.0791 0.0881 0.0218 0.0165 0.4940 0.0616 0.0712

CT11 0.0393 0.0303 0.5060 0.0763 0.1125 0.0666 0.0567 0.4480 0.1657 0.1147

GG06 0.0372 0.0291 0.4640 0.0917 0.0940 0.0283 0.0220 0.4580 0.0757 0.0816

6 Month 9 Month

FTS 0.0172 0.0128 0.466 0.0525 0.0626 0.0152 0.0113 0.4900 0.0489 0.0581

CT11 0.1122 0.0886 0.4600 0.2140 0.1408 0.1327 0.1006 0.4860 0.2322 0.1409

GG06 0.0246 0.0189 0.4420 0.0689 0.0750 0.0227 0.0175 0.4660 0.0668 0.0711

JPY

1 Month 3 Month

FTS 0.036 0.0275 0.4860 0.0863 0.0912 0.0253 0.0192 0.4600 0.0675 0.0767

CT11 0.0418 0.0321 0.5080 0.0823 0.1126 0.0808 0.0679 0.4580 0.1858 0.1247

GG06 0.0454 0.0355 0.5140 0.1044 0.1030 0.0369 0.0291 0.4940 0.0925 0.0928

6 Month 9 Month

FTS 0.0194 0.0145 0.4840 0.0578 0.0649 0.0162 0.012 0.4820 0.0519 0.0581

CT11 0.1382 0.1072 0.4860 0.2378 0.1568 0.1637 0.1224 0.5120 0.2589 0.1584

GG06 0.0326 0.0252 0.5040 0.0859 0.0843 0.0301 0.0234 0.4860 0.0830 0.0809

One-day ahead forecasting performance calculated for at-the-money EUR-USD, EUR-GBP, and EUR-JPY implied volatility data under a

recursive out-of-sample parameter estimation scheme and a 500 day out-of-sample window length over the December 2011 to November 2013

period. The values are provided for the Functional Time Series (FTS), CT11 and the GG06 model. Option maturities of 1, 3, 6, and 9 months

are given separately.
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Table 3: One month out-of-sample forecast performance measures

Model RMSE MAE MCPDC MME(O) MME(U) RMSE MAE MCPDC MME(O) MME(U)

