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ABSTRACT
In this paper, we propose a novel android malware detec-
tion system that uses a deep convolutional neural network
(CNN). Malware classification is performed based on static
analysis of the raw opcode sequence from a disassembled
program. Features indicative of malware are automatically
learned by the network from the raw opcode sequence thus
removing the need for hand-engineered malware features.
The training pipeline of our proposed system is much sim-
pler than existing n-gram based malware detection methods,
as the network is trained end-to-end to jointly learn appro-
priate features and to perform classification, thus removing
the need to explicitly enumerate millions of n-grams during
training. The network design also allows the use of long
n-gram like features, not computationally feasible with ex-
isting methods. Once trained, the network can be efficiently
executed on a GPU, allowing a very large number of files to
be scanned quickly.

CCS Concepts
•Security and privacy→Malware and its mitigation;
Software and application security; •Computing method-
ologies → Neural networks;

Keywords
Malware Detection, Android, Deep Learning

1. INTRODUCTION
Malware detection is a growing problem, especially in mo-

bile platforms. Given the proliferation of mobile devices and
their associated app-stores, the volume of new applications is
too large to manually examine each application for malicious
behavior. Malware detection has traditionally been based on
manually examining the behavior and/or de-compiled code
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of known malware programs in order to design malware sig-
natures by hand. This process does not easily scale to large
numbers of applications, especially given the static nature of
signature based malware detection, meaning that new mal-
ware can be designed to evade existing signatures. Con-
sequently, there has recently been a large volume of work
on automatic malware detection using ideas from machine
learning. Various methods have been proposed based on
examining the dynamic application behavior [18, 21], re-
quested permissions [14, 16, 19] and the n-grams present
in the application byte-code [7, 11, 10]. However many of
these methods are reliant on expert analysis to design the
discriminative features that are passed to the machine learn-
ing system used to make the final classification decision.

Recently, convolutional networks have been shown to per-
form well on a variety of tasks related to natural language
processing [12, 26]. In this work we investigate the appli-
cation of convolutional networks to malware detection by
treating the disassembled byte-code of an application as a
text to be analyzed. This approach has the advantage that
features are automatically learned from raw data, and hence
removes the need for malware signatures to be designed by
hand. Our proposed malware detection method is computa-
tionally efficient as training and testing time is linearly pro-
portional to the number of malware examples. The detec-
tion network can be run on a GPU, which is now a standard
component of many mobile devices, meaning a large number
of malware files can be scanned per-second. In addition, we
expect that as more training data is provided the accuracy
of malware detection will improve because neural networks
have been shown to have a very high learning capacity, and
hence can benefit from very large training-sets [20].

Our proposed malware detection method takes inspiration
from existing n-gram based methods [7, 11, 10], but unlike
existing methods there is no need to exhaustively enumerate
a large number of n-grams during training. This is because
the convolutional network can intrinsically learn to detect
n-gram like signatures by learning to detect sequences of
opcodes that are indicative of malware. In addition, our
proposed method allows very long n-gram type signatures
to be discovered, which would be impractical if explicit enu-
meration of all n-grams was required. The malware signa-
tures found by the proposed method may be complementary
to those discovered by hand as the automated system will
have different strengths and biases from human analysts,
therefore they could be valuable for use in conjunction with
conventional malware signatures databases. Once our sys-



tem has been trained, large numbers of files can be efficiently
scanned using a GPU implementation, and given that new
malware is constantly appearing, a useful feature of our pro-
posed method is that it can be re-trained with new malware
samples to adapt to the changing malware environment.

2. RELATED WORK

2.1 Malware Detection
Learning based approaches using hand-designed features

have been applied extensively to both dynamic [18, 21] and
static [23, 22, 25] malware detection. A variety of simi-
lar approaches to static malware detection have used manu-
ally derived features, such as API calls, intents, permissions
and commands, with different classifiers such as support vec-
tor machine (SVM) [5], Naive Bayes, and k-Nearest Neigh-
bor [19]. Malware detection approaches have also been pro-
posed that use static features derived exclusively from the
permissions requested by the application [14, 16].

