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Abstract. Given the large number of bridges that currently have no instrumentation, there are 7 

obvious advantages in monitoring the condition of a bridge by analysing the response of a vehicle 8 

crossing it. As a result, the last two decades have seen a rise in the research attempting to solve the 9 

problem of identifying damage in a bridge from vehicle measurements. This paper examines the 10 

theoretical feasibility and practical limitations of a drive-by system in identifying damage 11 

associated to localized stiffness losses. First, the nature of the damage feature that is sought within 12 

the vehicle response needs to be characterized. For this purpose, the total vehicle response is 13 

considered to be made of ‘static’ and ‘dynamic’ components, and where the bridge has experienced 14 

a localized loss in stiffness, an additional ‘damage’ component. Understanding the nature of this 15 

‘damage’ component is crucial to have an informed discussion on how damage can be identified 16 

and localised. Leveraging this new understanding, the authors propose a wavelet-based drive-by 17 

algorithm. By comparing the effect of the ‘damage’ component to other key effects defining the 18 

measurements such as ‘vehicle speed’, the ‘road profile’ and ‘noise’ on a wavelet contour plot, it is 19 

possible to establish if there is a frequency range where drive-by can be successful. The algorithm 20 

uses then specific frequency bands to improve the sensitivity to damage with respect to limitations 21 

imposed by Vehicle-Bridge vibrations. Recommendations on the selection of the mother wavelet 22 

and frequency band are provided. Finally, the paper discusses the impact of noise and road profile 23 
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on the ability of the approach to identify damage and how periodic measurements can be effective 24 

at monitoring localised stiffness changes.  25 

 26 

1.0 Introduction 27 

With the increasing interest in drive-by monitoring to identify damage in a bridge, this paper 28 

presents a timely theoretical examination of the merits and potential limitations of the approach. 29 

Here, drive-by monitoring refers to recording vehicle acceleration signals as the vehicle passes over 30 

a bridge and then analysing these signals to identify damage in the bridge. To set the context of the 31 

study this introduction is broken in three sub-sections. Section 1.1 gives a brief overview of the area 32 

of bridge Structural Health Monitoring (SHM), section 1.2 looks specifically at the area of drive-by 33 

inspections and finally section 1.3 describes the objectives of this paper. 34 

 35 

1.1 Bridge SHM   36 

Mufti et al. [1] argue that SHM can reduce the cost of maintenance of existing bridges by providing 37 

owners with information that will enable them to carry out the most effective repair. Vibration-38 

based condition monitoring techniques, typically used in SHM to discern information about the 39 

bridge, have been discussed in several reviews [2, 3]. Essentially these approaches work by tracking 40 

changes in the modal parameters of the structure (e.g. frequencies and mode shapes). The latter are 41 

determined by the physical properties of the structures such as stiffness and mass, therefore any 42 

change in the physical properties (e.g., a localised or global loss of stiffness) will cause detectable 43 

changes in the modal properties [4]. 44 

Damage be can be identified by tracking changes in the natural frequency [5, 6]. However, Salawu 45 

[7] points out that while resonant frequencies have the advantage of being easy to measure, the 46 

disadvantage is that changes in frequency can be due to environmental conditions as well as 47 

damage. Damage can also be identified by analysing the mode shape directly [8, 9] or by tracking 48 

changes in the mode shapes of the structure [10, 11]. Broadly speaking mode shapes are 49 
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significantly less affected by environmental effects than natural frequencies. However, a 50 

disadvantage of mode shape based approaches lies in the requirement of many sensors for an 51 

accurate definition of their shape. Other authors have identified damage in bridge/beam structures 52 

using Finite Element Model (FEM) updating [12, 13]. While FEM updating techniques have been 53 

shown to provide high levels of accuracy, they rely on accurate and sufficient experimental data for 54 

model calibration which sometimes can prove to be difficult or expensive to undertake. Finally, a 55 

number of authors have placed emphasis upon identifying localised damage in a beam from its 56 

response to a moving force. For example, while Zhu & Law [14] and Roveri & Carcaterra [15] 57 

apply wavelet analysis and Hilbert-Huang transform respectively to the mid-span displacement 58 

response, Hester & Gonzalez [16] apply wavelet analysis to the acceleration response, for 59 

identifying the location of damage in a beam.  60 

The aforementioned methods are based on analysis of measurements by sensors installed on the 61 

structure. The difficulty/cost of installing instrumentation (on a signification proportion of the 62 

bridge stock) has led to increased research on drive-by inspection systems. Algorithms using 63 

indirect (vehicle) measurements are based on similar principles as those designed for direct  64 

measurements taken on the bridge. In addition to noise, difficulties associated with monitoring 65 

structures using drive-by systems are mainly twofold: (1) the sensitivity to damage decreases as the 66 

measurement location (i.e., the moving load) moves away from the damaged location, and (2) the 67 

separation of the content related to the bridge from content purely due to vehicle dynamics or road 68 

profile can be troublesome. 69 

1.2 Drive-by Inspections   70 

The increasing amount of research on the use of vehicle vibrations to discern information about the 71 

bridge  is motivated by the large number of bridges that are not instrumented, and therefore the need 72 

for some alternative cost-efficient monitoring method [17]. Previous investigations have focused on 73 

the extraction of bridge frequencies from vehicle measurements [17]. The vehicle operates as an 74 
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exciter of bridge frequencies and the vehicle also receives the bridge vibrations. Theoretical 75 

investigations show that, when tracked over a long period, this information could act as a useful 76 

reference for determining the degradation in stiffness or strength in the structure [18]. Experimental 77 

work by the same research group using a cart fitted with accelerometers towed behind a light 78 

commercial truck corroborates the findings of their earlier theoretical study [19]. A follow up 79 

theoretical study by the same authors examines the relative influence of the various dynamic 80 

parameters of the system on correctly identifying the bridge frequencies of concern [20], and a 81 

subsequent study looked at the effectiveness of different filtering methods to identify bridge 82 

fequencies [21]. Other authors have validated their drive-by algorithms via scaled laboratory 83 

experiments [22-26]. It must be noted that the level of resolution of the spectrum is related to the 84 

time that the vehicle is on the bridge, i.e., frequencies cannot be predicted accurately at high traffic 85 

speeds, and a sufficient level of bridge excitation is needed [27]. Rather than using only changes in 86 

bridge frequency as a potential damage indicator, vehicle measurements are used by Kim et al [25], 87 

Kim et al. [28], Gonzalez et al. [29] and Keenahan et al. [30] to track changes in structural damping 88 

and by Yang et al. [31] and Oshima et al. [32] to extract mode shapes, which can be subsequently 89 

employed for damage detection similarly to bridge SHM. In addition to dynamic characteristics of 90 

the bridge, McGetrick et al. [26] and OBrien et al. [33] demonstrate that a static mechanical 91 

property such as global stiffness can also be obtained from the vehicle response and used for 92 

damage detection purposes. also track changes in the structural damping from vehicle 93 

measurements.  94 

 95 

Using numerical simulations, Nguyen et al [34] are some of the first researchers to show that in 96 

principle drive-by systems can not only be used for identifying global damages (by tracking 97 

parameters such as frequencies or damping), but also localised damage. In particular, they analyse 98 

the body displacement experienced by a 2-axle vehicle crossing a beam using wavelets and they 99 

observe that small peaks in the wavelet coefficients occur as each axle crosses the damaged section 100 
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of the beam [34]. In more recent work, Zhang et al [35] use the acceleration response of a vehicle 101 

(as it crosses the beam) to identify the location of damage in the beam. The method they use to 102 

identify damage is based on using operational deflected shape curvature and they demonstrate the 103 

effectiveness of the approach using both numerical simulaitons and experimental testing. Both 104 

authors [34, 35] report deteoriation in their results as the speed of the vehicle increases. In spite of 105 

all advances in indirect bridge monitoring using passing vehicles, a recent review by Malekjafarian 106 

et al [36] concludes that further investigations on the impact of vehicle speeds, noise and rough road 107 

profiles are needed before drive-by systems can be successfully implemented in practise. The 108 

sections below represent a step forward towards addressing these issues. 109 

 110 

1.3 Aims and scope   111 

This paper carries out numerical simulations of a vehicle crossing a damaged finite element beam 112 

model to examine the merits and potential limitations of the drive-by approach to detect localised 113 

damage in the bridge. The simulated vehicle signals are subsequently analysed to see if damage can 114 

be successfully detected. For this purpose, Section 2 shows that there is a sound theoretical basis for 115 

the approach, i.e. there is a characteristic feature (of bridge damage) in the vehicle response signal 116 

when it passes over a bridge that has experienced a localised loss in stiffness. Section 3 shows that 117 

signal processing can be used to identify bridge damage feature in the axle acceleration signal when 118 

the vehicle axle is modelled as a point force. However, this paper also shows that extracting that 119 

feature using signal processing techniques can be challenging and even infeasible for some 120 

scenarios. Therefore, Section 3 also shows why damage cannot be detected at high vehicle speeds. 121 