USD

10 Delta 25 Delta

FTS 0.0356 0.0275 0.518 0.0842 0.0951 0.0336 0.026 0.51 0.0819 0.0921

CT11 0.0423 0.032 0.51 0.0817 0.1124 0.041 0.031 0.48 0.0785 0.1128

GG06 0.0358 0.0274 0.504 0.0857 0.0927 0.0339 0.026 0.494 0.0827 0.0906

75 Delta 90 Delta

FTS 0.0316 0.0244 0.554 0.0794 0.0874 0.0326 0.0254 0.54 0.0819 0.0898

CT11 0.0394 0.0297 0.484 0.0766 0.1094 0.0396 0.0301 0.518 0.0802 0.1076

GG06 0.0438 0.0344 0.486 0.099 0.1058 0.0545 0.0431 0.474 0.1152 0.1189

GBP

10 Delta 25 Delta

FTS 0.0347 0.0270 0.5760 0.0861 0.0913 0.0326 0.0250 0.5280 0.0794 0.0894

CT11 0.0402 0.0313 0.5300 0.0809 0.1124 0.0392 0.0302 0.5060 0.0765 0.1122

GG06 0.0358 0.0281 0.4580 0.0890 0.0927 0.0334 0.0255 0.4960 0.0819 0.0888

75 Delta 90 Delta

FTS 0.0326 0.0250 0.5400 0.0801 0.0888 0.0360 0.0282 0.5260 0.0904 0.0916

CT11 0.0390 0.0302 0.5240 0.0771 0.1117 0.0403 0.0319 0.5200 0.0835 0.1126

GG06 0.0515 0.0400 0.4960 0.1099 0.1128 0.0701 0.0534 0.4620 0.1317 0.1312

JPY

10 Delta 25 Delta

FTS 0.0383 0.0292 0.5180 0.0889 0.0954 0.0367 0.0277 0.4820 0.0851 0.0926

CT11 0.0434 0.0334 0.5260 0.0889 0.1111 0.0422 0.0321 0.5100 0.0834 0.1113

GG06 0.0385 0.0294 0.4660 0.0903 0.0950 0.0371 0.0280 0.5080 0.0868 0.0925

75 Delta 90 Delta

FTS 0.0369 0.0284 0.5120 0.0883 0.0936 0.0405 0.0309 0.5760 0.0941 0.0961

CT11 0.0420 0.0322 0.5260 0.0831 0.1126 0.0437 0.0338 0.5380 0.0887 0.1126

GG06 0.0747 0.0565 0.5100 0.1405 0.1308 0.1043 0.0778 0.4940 0.1707 0.1579

This table provides one-day ahead forecasting performance calculated for one month maturity EUR-USD, EUR-GBP, and EUR-JPY implied

volatility data under a recursive out-of-sample parameter estimation scheme and a 500 day out-of-sample window length over the December

2011 to November 2013 period. The values are provided for the Functional Time Series (FTS), CT11 model, and the GG06 model. Delta

values of 10, 25, 75, 90 are given separately.
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does not map directly into a particular model displaying outperformance in terms of directional

capabilities. This is seen most prominently for the Japanese Yen, as the FTS model fails to beat the

MCPDC metric of either CT11 or GG06 for any JPY contract maturity.8 Directional predictability

performance for the EUR-USD and EUR-GBP is more in line with the signal given from the strong

RMSE and MAE results however, with near systematic FTS outperformance, apart from MCPDC

for nine month maturity EUR-USD, (FTS 0.4440 versus GG06 0.4800 and CT11 0.5220) and one

month maturity EUR-GBP (FTS 0.4840 versus GG06 0.4640 and CT11 0.5060). This strong

MCPDC result give an indication of the potential pro�tability of implementing a trading strategy

based on the functional time series model, primarily for the EUR-USD and EUR-GBP currencies.

The asymmetric mean mixed error loss functions give an indication of which models systematically

under- and over- predict implied volatility changes. The closer the MME(U) and MME(O) values

for a given model, the lower the level of systematic under- or over- prediction. The MME(O)

and MME(U) results presented in Table 2 indicate that the FTS model has a slight tendency to

under-predict future implied volatility change. The one month maturity EUR-USD MME(O) and

MME(U) values of 0.0803 and 0.0895, respectively, are quite close however, indicating that any bias

is minor. This tendency to under-predict ATM implied volatility is seen systematically across all

currencies and contract maturities tested. The CT11 shows an interesting dynamic also, in that

across all three currencies it under-predicts the ATM implied volatility over the period for the one

month contract maturity, yet it over-predicts the three, six, and nine month contract maturities.

The GG06 model shows ATM under-predictions for both EUR-USD and EUR-GBP currencies,

however for EUR-JPY ATM implied volatilities it show remarkably unbiased predictions, with

MME(O) and MME(U) asymmetric loss �gures of 0.0925 and 0.0928, respectively, for three month

maturity options.

According to Chalamandaris and Tsekrekos (2010), non-uniform trading causes segments of the

implied volatility surface to adjust to information at di�erent rates. For this reason we now turn

our attention to predicting implied volatility across the smile, with performance metrics for the

non-ATM options; 10 delta, 25 delta, 75 delta, and 90 delta, of the one month contract maturity

being shown in Table 3.9 Firstly, we compare and contrast RMSE and MAE metrics across the

three models. Mirroring the outperformance observed for the ATM case we �nd that the FTS

model systematically outperforms across all three currencies. Broadly speaking, FTS exhibits more

8In results available upon request, despite not outperforming the CT11 and GG06 models, the FTS model does
out perform a univariate autoregressive benchmark in terms of MCPDC for all EUR-JPY out-of-sample implied
volatility contract maturities.