In contrast with approaches using high-level hand-designed
features, n-grams based malware detection uses sequences of
low-level opcodes as features. The n-grams features can be
used to train a classifier to distinguish between malware and
benign software [10]. Perhaps surprisingly, even a 1-gram
based feature, which is simply a histogram of the number
of times each opcode is used, can distinguish malware from
benign software [7]. The length of the n-gram used [10] and
number of n-gram sequences used in classification [7] can
both have an effect on the accuracy of the classifier. How-
ever increasing either parameter can massively increase the
computational resources needed [7], which is clearly a dis-
advantage of standard n-gram based malware detection ap-
proaches. N-grams method also require feature selection to
reduce the length of the feature-vector, which would other-
wise be millions of elements long in the case of long n-grams.
In this work we propose a method that allows very long n-
grams features to be used, and allows an n-grams classifier
to be trained in a much more efficient manner, based on
neural networks.

2.2 Neural Networks
Recently, convolutional neural networks (CNNs) have shown

state-of-the-art performance for object recognition in im-
ages [20] and natural language processing (NLP) [12]. In
NLP, local patterns of symbols, known as n-grams, have
been used as features for a variety of tasks [27]. It has
recently been shown that if sufficient training data is avail-
able, very deep CNNs can outperform traditional NLP meth-
ods [26] across a range of text classification tasks. We pos-
tulate that static malware analysis has much in common
with NLP as the analysis of the disassembled source code
of a given program can be understood as a form of textual
processing. Therefore, techniques such as CNNs have huge
potential to be applied in the field of malware detection.

A variety of approaches to malware detection using other
neural network architectures have been proposed. Several
of the proposed methods are based on learning which se-
quences of operating system calls or API calls are indicative
of malware [15, 9, 8] during dynamic analysis. The exist-
ing neural network based approaches to malware detection
differ from our proposed method as they make use of a vir-
tual machine to capture dynamic behavioural features [15,
9, 8]. This may prove problematic given that malware is

often designed to detect when it is being run in a virtual
environment in order to evade detection. Other existing
neural network based malware detection methods use hand-
designed features, which may not be the optimal way to
detect malware [17]. We will attempt to address the limi-
tations of existing neural network based malware detection
methods, by using a novel static analysis method based on a
CNN architecture that automatically learns an appropriate
feature representation from raw data.

In this work we apply convolutional neural networks to the
problem of malware detection. The CNN learns to detect
patterns in the disassembled byte-code of applications that
are indicative of malware. Our approach has several advan-
tages over existing methods of malware detection, such as
those based on high-level hand-designed features and those
based on detection of n-grams. Scalability and performance
are major drawbacks of existing n-gram based approaches,
as the length of the feature vector grows rapidly when in-
creasing the n-gram length. In contrast, our approach elim-
inates the need for counting and storing millions of n-grams
during training and can learn longer n-grams than conven-
tional methods used for malware detection. The improved
efficiency makes it possible to use our proposed method with
larger datasets, where the use of traditional methods would
be intractable. Our whole system is jointly optimized to
perform feature extraction and classification simultaneously
by showing the system a large number of labeled samples.
This removes the need for hand-designed features, as fea-
tures are automatically learned during supervised network
training, and removes the need for an ad-hoc pipeline con-
sisting of feature-extraction, feature-selection and classifica-
tion, as feature extraction and classification are optimized
together. The existence of a fully end-to-end system also
saves time when the system is presented with new malware
to be recognized, as the network can easily be updated by
simply increasing the size of the training-set, which may also
improve its overall accuracy. Finally, the features discovered
by our method may be different from, and complementary
to, those discovered by manual analysis.

3. METHOD
In this work we propose a malware detection method that

uses a convolutional network to process the raw Dalvik byte-
code of an Android application. The overall structure of the
malware detection network is shown in Fig. 2. In the follow-
ing section we will first explain how an Android application
is disassembled to give a sequence of raw Dalvik byte-codes,
and then explain how this byte-code sequence is processed
by the convolutional network.