Similarly, Section 4 shows how that the inclusion of road profile and noise has a very negative 122 

effect on the ability of the approach to identify damage.  123 

 124 

In summary the research presented in the current paper expands on previous work in three principal 125 

aspects: 126 
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i. The origin and nature of the damage feature as a result of a localised stiffness loss is 127 

characterized. It is demonstrated from first principles why the vehicle response contains a 128 

characteristic feature of bridge damage. The shapes of the feature associated to 129 

displacement, velocity and acceleration responses are illustrated and discussed.  This feature 130 

is used for the reasoning of the limitations of a drive-by system in capturing localised 131 

damage. 132 

ii. Informed by the findings of (i), a signal processing approach using wavelets is proposed to 133 

extract the damage feature from the axle acceleration signal. Specifically a 2D wavelet 134 

analysis approach is used which allows anomalies in the signal to be captured (i.e., including 135 

those associated to weakened sections).  136 

iii. Finally the limitations of drive-by monitoring, particularly in relation to vehicle speed, road 137 

profile and measurement noise are discussed. It is explained why other authors [28, 29] have 138 

observed difficulty in detecting damage as the speed of the vehicle increases. 139 

 140 

In other words, this paper aims to highlight those scenarios where drive-by monitoring is 141 

portentially fesiable and also to identify scenarios were the performance of a drive-by system is 142 

likely to be limited. 143 

 144 

2.0 Demonstrating why the vehicle response contains a characteristic feature of bridge 145 

damage  146 

The purpose of this section of the paper is to demonstrate that if a vehicle crosses a bridge that has 147 

experienced a localised loss of stiffness, the axle response signals (i.e. displacement, velocity and 148 

acceleration signals) will contain a characteristic feature denoting bridge damage.  149 

 150 
When a sprung vehicle is travelling on a general section of roadway, the vertical displacement of 151 

the axle (and its time domain derivatives, i.e. velocity and acceleration) is primarily governed by 152 
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two factors: (i) undulations in the road profile and (ii) the inertial forces in the vehicle-axle system. 153 

On the other hand, when a sprung vehicle is crossing a bridge, the total displacement of the axle (at 154 

time ‘t’) can be thought of as being made up of three displacements due to: (i) road profile (dr(t)), 155 

(ii) inertial forces (di(t)), and (iii) the displacement of the bridge immediately under the axle (db(t)). 156 

From the point of view of bridge damage detection, any information about the condition of the 157 

bridge will be contained in the db(t) part of the axle response signal. Therefore, before trying to 158 

identify bridge damage by analysing the response signal of a crossing axle it is important to 159 

understand how bridge damage manifests in the db(t) part of the axle signal. To be able to focus 160 

exclusively on the db(t) part of the signal, the response of a Finite Element Model (FEM) to a 161 

moving point force (rather than a sprung axle) is simulated. For visualization purposes, this can be 162 

thought of as the displacement experienced by the contact point of the force with the bridge while 163 

crossing it. In particular, section 2.1 describes the formulation of the model and in section 2.2, the 164 

model is used to show how damage in the bridge affects the displacement, velocity and acceleration 165 

experienced by a point force. The findings of section 2.2 are subsequently used to inform the signal 166 

processing carried out in section 4 to identify damage in the bridge by analysing the axle 167 

acceleration response of a sprung mass vehicle model. 168 

 169 
2.1 Description of Finite Element Model 170 

The response of the bridge immediately under a moving point force is theoretically simulated to 171 

demonstrate the existence of a characteristic feature (of bridge damage) in the db(t) part of the axle 172 

signal. The bridge is modelled as a discretised simply supported finite element beam model, and the 173 

response of the beam to a moving load is solved using the matrix differential equation given in Eq. 174 

(1)[37].   175 

 M a(t) + C v(t) + K y(t) = f(t)                                                                         (1)         176 

where y(t) is a vector containing the displacement and rotation of the degrees-of-freedom of the 177 

model, and v(t) and a(t) their velocities and accelerations respectively. M, C and K are the 178 
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consistent global mass, global damping and global stiffness matrices of the bridge. Damping is 179 

typically low in bridges and its effect on the forced response is neglected here. The bridge model is 180 

composed of 40 1D discretised beam elements that are assembled into the global matrixes. The 181 

elemental stiffness and mass matrices for 1D beam elements are well known and can be found in 182 

various text books (e.g. [38]). The Wilson-theta method is the numerical integration technique used 183 

to solve Eq. (1) [16] with a time step ∆t of 0.0005 seconds. 184 

 185 

Localised damage is introduced in the FEM via a localised loss of stiffness in the vicinity of a 186 

simulated crack. The stiffness reduction method proposed by Sinha et al [12] is used in this paper to 187 

model the effect of a crack. This method assumes a gradual loss of bending stiffness that extends 188 

1.5 times the depth of the beam at both sides of the crack (Fig. 1). Earlier work on damaged beams 189 

has looked at rectangular beams, where the ratio of crack height (h) to beam depth (d) (denoted as 190 

delta in this paper) has often been used to portray the severity of the damage, e.g. [14, 34]. Using 191 

delta as a measure of damage severity preserves consistency with previous published work and 192 

permits meaningful comparison of results. Delta values of 0.1 and 0.2 signify 73% and 51% 193 

respectively of the 2nd moment of area of a healthy rectangular section. The same equivalency 194 

between delta and associated percentage of the healthy 2nd moment of area value is preserved for 195 

the beam sections used in this paper. The response of the damaged beam to a moving load are found 196 

to concur with those published by [14, 39].  197 

 198 

[Insert Fig. 1] 199 

The bridge modelled in this paper has a span length of 40 m and a width of 15 m. The cross-200 

sectional properties are based on 10 SY6 precast concrete beams spaced at 1.5 m centres with a 195 201 

mm thick deck slab. This type of cross section is typical of  that used in a modern highway bridge 202 

of the same dimensions and results in an inertia of 6.02 m4 and a cross-sectional area of 10 m2. A 203 
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Young’s modulus of 3.5x1010 N m-2 is adopted which leads to a first natural frequency of 2.88 Hz 204 

for the healthy structure.  205 

 206 

2.2 Components of Bridge Response  207 

The axle acceleration signal of a sprung vehicle is influenced by both the vehicle and bridge 208 

responses. To understand the type of vibrations the bridge imparts to the axle, it is useful to 209 

examine the theoretical vibrations in increasing order of complexity, i.e., in this section those 210 

vibrations experienced by a simple point force crossing a damaged bridge are examined first (Or 211 

more specifically, the vibrations experienced by the point of the bridge deck immediately 212 

underneath the force are examined). The y-axis of Fig. 2(a) shows the displacement under a 213 

constant force of 5 tonnes as it crosses the bridge at 6 ms-1, i.e., it is a plot of the bridge 214 

displacement  immediately under the point load for every timestep. The bridge has a crack at the 1/3 215 

point of the span with delta equal to 0.3. The x-axis in the figure shows the normalized position of 216 

the force on the bridge (x(t)/L equal to 0 and 1 when the force is at the start and end of the bridge 217 

respectively. Figs. 2(b) and 2(c) show the velocity and acceleration immediately under the force. 218 

These are obtained by differentiating the displacement shown in Fig. 2(a) once and twice 219 

respectively with respect to time.  220 

 221 

To understand why there is a characteristic damage feature in the displacement response as a force 222 

crosses  the damaged bridge, it is useful to break the total displacement response under the point 223 

load (Fig. 2(a)) into a number of components, namely ‘H static’, ‘dynamic’ and ‘damaged’ (see Fig. 224 

2(d)). The corresponding components of the velocity and acceleration signals are shown in Figs. 225 

2(e) and (f) respectively. The meaning of the components in Fig. 2(d) can be understood as follows. 226 