9Similar to Table 3 one-day ahead forecast performance metric results of 10, 25, 75, and 90 delta contract for
three, six, and nine month maturities are available upon request.
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striking outperformance versus the two parametric models for higher values of delta (OTM EUR

calls versus OTM EUR puts). One such example of this is the 10 Delta one month EUR-USD

contract (RMSE values of 0.0356, 0.0423, and 0.0358 for FTS, CT11, and GG06 respectively)

versus the 90 Delta one month EUR-USD contract (RMSE values of 0.0326, 0.0396, and 0.0545 for

FTS, CT11, and GG06 respectively). As was observed in the case of the ATM contracts, the FTS

model systematically outperforms in terms of level of MCPDC for both the EUR-USD and EUR-

GBP options. It correctly predicts the direction of implied volatility change up to 57.6% of the

time (as seen for the 10 Delta one month EUR-GBP contract). The results for the EUR-JPY pair

are more mixed however, with the CT11 model outperforming versus the FTS for 10, 25, and 75

delta option contracts. Again this mirrors the results of Table 2 in which we saw that modelling the

intertemporal relationship between implied volatility smiles of EUR-JPY poses more of a di�culty

for the FTS model than modelling the dynamics of EUR-GBP or EUR-USD. When looking at the

asymmetric loss functions we �nd results mirroring the ATM case; the tendency over the period is

for all models to under-predict the observations. The results suggest that the GG06 model is the

least biased, a phenomenon that is most prominent in the 10 delta contracts of the three currencies.

We have successfully compared and contrasted the three models in terms of calculated forecasting

performance metrics. The FTS systematically outperforms CT11 and GG06 for all currencies in

terms of minimising squared and absolute prediction errors. Furthermore, FTS outperforms in

terms of directional accuracy for both EUR-USD and EUR-GBP, however it demonstrates some

under-performance in terms of MCPDC for the most volatile currency, EUR-JPY. We now seek to

formally test if this outperformance is sample speci�c or if we can draw inferences regarding the

entire population. In line with a plethora of forecasting literature we adopt the Diebold-Mariano

test statistic to establish the statistical signi�cance of our �ndings.

We specify the hypotheses as follows:

H0 : θbenchmark − θFTS ≤ 0

H1 : θbenchmark − θFTS > 0

where θFTS is the forecast error for the FTS model, and θbenchmark is the forecast error for a given

comparative benchmark model. The results of the tests for each currency are given in Tables 4, 5,

and 6. For table brevity the θbenchmark and θFTS forecasts are calculated for implied volatility data
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Table 4: Diebold-Mariano Test EUR-USD

FTS V CT11 FTS V GG06 FTS V AR

h=1 test statistic p-value test statistic p-value test statistic p-value

1 month -12.87 0.00 -13.30 0.00 -3.03 0.00

3 month -45.09 0.00 -13.73 0.00 0.66 0.75

6 month -48.17 0.00 -13.83 0.00 -1.11 0.13

9 month -48.21 0.00 -13.69 0.00 3.84 1.00

FTS V CT11 FTS V GG06 FTS V AR

h=2 test statistic p-value test statistic p-value test statistic p-value

1 month -12.27 0.00 -11.24 0.00 -2.35 0.01

3 month -43.03 0.00 -12.41 0.00 -1.65 0.05

6 month -47.35 0.00 -13.70 0.00 -0.09 0.46

9 month -47.87 0.00 -14.84 0.00 -5.20 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=3 test statistic p-value test statistic p-value test statistic p-value

1 month -11.50 0.00 -12.23 0.00 -5.80 0.00

3 month -42.09 0.00 -13.85 0.00 -0.09 0.46

6 month -47.47 0.00 -14.28 0.00 0.43 0.66

9 month -47.68 0.00 -15.56 0.00 -5.07 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=5 test statistic p-value test statistic p-value test statistic p-value