‘H static’ is the response that would be observed under the point load if the bridge was healthy and 227 

the load was moved incrementally across the bridge and applied statically at each discreet location. 228 
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‘damage’ is the difference between the static response of the damaged and healthy structures, and it 229 

is found by subtracting ‘H static’ from ‘D static (where ‘D static’ is the response observed under the 230 

point load as it is moved incrementally and applied statically across the structure when the bridge is 231 

damaged). Finally ‘dynamic’ response is due to inertial forces and it is calculated by subtracting ‘D 232 

static’ from the total response. It is acknowledged, that here the ‘dynamic’ component has healthy 233 

and damaged contents, while the healthy and damaged contents of the static component have been 234 

separated into ‘H static’ and ‘damage’ sub-components respectively. Certainly, the frequencies 235 

associated to the ‘dynamic’ component will change as a result of a localized damage, however, 236 

large severity damage levels and ideal conditions (low speed for high resolution, smooth profile, 237 

clear gaps between vehicle and bridge frequencies, etc.) are necessary for damage to become clear 238 

in the spectrum recorded by a drive-by system. Therefore, the ‘damage’ component is used here as 239 

reference to evaluate the ability of the drive-by system to capture a localized damage in the time 240 

domain. 241 

[Insert Fig. 2] 242 

 243 

It should be noted that the ‘damage’ component of Fig. 2(d) is quite small compared to the ‘H 244 

static’ component and that the maximum value of the ‘damage’ component occurs when the force is 245 

at 0.33L, i.e., over the damaged section. If the ‘H static’, ‘damage’ and ‘dynamic’ components of 246 

displacement in Fig. 2(d) are added together, the result is the displacement signal shown in Fig. 247 

2(a). Fig. 2(e) shows the three components of the velocity response, which are obtained by 248 

differentiating the relevant components of displacement with respect to time. Similarly, the three 249 

components of the acceleration signal (Fig. 2(f)) are established by differentiating the relevant 250 

components of the velocity signal.  The sum of the three components in Figs. 2(e) and (f) is equal to 251 

the corresponding total response shown in Figs. 2(b) and (c) respectively. It can be seen that as the 252 

order of differentiation increases, the ‘dynamic’ component becomes progressively larger with 253 

respect to ‘static’ and ‘damage’ components which are more difficult to distinguish. In the case of 254 
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acceleration, the ‘H static’ and ‘damage’ components are very small relative to the ‘dynamic’ 255 

component, thus, they practically look like straight lines in Fig. 2(f). However, a plot of Fig. 2(f) at 256 

the magnified scale of Fig. 3 shows that the ’H static’ and ‘damaged’ components of acceleration 257 

are not straight lines. Once the load enters the bridge, the ‘H static’ component (or acceleration due 258 

to the static displacement of the point of contact of the load with the bridge) gradually increases 259 

until it reaches a maximum when the load is at mid-span, and then it gradually decreases as the load 260 

moves toward the support. In contrast, the ‘damage’ component shows a clear peak when the load is 261 

over the damage location. Essentially the ‘damage’ component is the characteristic damage feature 262 

to be sought in vehicle acceleration signals. This paper looks at how this ‘damage’ feature might be 263 

extracted from the vehicle acceleration signal using signal processing and the logistics of doing this 264 

are discussed in section 3.  265 

 266 

[Insert Fig. 3] 267 

 268 

3.0 Detecting bridge damage using wavelets when the vehicle is modelled as a point load 269 

The previous section has shown that the acceleration experienced by a point force crossing a bridge 270 

will contain a characteristic damage feature (i.e., a ‘damage’ component) if the bridge has 271 

experienced a localized loss in stiffness. Ultimately, the objective of this paper is to examine the 272 

feasibility of identifying this damage feature by analysing the axle acceleration signal of a crossing 273 

vehicle as reported in section 4. However, before moving on to axle acceleration signals (from a 274 

sprung vehicle model) it is informative to start with signals similar to those shown in Fig. 2, i.e. 275 

acceleration signals experienced by a point force crossing a bridge. These signals, referred here as 276 

‘point force’ acceleration signals, and it is these kind of signals that are analysed in this section.  277 

These ‘point force’ acceleration signals are, in effect, the acceleration under the point force while 278 

moving across the bridge. They are used as a simplified analogue of the axle acceleration of a real 279 
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vehicle. However, it is important for the reader to understand that this is an approximation, i.e. the 280 

‘point force’ acceleration is not the same thing as an axle acceleration signal. Here they are used to 281 

represent an ideal situation where the axle acceleration of a vehicle is affected only by its speed and 282 

by the deformation of the bridge due to the external applied force and the internal inertial forces of 283 

the bridge. I.e., this ‘point force’ model ignores the dynamic component of the axle force. It is 284 

acknowledged that, in reality, the force exerted by an axle is made of two components: a static 285 

component that remains constant and a dynamic component that varies as a result of interacting 286 

with the road irregularities and with the bridge. Therefore, this simplified model serves the purpose 287 

of highlighting limitations of drive-by monitoring, without the interference of vehicle dynamics that 288 

will tend to hinder any signs of bridge damage. In Section 4, a Vehicle-Bridge Interaction (VBI) 289 

simulation model is employed to generate more realistic acceleration signals that allow assessing 290 

the impact of the road profile and the dynamic characteristics of the vehicle on damage detection.                  291 

 292 

Even when dealing with point force acceleration signals (rather than the more complicated sprung 293 

axle accelerations), identifying damage can be a challenging task because ‘as seen in Fig. 2(f)’ the 294 

amplitude of the ‘damage’ component is very small relative to the ‘dynamic’ component and 295 

therefore the identification of damage in the point force acceleration signal (shown in Fig. 2(c)) is 296 

less than obvious. Therefore if the ‘damage’ feature is to be extracted from the point force 297 

acceleration response, some form of signal processing is required. To demonstrate the nuances of 298 

the challenge involved in extracting the damage feature, the authors needed to choose a signal 299 

processing technique. Ultimately, this paper uses wavelets for signal processing as they are 300 

effective at analysing local zones of a larger signal and they have already been successfully applied 301 

to similar SHM applications [14, 16, 34]. The authors are not necessarily arguing that wavelets are 302 

the best approach for this problem as in principle, other time-frequency methods could have been 303 

employed (e.g., Hilbert Huang transform). However, the type of limitations experienced by wavelet 304 
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analysis (which are shown later in the paper) are equally relevant to other signal processing 305 

techniques that could be used. Section 3.1 shows how wavelet analysis can be applied to damage 306 

identification, section 3.2 provides a brief discussion on wavelet selection and finally, section 3.3 307 

demonstrates why damage cannot be identified at some vehicle speeds.     308 

 309 

3.1 Using Wavelets to Identify Bridge Damage in Vehicle Accelerations.  310 

Wavelet analysis was developed to give better frequency-time information about a signal than 311 

traditional transforms such as the Fourier Transform. Hou et al [40] give some useful examples that 312 

illustrate the capacity of the wavelet transform to capture frequency-time information. A description 313 

of the most common wavelets and a rigorous mathematical definition of wavelet analysis is given in 314 

the literature [41-43], while a practical review of the uses of the wavelet transform in the field of 315 

SHM is given in [44].  316 

 317 

In practical terms, a wavelet transform is implemented as follows: The wavelet of scale s1 is 318 

compared to a section of the start of the time series signal y(x), and a wavelet coefficient Y(x1,s1) is 319 

calculated. Y(x1,s1)s represents how similar the wavelet is to the start of the signal y(x), the greater 320 

the similarity the larger the value of Y(x1,s1)i. Then the wavelet is moved to the next section of y(x) 321 

and the next wavelet coefficient Y(x2,s1)is calculated. The entire length of the signal is checked in 322 

this way resulting in a plot of wavelet coefficients versus time. Subsequently the wavelet is scaled 323 

(i.e., stretched) and the process is repeated, resulting in wavelet coefficients Y(x1,s2), Y(x2,s2), 324 

Y(x3,s2), etc. Ultimately, the wavelet transform calculates a wavelet coefficient for each scale at 325 

each point in time. If the wavelet transform is applied to a continuous time series signal, the result is 326 

a 3-dimensional surface. If plotted in 3 dimensions, time and scale can be represented on two 327 

mutually perpendicular horizontal axes, and wavelet coefficient on the vertical axis. This 3D 328 

wavelet surface is commonly represented as a 2D contour plot.  329 

 330 
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Fig. 4(a) shows the result of performing a wavelet transform on the acceleration signal of Fig. 2(c) 331 

using the Mexican hat wavelet (the reason for choosing the Mexican Hat wavelet is discussed in 332 

section 3.2). As before, the horizontal axis gives the normalised position of the load on the bridge 333 

(x(t)/L). The vertical axis on the left shows the range of scales used in the wavelet transform. The 334 

magnitude of the absolute value of the wavelet coefficient (Y(xi,sj)) at a given scale, (sj), for a 335 

particular location of the load (xi) is indicated using colour, with a lighter colour indicating higher 336 

values of wavelet coefficient. The axis on the right shows the pseudo frequency corresponding to 337 

the scales shown on the axis on the left. Scale is related to pseudo frequency using Eq. (2),  338 

 339 

                                            Fs = Fc / sΔ                                                   (2)  340 

 341 

where Fs is the pseudo-frequency corresponding to scale s in Hz, Fc is the centre frequency of the 342 

wavelet in Hz (For the Mexican Hat wavelet Fc=0.25 Hz), s is the scale of the wavelet, and Δ is the 343 

sampling period used to record the signal (Δ=0.0005 seconds in this simulation).  344 

 345 

In Fig. 4(a), it is evident that at a scale of approximately 173 (corresponding to a pseudo-frequency 346 

of 2.88 Hz), there is a series of high values for the wavelet coefficients. The latter is the 1st natural 347 

frequency of the bridge. At scales of 500-1300, there are high wavelet coefficients at the edge of the 348 

plot, these being boundary effects due to the finite length of the input signal. In the same 500-1300 349 

scale range, high values of wavelet coefficient are found when the load is at x(t)/L=0.33 (i.e., when 350 

the load crosses the damage). Fig. 4(b) shows the wavelet transform of the acceleration signal under 351 

a point load crossing a healthy bridge at 6 ms-1. This time, in the range of scales 500-1300, apart 352 

from the boundary effects at the edge of the plot, there is an absence of high wavelet coefficients.  353 

[Insert Fig. 4] 354 

 355 
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The increase in the values of wavelet coefficient as the load passes over the damaged section can be 356 

seen more clearly by examining a specific scale (note this is essentially taking a section through the 357 

contour plots shown in Fig. 4). Fig. 5 shows the wavelet coefficients at a scale of 700 for both the 358 

healthy and damaged bridges. The dashed plot in Fig. 5 is the result of analysing the acceleration 359 

signal shown in Fig. 2(c) with the Mexican hat wavelet at a scale of 700. There is a clear peak at 360 

x(t)/L=0.33 that demonstrates the ability of the wavelet transform in detecting the ‘damage’ 361 

component of the acceleration signal. The solid plot in Fig. 5 is the result of analysing the 362 

acceleration response under the point load when it traverses the healthy bridge at a speed of 6 ms-1. 363 

This time there are no peaks in the plot, i.e. there is no ‘damage‘ component in the acceleration 364 

signal.  365 

[Insert Fig. 5] 366 

 367 

Fig. 5 shows the results for a healthy bridge and a bridge that has a single damage (delta=0.3) at 368 

x(t)/L=0.33. Provided the damage locations are sufficiently far apart, it is possible to identify 369 

multiple damage locations. The solid black plot in Fig. 6 (delta=0.0) shows the results observed 370 

when the bridge has no damage, (i.e., this is a reproduction of the delta=0.0 plot from Fig. 5). The 371 

dashed plot in Fig. 6 shows the results of anaysing the ‘point force’ acceleration signal when the 372 

load crosses a bridge that has a delta=0.2 crack at x(t)/L=0.25 and a delta=0.1 crack at x(t)/L=0.75  373 

(The wavelet scale used in the analysis is 700 and the speed of the point force is 6 m s-1).  In the 374 

figure, it can be seen that the peaks in the dashed plot occur at the damage locations, namely 375 

x(t)/L=0.25 and x(t)/L=0.75. Moreover, the height of the peaks is proportionate to the severity of 376 

the damage, with the peak for the damage of delta=0.2 (@0.25L) being larger than peak 377 

corresponding to a damage of delta=0.1 (@0.75L).  The heavy solid plot in Fig. 6 shows the results 378 

of anaysing the ‘point force’ acceleration signal when the load crosses a bridge that has a delta=0.1 379 

crack at x(t)/L=0.4 and a delta=0.2 crack at x(t)/L=0.6. Again the peaks occur in the correct location 380 

and the height of the peaks is proportionate to the severity of damage. Simulations that had the 381 
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damage locations even closer together were carried out, however, when the distance between the 382 

damages is less than approximately 0.2L, identifying the location of each individual damage 383 

became less reliable.  384 

 385 
[Insert Fig. 6] 386 

 387 

While the figures shown so far are somewhat simplified in the sense that the signals were produced 388 

using a simple moving constant load model, they are useful to demonstrate the fundamental 389 

principles behind detecting bridge damage by carrying out a wavelet analysis on the vehicle 390 

acceleration signal. The lessons learned at this preliminary stage will later be exploited when trying 391 

to detect damage in the more realistic situation of a vehicle interacting with the bridge while 392 

travelling over a rough profile.  393 

 394 

3.2 Wavelet selection 395 

The previous section shows that the Mexican Hat wavelet can be used to identify bridge damage 396 

when analyzing ‘point force’ acceleration signals. Essentially, there are two reasons for selecting 397 

Mexican Hat wavelet. Firstly, the Mexican hat wavelet has been used successfully by other authors 398 

[14, 16] to identify bridge damage when analyzing directly measured bridge acceleration response 399 

to a moving load, therefore applying them to the axle acceleration signal of a crossing vehicle 400 

seemed like a sensible approach. Secondly, the shape of the Mexican had wavelet (shown in Fig. 401 

7(a)) is somewhat similar to the shape of the damage feature in Fig. 3, and it was felt that using an 402 

analysing wavelet similar in shape to the feature to be identified increased the probability of 403 

identify the damaged feature. Fig. 7(b) shows the Gauss 2 wavelet, which due to its relativity 404 

similar shape to the damage feature in Fig. 3, is also expected to be a suitable wavelet. For 405 

comparison purposes, Fig. 7(c) shows the Gauss 8 wavelet, which due to its shape it is considered 406 

unlikely to be as effective at identifying damage as the Mexican Hat or Gauss 2 wavelets. To 407 

illustrate this point, Fig. 8 shows the result of analyzing the point force acceleration signals shown 408 
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in Fig. 2(c) with the three different wavelets shown in Fig. 7 (Note, the bridge used to generate the 409 

signal in Fig. 2(c) has a damage of delta=0.3 at x(t)/L=0.33).   410 

 411 

When discussing Fig. 4, it has been explained that damage needs to be captured in the range of 412 

scales above the bridge natural frequency. For the Mexican hat wavelet, it was shown in Fig. 4 that 413 

this zone existed between scales of 500-1300, which corresponded to pseudo frequencies of 1 Hz to 414 

0.38 Hz. To make a fair comparison between the three wavelets bases (Mexican Hat, Gauss 2 and 415 

Gauss 8). the scales used for the Gauss 2 and Gauss 8 wavelets (950 and 1300 respectively) 416 

correspond to pseudo frequencies in the range 1 Hz to 0.38 Hz. The dashed plot in Fig. 8 shows the 417 

wavelet coefficients obtained when the signal is analysed with the Mexican Hat wavelet at a scale 418 

of 700 (essentially this is a reproduction of the dashed plot shown in Fig. 5). The solid plot in the 419 

figure shows the wavelet coefficients obtained when the signal is analysed with the Gauss 2 wavelet 420 

at a scale of 950. Similar to the Mexican hat wavelet, the Gauss 2 wavelet clearly identifies the 421 

damage. Overall the shape of the plot for Gauss 2 resembles the plot for Mexican Hat which is not 422 

surprising as both wavelets are very similar.  Finally the heavy solid plot in Fig. 8 shows the result 423 

when the signal is analysed with the Gauss 8 wavelet at a scale of 1300. Although the damage peak 424 

is still evident, this time it is less distinct than it was for Mexican hat and Gauss 2. The plots in Fig. 425 

8 demonstrate that the closer the shape of the analyzing wavelet is to the shape of the damage 426 

feature, the better the chance of the wavelet identifying the damage. The analysis in Fig. 8 also 427 

shows that either Mexican Hat or Gauss 2 wavelets would be suitable for detecting bridge damage 428 

in axle acceleration signals, however for consistency with previous published work it was decided 429 

to move forward using Mexican Hat wavelet.   430 

 [Insert Fig. 7] 431 

 432 

[Insert Fig. 8] 433 

 434 
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3.3 Impact of Load Speed on the Range of Scales where Damage can be Detected 435 

The plots in Fig. 4 are for a load speed of 6 ms-1 and it can be seen that there is a broad range of 436 

scales (500-1300) that can be used to identify damage. However, it is important to understand that 437 

the frequency of the ‘damage’ component is affected by the speed of the load. Fig. 9(a) shows the 438 

theoretical ‘damage’ component of the acceleration signal for load speeds of 6, 12 and 24 ms-1. It 439 

can be seen that the basic shape of the ‘damage’ component is the same for all speeds. However, as 440 

the speed of the load increases, the amplitude increases and more importantly the signal shortens in 441 

the time domain, leading to a higher frequency content. Figs. 9(b)-(d) show the wavelet transform 442 

of the ‘damage’ components shown in Fig. 9(a) (i.e. for load speeds of 6, 12 and 24 ms-1). It can be 443 

seen that the scales at which damage can be detected get progressively lower as the speed of the 444 

load increases. For a load speed of 24 ms-1, the wavelet coefficients of the ‘damage’ component 445 

occupy a range of scales 100-400, which is within the range of scales occupied by the first natural 446 

frequency of the bridge (see Fig. 4). The significance of this is that, for sufficiently high load 447 

speeds, the ‘damage’ component will have the same frequency as the (much larger) ‘dynamic’ 448 

component (Fig. 2(f)). As a result, the wavelet transform will not be able to distinguish between the 449 