1 month -15.95 0.00 -10.96 0.00 2.79 1.00

3 month -41.67 0.00 -13.05 0.00 1.56 0.94

6 month -47.28 0.00 -13.95 0.00 0.58 0.72

9 month -47.80 0.00 -14.66 0.00 -1.70 0.04

FTS V CT11 FTS V GG06 FTS V AR

h=10 test statistic p-value test statistic p-value test statistic p-value

1 month -15.31 0.00 -12.22 0.00 -4.70 0.00

3 month -42.14 0.00 -13.76 0.00 -2.04 0.02

6 month -47.57 0.00 -13.63 0.00 -1.72 0.04

9 month -47.94 0.00 -14.56 0.00 -2.87 0.00

The table gives the cross model comparison results of applying the Diebold-Mariano (1995) test of predictive ability for h=1, 2, 3, 5, and 10

day ahead forecast horizons under a 500 day out-of-sample window length over the December 2011 to November 2013 period. The data is �rst

aggregated across the implied volatility smile delta values for the EUR-USD currency pair. The values are provided for the Functional Time

Series (FTS), CT11 model, GG06 model, and the autoregressive model (AR). Contract maturities of 1, 3, 6, and 9 months are analysed

separately.
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Table 5: Diebold-Mariano Test EUR-GBP

FTS V CT11 FTS V GG06 FTS V AR

h=1 test statistic p-value test statistic p-value test statistic p-value

1 month -12.58 0.00 -14.00 0.00 -4.98 0.00

3 month -45.57 0.00 -14.69 0.00 -1.37 0.09

6 month -49.23 0.00 -14.99 0.00 -3.09 0.00

9 month -49.27 0.00 -15.36 0.00 -2.69 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=2 test statistic p-value test statistic p-value test statistic p-value

1 month -10.37 0.00 -13.25 0.00 -5.62 0.00

3 month -42.93 0.00 -14.18 0.00 -1.44 0.08

6 month -48.97 0.00 -15.09 0.00 -2.17 0.02

9 month -49.09 0.00 -14.97 0.00 -3.56 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=3 test statistic p-value test statistic p-value test statistic p-value

1 month -12.35 0.00 -12.37 0.00 -8.63 0.00

3 month -42.51 0.00 -13.24 0.00 -2.3 0.01

6 month -48.63 0.00 -14.37 0.00 0.1 0.54

9 month -48.82 0.00 -14.53 0.00 -0.31 0.38

FTS V CT11 FTS V GG06 FTS V AR

h=5 test statistic p-value test statistic p-value test statistic p-value

1 month -19.7 0.00 -14.52 0.00 -0.58 0.28

3 month -43.97 0.00 -14.95 0.00 0.89 0.81

6 month -48.85 0.00 -14.89 0.00 1.3 0.90

9 month -48.92 0.00 -14.83 0.00 -0.02 0.49

FTS V CT11 FTS V GG06 FTS V AR

h=10 test statistic p-value test statistic p-value test statistic p-value

1 month -17.73 0.00 -13.28 0.00 -3.14 0.00

3 month -43.05 0.00 -13.3 0.00 -2.58 0.01

6 month -48.76 0.00 -13.75 0.00 -2.35 0.01

9 month -48.81 0.00 -13.65 0.00 -2.37 0.01

The table gives the cross model comparison results of applying the Diebold-Mariano (1995) test of predictive ability for h=1, 2, 3, 5, and 10

day ahead forecast horizons under a 500 day out-of-sample window length over the December 2011 to November 2013 period. The data is �rst

aggregated across the implied volatility smile delta values for the EUR-GBP currency pair. The values are provided for the Functional Time

Series (FTS), CT11 model, GG06 model, and the autoregressive model (AR). Contract maturities of 1, 3, 6, and 9 months are analysed

separately.
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Table 6: Diebold-Mariano Test EUR-JPY

FTS V CT11 FTS V GG06 FTS V AR

h=1 test statistic p-value test statistic p-value test statistic p-value

1 month -10.29 0.00 -13.86 0.00 -0.02 0.49

3 month -45.1 0.00 -14.34 0.00 0.95 0.83

6 month -47.97 0.00 -14.39 0.00 -0.88 0.19

9 month -47.85 0.00 -14.38 0.00 -0.27 0.4

FTS V CT11 FTS V GG06 FTS V AR

h=2 test statistic p-value test statistic p-value test statistic p-value

1 month -11.28 0.00 -13.79 0.00 2.90 1.00

3 month -43.44 0.00 -13.79 0.00 -0.28 0.39

6 month -47.71 0.00 -13.88 0.00 0.00 0.50

9 month -47.76 0.00 -13.81 0.00 -2.97 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=3 test statistic p-value test statistic p-value test statistic p-value