‘damage’ and ‘dynamic’ components to identify damage. 450 

[Insert Fig. 9] 451 

 452 

4.0 Detecting bridge damage using wavelets when vehicle is simulated using a 2-axle sprung 453 

model   454 

From a theoretical point of view, the analysis in sections 2 and 3 demonstrates the nature of the 455 

characteristic damage feature and shows how one might go about detecting it. It also demonstrates 456 

the practical limitations of a high vehicle speed (i.e., damage feature hindered by a main frequency 457 

of the bridge). However, it is important to remember that in the previous sections, the vehicle axle 458 

was modelled as a point force and it does not take into account that the vehicle axle is part of a 459 

larger vehicle system, including the influence of a rough road profile, vehicle dynamics, dynamic 460 
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interaction with the bridge and noise. Section 4.1 describes the VBI model that will be used to 461 

address these issues. Section 4.2 demonstrates the difficulties experienced when trying to detect 462 

bridge damage by analysing acceleration signals that allow for vehicle oscillations excited by the 463 

movement of the bridge (i.e., the ‘damage’ feature needs to be isolated not only from the modes of 464 

vibration of the bridge as in Section 3, but also from modes of vibration of the vehicle). These 465 

difficulties get more serious in section 4.3 when a road profile is used to further excite the vehicle 466 

(i.e., road, vehicle and/or bridge frequencies corrupt most of the frequency range where the 467 

‘damage’ feature can be captured). An approach is suggested to overcome some of these difficulties 468 

and its sensitivity to noise, which masks the ‘damage’ feature even further, is discussed in section 469 

4.4.          470 

 471 

4.1 Description of Vehicle-Bridge Interaction (VBI) Model.  472 

The half-car vehicle model used in the simulations is shown in Fig. 10. It has 4 degrees of freedom, 473 

namely a vertical displacement for each of the two axles (y1 and y2), as well as the bounce (yb) and 474 

pitch (φp) of the body mass [16, 45]. The body has moment of inertia Ip for pitch and mass mb that is 475 

supported on two suspension assemblies (one per axle) that have stiffness Ks(1,2) and damping 476 

coefficient Cs(1,2). The mass of the wheel/axle assembly is mw and finally the tyre is modelled as a 477 

spring with stiffness Kt(1,2).  478 

[Insert Fig. 10] 479 

 480 

Table 1 provides the parameters of the vehicle [46, 47]. The natural frequencies of the vehicle for 481 

bounce, pitch, and front and rear axle hops are 1.43 Hz, 2.07 Hz, 8.60 Hz and 10.22 Hz 482 

respectively. Pitching and rolling body frequencies are between 1.5 Hz and 4.5 Hz and hopping axle 483 

frequencies between 8 Hz to 16 Hz, in agreement with typical values published by [48]. However, 484 

vehicle weights and stiffness may vary with respect to the selected values. If the changes in weight 485 

and stiffness of the vehicle were significant, they could affect the frequency of the vehicle-bridge 486 
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system [49]. The bridge response will increase with vehicle weight, therefore, the relative increment 487 

in the static component of the bridge response will be more significant than the relative increment in 488 

dynamic component. The latter is corroborated by Cantero et al. [46] and González et al. [50]  489 

among others, who note that dynamic amplification factors associated to heavier vehicles are 490 

generally smaller than those associated to lighter vehicles. This paper has provided evidence on 491 

how the dynamic component will likely mask a localized damage, and hence, the lighter the vehicle, 492 

the more difficulties will be found in locating damage. In the case of a vehicle using high stiffness 493 

tires, the crossing over a localized bridge damage will be felt strongly leading to a more favorable 494 

scenario for damage detection than low stiffness tires. The advantages of high values of vehicle 495 

mass and stiffness in drive-by are highlighted by results from lab experiments reported by [24-26]. 496 

They test drive-by monitoring via scaled physical models with high vehicle to bridge mass ratios 497 

and high vehicle stiffness compared to full scale structures, and they achieve levels of accuracy that 498 

have not been demonstrated in the field yet. 499 

Table 1. Parameters of vehicle model. 500 

Dimensional Data    

dimensions (m) wheel base (D) 5.5 
 dist from centre of mass to front axle (D1) 3.66 
 dist from centre of mass to rear axle (D2) 1.84 
   

Mass and Inertia    

mass (kg) front wheel/axle mass (mw1) 700 
 rear wheel/axle mass (mw2) 1,100 
 sprung body mass (mb) 13,300 
inertia (kg m2) pitch moment of inertia of truck (Ip) 41,008 

   

Suspension    

spring stiffness (kN m-1)  front axle (Ks1) 400 
 rear axle (Ks2) 1,000 
damping (kN s m-1) front axle (Cs1) 10 

rear axle (Cs2) 10 
tyre stiffness (kN m-1) front axle (Kt1) 1,750 
 rear axle (Kt2) 3,500 
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 501 

Modelling the response of a VBI system is complex as there are two sub-systems (the moving 502 

vehicle and the bridge), that interact with each other via the contact forces that exist between the 503 

wheels and the bridge surface. Therefore, the problem is coupled and time dependant [51]. It is 504 

necessary to solve both subsystems while ensuring compatibility at the contact points (i.e., 505 

displacements of the bridge and the vehicle being the same at the contact point of the wheel with the 506 

roadway) [52]. In this paper, the response of each subsystem is solved independently using an 507 

iterative uncoupled procedure that ensures force equilibrium and geometric compatibility at each 508 

point in time [53-56].  509 

 510 

4.2 Testing damage detection in axle accelerations from VBI model with a smooth road 511 

profile.  512 

Fig. 11(a) shows the acceleration signal from axle 1 when the vehicle crosses the healthy bridge at a 513 

speed of 6 ms-1. The vertical dashed lines in the figure indicate when the axle 1 enters and leaves 514 

the bridge. The solid plot in Fig. 11(b) shows the result of analyzing the acceleration signal shown 515 

in part (a) with the Mexican hat wavelet at a scale of 700. The dashed plot in Fig. 11(b) shows the 516 

result of analyzing the axle acceleration signal when the vehicle crosses a damaged bridge 517 

(delta=0.3, @0.33L) at a speed of 6 ms-1. It is evident that unlike the case for a point load (Fig. 5), 518 

analyzing the axle acceleration signal from a half-car model at a single wavelet scale is not 519 

sufficient to identify damage.  520 

[Insert Fig. 11] 521 

 522 

However, Figures 4(a) and 6(b) showed that there are several scales between 700-1300 with high 523 

values of wavelet coefficients as the load crossed over the damage. Hester and Gonzalez [16] deal 524 

with a similar challenge when trying to identify damage from applying the wavelet transform 525 

directly to bridge accelerations. They propose to increase the sensitivity of the transformed 526 
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accelerations to damage by splitting the range of scales, i.e., 700-1300 in this case into a series of 527 

strips as shown in Fig. 12 and by calculating an average value of wavelet coefficient for each strip 528 

(Ws). Then, if one strip shows a dominant value of Ws, this indicates that there is damage in this 529 

zone. Rather than simply plotting Ws with respect to the position of the strip, Hester and Gonzalez 530 

[16] find that plotting Wn=(Ws
2–Wm

2) gives clearer results, where Wm is the mean wavelet 531 

coefficient for all strips, and Wn is here referred to as the normalised wavelet coefficient for the 532 

strip.   533 

[Insert Fig. 12] 534 

  535 

The solid plot in Fig. 13 (delta=0.0) shows the result of applying the approach of [16] to the 536 

(healthy) axle acceleration signal shown in Fig. 11(a) with strip widths of 0.5 m. The heavy dashed 537 

plot (delta=0.3@0.33L) shows the result of analyzing the equivalent axle acceleration signal when 538 

there is delta=0.3 crack at the 1/3 point of the span. The delta=0.3 plot in the figure shows a clear 539 

peak at x(t)/L=0.33, thereby indicating that there is damage at this location. On the other hand, the 540 

delta=0.0 (healthy) plot is everywhere close to zero, indicating that there is no localized loss of 541 

stiffness in the deck. The reason for plotting the Wn signal only between x(t)/L=0.25 and x(t)/L=0.8 542 

is to avoid the abrupt changes in wavelet coefficients as the axles enter and leave the bridge. 543 