1 month -12.86 0.00 -13.88 0.00 -1.33 0.09

3 month -44.92 0.00 -14.35 0.00 -1.02 0.15

6 month -47.84 0.00 -14.37 0.00 -2.95 0.00

9 month -47.76 0.00 -14.03 0.00 -2.13 0.02

FTS V CT11 FTS V GG06 FTS V AR

h=5 test statistic p-value test statistic p-value test statistic p-value

1 month -13.45 0.00 -13.52 0.00 -2.87 0.00

3 month -44.36 0.00 -13.74 0.00 -3.95 0.00

6 month -47.78 0.00 -14.09 0.00 -4.39 0.00

9 month -47.75 0.00 -14.18 0.00 -3.71 0.00

FTS V CT11 FTS V GG06 FTS V AR

h=10 test statistic p-value test statistic p-value test statistic p-value

1 month -13.5 0.00 -14.46 0.00 -5.08 0.00

3 month -43.26 0.00 -14.44 0.00 -5.23 0.00

6 month -47.48 0.00 -14.38 0.00 -6.15 0.00

9 month -47.49 0.00 -14.21 0.00 -6.21 0.00

The table gives the cross model comparison results of applying the Diebold-Mariano (1995) test of predictive ability for h=1, 2, 3, 5, and 10

day ahead forecast horizons under a 500 day out-of-sample window length over the December 2011 to November 2013 period. The data is �rst

aggregated across the implied volatility smile delta values for the EUR-JPY currency pair. The values are provided for the Functional Time

Series (FTS), CT11 model, GG06 model, and the autoregressive model (AR). Contract maturities of 1, 3, 6, and 9 months are analysed

separately.
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aggregated across the implied volatility smile for each contract maturity. This approach is similar

to Chalamandaris and Tsekrekos (2014) who report p-values for all moneyness levels but only spe-

ci�c term structure segments. After applying the Diebold-Mariano test procedure, the FTS model

demonstrates truly signi�cant outperformance versus CT11 and GG06 in predicting EUR-USD,

EUR-GBP, and EUR-JPY implied volatility for all 10, 25, 50, 75, and 90 deltas, and all 1, 3, 6, and

9 month option contracts, under the 500 day out-of-sample window period.10 This result provides

statistically con�rmation of the outperformance we observe when comparing out-of-sample fore-

casting performance measure above. To make the comparison with prior literature more complete

forecasting horizons of greater than one-day ahead, h=2, h=3, h=5, and h=10 are adopted. For

these horizons we can also establish, using the Diebold-Mariano test, that statistically signi�cant

FTS outperformance versus CT11 and GG06 exists. Chalamandaris and Tsekrekos (2014) �nd

that none of their proposed implied volatility models outperform the autoregressive benchmark in

forecasts of less than �ve days ahead. This result is mirrored in Konstantinidi et al. (2008) and

Dunis et al. (2013). As a result, in order to provide a further robustness check the performance of

the FTS model is formally tested versus a standard univariate autoregressive model of order equal

to the forecasting horizon. The autoregressive benchmark is applied to individual contracts sepa-

rately. The intuition is that despite not taking account of implied volatility shape, the literature

has shown such univariate models to constitute hard to beat benchmarks. In comparison to other

implied volatility surface models however, our FTS model demonstrates improved performance,

signi�cantly outperforming the AR benchmark at a 10% level in 38 of the 60 cases tested. The

model fails to reject the null hypothesis of equal performance or FTS under-performance in the

remaining 22 cases. Additional testing indicates that the AR benchmark in fact signi�cantly out

performs the predictions from our proposed FTS model in only three cases.

4.4 Trading Strategy

Building on the evidenced predictability of the FTS model, we consider next how to exploit

this information in a way that highlights the economic value of adopting this forecasting approach.