Therefore, the normalized wavelet coefficients for the strips close to the supports are very high and 544 

mask any damage that might be present. As a result, damage cannot be detected close to the 545 

supports and only the portion of the plot between x(t)/L=0.25 and x(t)/L=0.8 gives meaningful 546 

results. The third plot in the figure (delta=0.2@0.33L & delta=0.2@0.66L) shows the result of 547 

analyzing the axle acceleration signal when the bridge has a delta=0.2 crack at two locations, 548 

namely 0.33L and 0.66L. It can be seen that there are distinct peaks at both damage locations.  549 

 550 

[Insert Fig. 13] 551 

mailto:delta=0.2@0.33L
mailto:delta=0.2@0.66L
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The range of scales used to detect damage in Fig. 13 goes from 700 to 1300. The lower scale limit 552 

was chosen so as to avoid interference from the main bridge frequency (see Fig. 4), i.e., at this scale 553 

the area of influence of the first natural frequency of the bridge has disappeared. The lower scale 554 

limit used is 4 times the scale corresponding to the 1st natural frequency (4 x173 ≈ 700). However, 555 

at very high scales, there is a loss of resolution and as a result, loss of accuracy in the location of the 556 

damage. For the 40 m bridge and a load speed of 6 ms-1, an upper scale limit of 1300 is found to be 557 

effective, i.e. an upper limit 7.51 times the scale corresponding to the first natural frequency (7.51 x 558 

173 = 1300). The upper scale limit proposed here (7.5 x  first natural frequency) has in effect been 559 

identified empirically by trying a range of different upper limit scales from 900 to 1500 and a scale 560 

of 1300 (i.e., the scale corresponding to 7.5 times the first natural frequency) was found to give the 561 

best resolution for identifying the damage location. To examine if these scale ratios would prove 562 

effective for another bridge, they are applied to signals generated in the theoretical model of a 30 m 563 

bridge being traversed by a sprung vehicle moving at 6 ms-1.  564 

 565 

The properties used to model the 30 m bridge are consistent with the properties of a concrete 566 

highway bridge spanning 30 m, and the 1st natural frequency is 4.1 Hz. Axle acceleration signals are 567 

simulated in the same manner as for the 40 m bridge, i.e., the vehicle shown in Fig.10 moves across 568 

the bridge at 6 ms-1. Following a wavelet transform of the axle acceleration signal, the scale 569 

corresponding to the 1st natural frequency of the 30 m bridge is found to be 121. If the scale ratios 570 

used to detect damage in the 40 m bridge are applied to the 30 m span, lower and upper scale limits 571 

of 484 (4 x 121) and 909 (7.51 x 121) respectively are obtained. The result of applying these scale 572 

limits to the signal from the healthy bridge are shown as the solid plot (delta=0.0) in Fig. 14 and it 573 

can be seen that no dominant peaks are observed. When the same scale limits are applied to the axle 574 

acceleration signal when the bridge has a delta=0.3 crack at x(t)/L=0.66, the dashed plot in Fig. 14 575 

results. This time there is a clear peak at x(t)/L=0.66, which shows that the lower and upper limit 576 

scale ratios observed on the 40 m bridge (for a vehicle speed of 6 ms-1) are also effective for the 30 577 
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m bridge when the vehicle speed is 6ms-1. However, it should be noted that the upper and lower 578 

limit scale ratios listed above can only be used as guidelines and need to be applied with caution. 579 

This is because the range of scales where the ‘damage’ component exists depends on the speed of 580 

the vehicle (see section 3.3). For sufficiently high speeds, the ‘damage’ component will co-exist in a 581 

narrow scale band together with the first bridge natural frequency and as a result there will be, in 582 

effect, no range of scales for which damage can be reliably identified.    583 

 584 
 585 

[Insert Fig. 14] 586 

 587 

4.3 Testing damage detection algorithm on axle accelerations from VBI model with a rough 588 

road profile. 589 

The irregularities of the road profile have a big influence on the axle’s acceleration signal and 590 

therefore these irregularities also affect the ability of a drive-by approach to identify damage. ISO 591 

8608 (BS7853:1996) [57] classifies the roughness of a road profile into one of classes ‘A’ 592 

(excellent) to ‘E’ (very poor). A theoretical road profile of a given roughness class is generated 593 

according to Cebon [48] for use in numerical simulations. Fig. 15(b) shows the acceleration signal 594 

of axle 1 when the bridge has a crack of delta=0.3 at 0.33L and the vehicle is travelling at 6 ms-1 on 595 

the class ‘A’ road profile shown in Fig. 15(a). If the acceleration signal in Fig. 11(b) (when the 596 

vehicle is travelling on a smooth profile), is compared to the acceleration signal in Fig. 15(b), two 597 

observations can be made: Firstly the inclusion of a road profile results in much larger amplitudes 598 

than when the vehicle was travelling on a smooth profile, and secondly the dominant frequency of 599 

vibration has increased. When the bridge has a smooth profile the dominant frequency of vibration 600 

in the axle was approximately 2.8 Hz, i.e. the first natural frequency of the bridge. When a road 601 

profile is included the dominant frequency of vibration in the axle is approximately 8.6 Hz, i.e. the 602 

‘hop’ frequency of axle 1.  603 
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[Insert Fig. 15] 604 

 605 

The normalized wavelet coefficient technique described in section 4.2 is applied to the acceleration 606 

signal shown in Fig. 15(b) and the result is shown as the heavy dotted plot (delta=0.3) in Fig. 16. 607 

The solid plot (delta=0.0) in Fig. 16 is the result of analyzing the axle 1 acceleration signal when 608 

the bridge was healthy. Unlike the situation when the vehicle was travelling on a smooth profile 609 

(Fig. 13), this time there is no clear peak evident as the load passes over the damaged section. It can 610 

be seen that the delta=0.0 and delta=0.3 plots are basically indistinguishable from one another so 611 

the inclusion of a road profile has rendered damage undetectable using the current approach. 612 

 613 

To understand why the inclusion of a road profile has such a detrimental effect on the ability of the 614 

technique to identify damage, it is useful to look back at Fig. 13. Although the plots in Fig. 13 are 615 

the result of analyzing axle acceleration signals, it is important to understand that the source of the 616 

peak in the delta=0.3 plot in Fig. 13 is actually the small extra displacement experienced by the axle 617 

as it crosses the damaged bridge, relative to what it experiences when it crosses the healthy bridge. 618 

From Fig. 2(d), it can be seen that in this case, this extra displacement is of the order of 0.1 mm, 619 

however, the road profile in Fig. 15(a) results in vertical displacements of the order of 4 mm. The 620 

displacement of axle 1 resulting from the irregularities of the road profile are a mixture of large 621 

amplitude low frequency displacements and low amplitude high frequency displacements. In the 622 

simulation under investigation, the axle acceleration signals obtained when the vehicle crosses a 623 

road profile are such that, when analysed at the range of scales where damage is known to occupy 624 

(i.e., 500-1300), the results for the healthy and damaged cases are practically the same. Essentially 625 

in the range of scales of interest to us (500-1300), the road profile appears to have a significantly 626 

greater impact than the characteristic damage feature. Consequently, it appears damage cannot be 627 

detected as the height of the road irregularities mask the extra bridge displacement caused by a 628 

localized stiffness loss.  629 
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The road profile appears to govern the results of the wavelet analysis. This can be 630 

demonstrated by calculating the acceleration response of a notional particle travelling over the 631 

‘solid’ profile shown in Fig. 15(a) at 6 ms-1. ‘Solid’ in this instance signifies that no allowance is 632 

made for bridge deflection, and in this theoretical exercise no uplift of the particle is allowed. When 633 

the acceleration of this notional particle is analysed using the normalized wavelet coefficient 634 

technique, the dashed plot (particle) in Fig. 16 is obtained. This dashed plot is very similar to the 635 

healthy (delta=0.0) and damaged (delta=0.3) plots in the figure, which proves that the parts of the 636 

axle acceleration signal that correspond to the range of scales of interest (500-1300 in this case) are 637 

being dominated by vibrations resulting from the road profile rather than vibrations originating 638 

from the bridge and as a result, the characteristic feature for bridge damage remains hidden.  639 

[Insert Fig. 16] 640 

 641 

Therefore to identify damage it would be necessary to develop an approach that would allow us to 642 

separate the parts of the wavelet surface that are due to road profile from those that are due to 643 

damage. In principle, this could be achieved using an existing axle acceleration record (i.e., from a 644 

previous test) where the structure is presumed healthy. Admittedly, in practice, this could be 645 

difficult to implement, however, the aim of this study is to examine the merits and limitations of the 646 

approach so for the purposes of this paper it is assumed feasible as this allows us to examine other 647 

potential limitations. Having a previous acceleration signal from the presumed healthy bridge 648 

allows the calculation of a ‘datum’ wavelet surface. In all subsequent tests the axle acceleration is 649 

recorded and the ‘current’ wavelet surface is calculated. To remove the effect of road profile the 650 

‘datum’ wavelet surface is simply subtracted from the ‘current’ wavelet surface. Here, the result of 651 

the subtraction is referred to as the ‘residual’ wavelet surface. By applying the technique described 652 

in section 4.2 to the residual wavelet surface a plot of the normalized wavelet coefficients (similar 653 

to those seen in Figs. 13 and 16) can be achieved and these are shown in Fig. 17 (Note that the 654 

results shown in Fig. 17 assume that a datum wavelet surface from the healthy bridge is available, 655 
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i.e., delta=0.0). To generate Fig. 17, axle acceleration signals are simulated for the following bridge 656 

conditions: delta=0.0, delta=0.1, delta=0.2 and delta=0.3. For all damage severities, damage is 657 

assumed to occur at the 1/3 point of the span. Fig. 17 shows the normalized wavelet coefficients 658 

calculated from the four residual wavelet surfaces corresponding to the four damage scenarios, (i.e. 659 

delta=0.0 – 0.3). When the structure remains undamaged (delta=0.0), the plot of the normalised 660 

wavelet coefficients shows no dominant peaks. Once damage occurs, a dominant peak starts to 661 

emerge at the damaged location, with the height of the peak increasing with the severity of the 662 

damage  663 

[Insert Fig. 17] 664 

 665 

4.4 Testing damage detection in axle accelerations from VBI model with a rough road profile 666 

corrupted with noise. 667 

When assessing the suitability of a proposed damage detection method, its robustness with respect 668 

to noise needs to be considered. For this purpose, a noise vector is calculated using Eq. (3) in the 669 

procedure by Lyons [58].  670 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  �
𝜎𝜎2

𝑛𝑛𝑒𝑒𝑒𝑒 �𝑆𝑆𝑆𝑆𝑆𝑆 ∗ ln (10)
10 �

   ∗ [𝑆𝑆]                 (3) 671 

 672 

where σ2 is the variance of the axle acceleration signal, SNR is the desired signal to noise ratio and 673 

[R] is a standard normal distribution vector with zero mean and unit standard deviation. The 674 

corrupted signal is simply the sum of the simulated theoretical acceleration signal and the noise 675 

vector calculated in Eq. (3). Then, the same approach used to generate Fig. 17 is applied to the 676 

corrupted acceleration signals, i.e., the ‘datum’ wavelet surface is subtracted from the ‘current’ 677 

wavelet surface to give a ‘residual’ wavelet surface. The normalized wavelet coefficients are then 678 

calculated from the ‘residual’ wavelet surface (Note that the acceleration signal used to calculate the 679 

‘datum’ wavelet surface contains noise as do all subsequent signals). SNRs of 70, 50 and 20 are 680 
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used in the simulations and the results are presented in Figs. 18 (a), (b) and (c) respectively. For a 681 

SNR of 70, the plots are very similar to the noise free case (Fig. 17) in that when the structure 682 

remains undamaged (delta=0.0), the plot of the normalised wavelet coefficients shows no dominant 683 

peaks. Also once damage occurs, a dominant peak is observed at the 1/3 point of the span, with the 684 

height of the peak increasing for more severe damage.  685 

When the level of noise is increased to a SNR of 50, there are no dominant peaks for delta=0.0, 686 

so it can be established that there has been no loss of stiffness since the datum reading was taken. 687 

However, the delta=0.0 plot in part (b) of Fig. 18 is noticeably less smooth than the corresponding 688 

plot in part (a), and this is due to the increased noise in the acceleration signals. When small damage 689 

of delta=0.1 takes place, the plot in Fig. 18(b) does exhibit a small peak at the damage location, 690 

however the peak is not particularly dominant relative to the rest of peaks in the plot so the damage 691 

is not reliably identified. This shows that the presence of noise can mask small levels of damage and 692 

produce misleading peaks. For larger levels of damage (delta=0.2 and delta=0.3), the plots in Fig. 693 

18(b) reveal clear peaks at the damage location which demonstrates that larger damage can still be 694 

detected for SNR=50. In the case of SNR=20, the noise has a detrimental effect on the ability of the 695 

approach to identify damage as not even delta=0.3 can be identified. The reasons for the poor 696 

performance are essentially two fold. Firstly, the ‘damage’ component is very small relative to the 697 

amplitude of the total acceleration signal and given that noise is added in proportion to the 698 

amplitude of the total acceleration signal, the noise shrouds the presence of damage. Secondly, the 699 

datum reading (which is included to overcome the impact of road profile) also contains noise, so in 700 

a sense any increase in noise has a doubly negative impact on the approach. In an effort to see if the 701 

impact of noise could be remediated by doing average results over multiple runs, 10 noisy signals 702 

were simulated, but the resulting plots were actually very similar to those shown in Fig. 18(c).   703 

[Insert Fig. 18]   704 

 705 

 706 
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4.5 Influence of Datum  707 

After establishing the limitations of the method with respect to noise, this section examines the 708 

sensitivity of the method to the selected datum. If the proposed method is applied to existing 709 

structures, it is possible that a subset of these structures will already have experienced a localized 710 

loss in stiffness, therefore the datum reading for his subset of structures will not correspond to a 711 

healthy state. However, it is found that even if the datum reading is taken on a bridge that is not in 712 

pristine condition, it will still allow a subsequent loss of stiffness to be identified. For example, a 713 

situation is assumed where a datum reading is taken in Year 1 on a bridge that has already 714 

experienced a delta=0.1 crack at the 1/3 point of the span. Then, in Year 2 there is only minor 715 

deterioration as the severity of the crack increases to delta=0.12, but in Year 3 circumstances are 716 

such that there is a substantial further deterioration such that the severity of the crack reaches 717 

delta=0.22. Fig. 19 shows plots of the normalized wavelet coefficients for the assumed patterns of 718 

localized loss stiffness in Years 1 (delta=0.1), 2 (delta=0.12) and 3 (delta=0.22). In producing Fig. 719 

19, the datum acceleration signal (Year 1) as well as all subsequent acceleration signals (Years 2 & 720 

3) have a SNR of 70. None of the peaks are dominant in the plot for Year 2, which indicates that 721 

there has been no significant stiffness degradation since the datum reading was taken. However, in 722 

Year 3, the peak at x(t)/L = 0.33 is dominant which indicates that there has been a substantial 723 

stiffness loss at this location since the since the datum reading was taken. This peak would flag a 724 

warning to the bridge manager for further investigations at this location to confirm the occurrence 725 

and exact extent of the stiffness loss.   726 

[Insert Fig. 19]   727 

 728 

5.0 Conclusions  729 

The objective of this paper has been to present a theoretical examination of the merits and potential 730 

limitations of drive-by monitoring to identify localised stiffness loss in a bridge. It has been 731 

demonstrated that there is a theoretical basis for the axle response to contain a characteristic feature 732 



 

30 
 

related to bridge damage. Understanding how this bridge damage feature manifests in the vehicle 733 

response is crucial, as it allows the practitioner develop bespoke algorithms to identify the bridge 734 

damage feature in measured axle acceleration signals. To be able to focus exclusively on the bridge 735 

contribution to the axle acceleration response (and thereby identify the bridge damage feature), a 736 

FEM of a point load crossing a bridge has been implemented. Using this model, it has been shown 737 

that the total acceleration experienced by a point load crossing a bridge can be divided into ‘H 738 

static’ (or static response that would be obtained if the structure was healthy), ‘damage’ (or 739 

difference between static response that would be obtained if the structures was damaged and ‘H 740 

static’) and ‘dynamic’ (the remainder of the total response). 741 

 742 

Initially, using these simplified simulations (where the vehicle axle was modelled as a point force), 743 

it has been relatively easy for a simple signal processing technique to uncover this characteristic 744 

damage feature provided the speed of the load is low enough. This has also been proved for the case 745 

of multiple damaged locations. For higher speeds, it has been shown that the frequency of the 746 