To this end, we implement a stylised options trading strategy experiment designed to exploit the

volatility predictions of the FTS model and we benchmark the performance against the CT11, GG06

and AR models. Following Bernales and Guidolin (2014), we utilise straddle trading strategies for

our analysis as this gives exposure to movements in volatility while protecting against movements

10 Similar results are observed for 100, 200, and 1000 day out-of-sample windows.
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in the underlying FX rates. We proceed as follows. For a given currency pair and given maturity,

we use the day-ahead prediction of the ATM volatility change under the FTS model as a signal

to either buy or sell an ATM-straddle position of corresponding maturity. If the forecast is for

volatility to increase then we go long the ATM-straddle and if the forecast is for volatility to

decrease then we go short the ATM-straddle. As we do this for each of the 1-, 3-, 6- and 9-month

maturities, leading to a portfolio of straddle positions for which we record the net daily return. The

market is assumed frictionless with no transactions costs. The option pricing model of Garman

and Kohlhagen (1983) is used to convert implied volatility quotes to prices, using the appropriate

Euribor, USD Libor and GBP Libor rates as required. We replicate this for each of the CT11,

GG06 and AR models. Consistent with our earlier analysis, we consider 1000-, 500-, 200- and

100-day out-of-sample periods to assess the trading performance.

Following Chalamandris and Tsekrekos (2014), t-test results are presented for the null hypothesis

that the trading strategy pro�ts are a random sample from a normal distribution with zero mean and

unknown variance, against the alternative that the mean is greater than zero. Table 7 summarises

the results. It can be seen (from the results labelled Full Sample) that in the case of EUR-JPY,

the FTS based straddle trading strategy leads to statistically signi�cant pro�tability for each of

the out-of-sample periods considered. Pro�tability is also identifed in the case of EUR-USD for

the 100-day out-of-sample period. In contrast, among the benchmark models, only the EUR-JPY

trading strategy based on CT11 predictions is deemed pro�table with statistical signi�cance and

this is only in the case of the 500-day out-of-sample period. None of the models are e�ective in

trading the volatility of the EUR-GBP FX rate.

While the results appear quite favourable on the performance of the FTS model relative to the

benchmark models, we note in our implementation a small number of large (in absolute terms)

positive and negative trading strategy returns, which correspond to instances where the net value

of the long/short straddle portfolio is very low. The implication of this is that the resulting changes

in volatility over the next days lead to quite distorted returns. Such outliers have a direct impact

on our ability to assess the performance of the trading strategies. We therefore objectively trim

the trading to remove these tail outliers. Speci�cally, we remove 1% of the returns observations for

each out-of-sample period, split equally between the left and right tails. We refer to these updated

samples as the 1%-Trimmed Samples and we re-assess the trading performance based on these

samples. For the FTS model, an improvement in performance is noted with the model predications

leading to statistically signi�cant pro�tability for both the EUR-USD and EUR-JPY across all out-

of-sample periods considered. In contrast, and despite accounting for the potential bias of outlier
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return observations, only the EUR-JPY trading strategy based on CT11 predictions is again deemed

pro�table with statistical signi�cance and this is again for the 500-day out-of-sample period only.

Once more, none of the models are e�ective in trading the volatility of the EUR-GBP FX rate.

The trading strategy results therefore provide incremental support for the e�ectiveness the

FTS forecasting model. The discussion highlights the economic value of adopting this functioanl

forecasting approach. It is important though to qualify the sylised nature of the trading strategy

experiement and note that futher research would be required to comprehensively assess the potential

for non-frictionless real world trading applications, most relevantly in markets with liquid exchange-

based options availability. It is hoped that our work will motive further investigation in this

direction.