‘damage’ component will be too close to the first natural frequency of the bridge and damage will 747 

go unnoticed. Therefore, if the frequency content of the ‘damage’ component is close to the 748 

frequency of other vibrations in the Vehicle-Bridge system, it will become very difficult to 749 

distinguish damage for any signal processing technique.  750 

 751 

When a VBI model has been employed, the problem of identifying bridge damage becomes more 752 

challenging because essentially the VBI model introduces more complex vibrations and more 753 

elaborate signal processing techniques are required. For example, when a vehicle is travelling on a 754 

smooth road profile, using a simple plot of wavelet coefficients versus time at a fixed scale as 755 

proposed in previous research, has appeared to be insufficient to detect damage. As a result, the 756 

authors have employed a more elaborate 2D wavelet analysis (wavelet coefficients versus scale and 757 

time) to seek for the damage in the frequency-time domain. During the investigation, it has been 758 
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shown that those mother wavelets with a shape closer to the ‘damage’ component have provided 759 

best results. Damage has been extracted within a scale band (as opposed to a single scale) to reduce 760 

the negative impact associated with vibrations due to VBI. Using the more elaborate technique, 761 

bridge damage has been identified by a distinctive peak at the weakened portion of the bridge. This 762 

novel drive-by algorithm builds on previous work by the authors where they successfully apply the 763 

algorithm for detecting damage using direct bridge measurements [16]. Here, the authors have 764 

applied the algorithm to indirect vehicle accelerations by the first time.     765 

 766 

When a more realistic situation of the vehicle travelling on a rough road profile was considered, 767 

detecting a localised stiffness loss by analysing just the current axle acceleration signal has become 768 

considerably more challenging and in some cases impractical. Fundamentally, the difficulty is that 769 

the source of the damage feature (in the axle acceleration signal) adds very small ‘extra’ 770 

displacement to the bridge due to the localised loss in stiffness, and when a road profile is included 771 

in the simulation this very small displacement is masked by the larger displacement of the axle 772 

displacement moving up and down on the road profile. Having identified the impracticality of 773 

identifying damage using just the current axle acceleration signal, the authors show that if a datum 774 

reading was available (e.g., a wavelet surface from last year when the bridge was assumed healthy), 775 

it is possible to identify damage. In particular, the drive-by algorithm has shown to successfully 776 

detect damage for a class ‘A’ profile and damage severity as low as delta=0.1 when a datum is used 777 

as reference. Here, it has been assumed that the road profile has not changed significantly. 778 

Otherwise, the datum needs to be re-calibrated. The approach has also proved to perform 779 

satisfactorily for signals corrupted with SNR of 70 (1.43% noise). When SNR has been increased to 780 

50 (2% noise), it is not possible to distinguish delta=0.1, but delta=0.2 and higher are still 781 

noticeable with higher peaks associated to higher damage severities. These conclusions refer to 782 

specific bridge, vehicle, road and noise scenarios. For example, in the case of SNR of 20 (5% 783 

noise), damage has not been identifiable. The proposed algorithm will be successful when the effect 784 
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of the ‘damage’ component (i.e., variable with damage severity and location) is distinguishable 785 

from other effects derived from road profile and noise in the wavelet contour plot. 786 

Although the use of a datum reading has proved to be effective, it is acknowledged that an accurate 787 

datum reading may not always be available for the road profile under investigation as a result of 788 

changes over time due to wear, rutting and occasional resurfacing works. Finally, even when an 789 

accurate datum reading was available, noise has been shown to have a very negative impact on the 790 

performance of the approach. For relatively low levels of noise (SNR=70 and 50), broadly speaking 791 

the approach has been able to detect damage, but with some expected deterioration in the results 792 

compared to the noise-free case. However, a SNR of 20 rendered the approach ineffective. In 793 

summary, there is a sound theoretical basis behind detecting and locating a localised loss in bridge 794 

stiffness by analysing an axle acceleration signal, however, there are a number of significant 795 

limitations to the approach, e.g. vehicle speed, noise and road roughness. Based on currently 796 

available technology, there are a number of substantial challenges to be overcome before drive-by 797 

can be reliably implemented in the field.                      798 
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Figures 970 
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 974 

 975 

 976 

Fig. 1,  Sketch of discretised beam model subject to a moving force. (Note, x(t) represents the x-977 

coordinate of the load at time ‘t’). 978 
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 981 

Fig. 2. Total response of the section of bridge deck immediately under the point load and the 982 
components of the total response to the force travelling at 6 m s-1: (a) total displacement; (b) total 983 
velocity; (c) total acceleration; (d) components of displacement; (e) components of velocity; (f) 984 
components of acceleration.  985 
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 989 
Fig. 3, Magnified view of ‘H static’ and ‘damaged’ components (from Fig. 2(f)) of the acceleration 990 
response. 991 
 992 

 993 

 994 

  

Fig. 4, Applying Wavelet transform to the acceleration signal under a point load travelling at 6 m s-995 
1: (a) delta=0.3 at 0.33L, (b) delta=0.0.  996 
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 1000 

 1001 
Fig. 5, Wavelet coefficients of ‘point force’ accelerations at a scale of 700 for healthy and damaged 1002 
bridges.  1003 
 1004 
 1005 
 1006 

 1007 
 1008 
Fig. 6, Wavelet coefficients of ‘point force’ accelerations at a scale of 700 for healthy bridge 1009 
(delta=0.0) and two cases where the bridge has more than one damage location.  1010 
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 1016 
 1017 
Fig. 7, Different wavelets (a) Mexican Hat, (b) Gauss 2, (c) Gauss 8.  1018 
 1019 
 1020 
 1021 

 1022 
Fig. 8, results of analyzing the signal in Fig. 2(c) with the wavelets shown in Fig. 7. 1023 
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Fig. 9, Effect of load speed on the scales at which ‘damage’ component can be detected, : (a) 1029 
‘damage’ components for speeds of 6, 12 and 24 ms-1 plotted in the time domain, (b) wavelet 1030 
transform of the 6 ms-1 ‘damage’ component shown in (a), (c) wavelet transform of the 12 ms-1 1031 
damage component shown in (a), (d) wavelet transform of the 24 ms-1 damage component shown in 1032 
(a). 1033 
 1034 

 1035 

 1036 
 1037 

Fig. 10, Schematic of the vehicle model 1038 
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 1040 
 1041 
Fig. 11, Analysis of axle acceleration due to a half-car vehicle model travelling over a bridge with a 1042 
smooth profile at 6 ms-1: (a) axle 1 acceleration signal, (b) wavelet transform of healthy and 1043 
damaged acceleration signals at a scale of 700 using Mexican hat wavelet.  1044 
 1045 
 1046 
 1047 

 1048 
 1049 
Fig. 12, Sketch showing strip C of a theoretical 3D wavelet surface.  1050 
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 1055 
Fig. 13, Normalised wavelet coefficient for axle accelerations over healthy and damaged bridges  1056 
 1057 
 1058 

 1059 
 1060 
Fig. 14, Normalised wavelet coefficient for axle accelerations over healthy and damaged bridge. 1061 
(Bridge span 30 m) 1062 
 1063 

 1064 

 1065 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.02

-0.01

0

0.01

0.02

0.03

0.04

x(t)/L

N
or

m
al

is
ed

 W
av

el
et

C
oe

ffi
ci

en
t (

W
n)

 

 
delta=0.0
delta=0.3@0.33L
delta=0.2@0.33L & delta=0.2@0.66L

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.02

0

0.02

0.04

0.06

0.08

x(t)/L

N
or

m
al

is
ed

 W
av

el
et

 
C

oe
ffi

ci
en

t (
W

n)

 

 

delta=0.0
delta=0.3



 

44 
 

1066 
Fig. 15, Simulated road profile and acceleration signal from axle 1: (a) class A road profile on the 1067 
bridge, (b) axle 1 acceleration when driving over road profile defined in (a) at 6 ms-1. 1068 

 1069 

Fig. 16, Normalized wavelet coefficient calculated from axle acceleration signals relating to the 1070 
healthy bridge (delta=0.0), the damaged bridge (delta=0.3), and a theoretical particle traversing the 1071 
‘solid’ road profile. 1072 
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 1073 

Fig. 17, Normalized wavelet coefficients calculated from the residual wavelet surfaces 1074 
corresponding to damage at the 1/3 point of the span with severities of delta=0.0 to delta=0.3. 1075 
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 1077 

Fig. 18, Normalized wavelet coefficients calculated from noise corrupted wavelet surfaces when 1078 
there is damage at the 1/3 point of the span with severities of delta=0.0 to delta=0.3: (a) Signal to 1079 
Noise Ratio of 70, (b) Signal to Noise Ratio of 50, (c) Signal to Noise Ratio of 20.  1080 
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 1082 

Fig. 19, Normalized wavelet coefficients calculated from residual wavelet surfaces based on a 1083 
datum from a bridge with delta=0.1 (SNR=70) 1084 

 1085 

 1086 

 1087 

 1088 

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

-1

0

1

2

3

4
x 10-3

x(t) / L

N
or

m
al

is
ed

 W
av

el
et

 C
oe

ffi
ci

en
t (

W
n)

 

 
Year 2 (delta=0.12)
Year 3 (delta=0.22)