5 Conclusion

We propose a functional time series (FTS) framework to characterise and forecast FX option im-

plied volatility. Combining facets of models popular in implied volatility literature, namely Stock

and Watson (2002) and the Gonçalves and Guidolin (2006) two-step forecasting framework we

demonstrate a novel approach to forecasting the curve. Assuming continuous smoothness between

adjacent moneyness points along the implied volatility smile di�erentiates the functional approach

from a traditional discrete multivariate analysis. It also helps to ensure that the surface created is a

plausible one. Parsimony is achieved through the use of functional principal component regression

(FPCR), producing latent statistical factors that e�ciently characterise the implied volatility pro-

cess. Fitting the FTS model to our 2006-2013 data set produces a realistic and plausible implied

volatility surface shape that is consistent with general equilibrium model theory. In comparison

with the leading parametric models in the literature, Gonçalves and Guidolin (2006) (GG06) and

Chalamandaris and Tsekrekos (2011) (CT11), the FTS model provides a superior �t across both

the moneyness and term structure dimension. This is perhaps surprising as the parametric mod-

els simultaneously exploit information from the entire implied volatility surface whereas the FTS

model reconstructs the surface by extracting information from isolated smiles separately. It could

be due to individual contract maturities displaying bespoke and evolving characteristics during the

crisis and post crisis period studied.

A major contribution of the study is that of demonstrating the performance advantage of adopting

the FTS approach to predict future implied volatility movements. The performance of the proposed
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Table 7: Straddle Trading Strategy Testing

1000-day out-of-sample period

Full Sample 1%-Trimmed Sample

USD GBP JPY USD GBP JPY

FTS 1.04 1.05 1.94∗∗ 2.71∗∗∗ 1.06 2.34∗∗∗

CT11 0.76 -1.72 0.70 0.29 -2.06 0.16

GG06 0.13 -0.68 1.10 -0.17 -0.87 0.73

AR -1.49 0.19 0.39 -1.95 -3.22 0.98

500-day out-of-sample period

Full Sample 1%-Trimmed Sample

USD GBP JPY USD GBP JPY

FTS 1.03 1.03 2.43∗∗∗ 2.37∗∗∗ 0.47 2.48∗∗∗

CT11 0.08 -0.06 2.23∗∗ 0.23 -0.24 2.44∗∗∗

GG06 -0.09 -0.53 1.03 -0.03 -0.09 0.96

AR -1.32 1.05 -0.31 -1.18 0.64 -0.65

200-day out-of-sample period

Full Sample 1%-Trimmed Sample

USD GBP JPY USD GBP JPY

FTS 1.02 1.00 2.41∗∗∗ 2.01∗∗ 0.49 2.42∗∗∗

CT11 -1.46 -1.11 1.18 -1.64 -1.57 0.98

GG06 -0.33 -1.09 1.04 -0.32 -0.97 0.79

AR -0.36 1.01 -0.71 -0.31 1.06 -1.21

100-day out-of-sample period

Full Sample 1%-Trimmed Sample

USD GBP JPY USD GBP JPY

FTS 1.75∗∗ 1.01 1.47∗ 1.75∗∗ 1.01 1.47∗

CT11 -1.51 0.12 0.29 -1.51 0.12 0.29

GG06 -0.30 -0.41 -0.43 -0.30 -0.41 -0.43

AR -0.62 1.01 -0.65 -0.62 1.01 -0.65

The table presents the results of the ATM-straddle trading strategies implemented in line with Bernales and Guidolin

(2014) and described in Section 4.4. Following Chalamandris and Tsekrekos (2014), t-test results are reported for the null

hypothesis that the trading strategy pro�ts are a random sample from a normal distribution with zero mean and unknown

variance, against the alternative that the mean is greater than zero. Full Sample refers to the full sample of return

observations in the out-of-sample period. 1%-Trimmed Sample refers to the sample of returns observations that result

from objectively trimming 1% of the returns observations from the full sample, split equally between the left and right

tails. The purpose of the trimming is to remove some noted extreme tail outliers that may e�ect our assessment of the

trading strategy performance. Further discussion on this is given in Section 4.4.
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FTS based model is again benchmarked against the popular GG06 and CT11 models, with RMSE,

MAE, MCPDC, MME(U), and MME(O) measures adopted. The Diebold-Mariano (1995) cross

model predictability test is applied to validate the statistical signi�cance of the FTS outperformance

observed. To increase the robustness of the results various currencies, strikes, maturities, forecasting

horizons, and out-of-sample windows are used.
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