3.1 Disassembly of Android Application
In our system, the preprocessing of an application consists

of disassembling the application and extracting opcode se-
quences for static malware analysis, as shown in Fig.1. An
Android application is an apk file, which is a compressed file
containing the code files, the AndroidManifest.xml file, and
the application resource files. A code file is a dex file that
can be transformed into smali files, where each smali file
represents a single class and contains the methods of such
a class. Each method contains instructions and each in-
struction consists of a single opcode and multiple operands.
We disassemble each application using baksmali [1] to obtain
the smali files that contain the human-readable Dalvik byte-



code of the application, then extracting the opcode sequence
from each method, discarding the operands. As the result of
the preprocessing we obtain all the opcode sequences from
all the classes of the application. The opcode sequences from
all classes are then concatenated to give a single sequence of
opcodes representing whole application.

Figure 1: Work-flow of how an Android application
is disassembled to produce an opcode sequence.

3.2 Network Architecture

3.2.1 Opcode Embedding Layer
Let X = {x1...xn} be a sequence of opcode instructions

encoded as one-hot vectors, where xn is the one-hot vector
for the n’th opcode in the sequence. To form a one-hot vec-
tor we associate each opcode with a number in the range
1 to D. In the case of Dalvik, where there are currently
218 defined opcodes, D = 218 [2]. The one-hot vector xn
is a vector of zeros, of length D, with a ’1’ in the position
corresponding with the n’th opcode’s integer mapping. Any
operands associated with the opcodes were discarded during
disassembly and preprocessing, meaning malware classifica-
tion is based only on patterns in the sequence of opcodes.

Opcodes in X are projected into an embedding space by
multiplying each one-hot vector by a weight matrix, WE ∈
RD×k, where k is the dimensionality of the embedding-space
as follows

pi = xiWE (1)

projection of all opcodes in X, the program is represented by
a matrix, P , of size n × k, where each row, pi, corresponds
to the representation of opcode xi. The weights in WE ,
and hence the representation for each opcode, are initialized
randomly at first then updated by back-propagation during
training along with the rest of the network’s parameters.

The purpose of representing the program as a list of one-
hot vectors then projecting into an embedding space, is that
it allows the network to learn an appropriate representation
for each opcode as a vector in a k-dimensional continuous
vector space, Rk where relationships between opcodes can be
represented. The embedding space may encode semantic in-
formation for example, during training the network may dis-
cover that certain opcodes have similar meanings or perform
equivalent operations, and hence should be treated similarly
by deeper network layers for classification purposes. This
can be achieved by projecting those opcodes to nearby points
in the embedding space, while very different opcodes will be
projected to distant points. The number of dimensions used
in the embedding space may influence the network’s ability

to perform such semantic mapping, hence using more dimen-
sions may, up to a point, give the network greater flexibility
in learning the expected highly non-linear mapping from se-
quences of opcodes to classification decisions.

3.2.2 Convolutional Layers
In our proposed network we use one or more convolutional

layers, numbered from 1 to L, where l refers to the l’th con-
volutional layer. The first convolutional layer receives the
n × k program embedding matrix P as input, while deeper
convolutional layers receive the output of the previous con-
volutional layer as input. Each convolutional layer has ml

filters, which are of size s1 × k in the first layer, and of size
sl × ml−1 in deeper layers. This means filters in the first
layer can potentially detect sequences of up to s1 opcodes.
During the forward pass of an example through a convolu-
tional layer, each of the ml convolutional filters produces
an activation map al,m of size n × 1, which can be stacked
together to produce, a matrix, Al, of size n × ml. Note
that before applying the convolutional filters we zero-pad
the start and end of the input by sl/2 to ensure that the
length of the output matrix from the convolutional layer is
the same as the length of its input. The convolution of the
first layer filters with program embedding matrix P can be
denoted as follows

al,m = relu(Conv(P )Wl,m,bl,m) (2)

Al = [al,1 | al,2 | ... | al,m] (3)

where wl,m and bl,m are the respective weight and bias pa-
rameters of the m’th convolutional filter of convolution layer
l, where Conv represents the mathematical operation of con-
volution of the filter with the input, and where the recti-
fied linear activation function, relu(x) = max{0, x}, is used.
In deeper layers the convolution operation is similar, how-
ever we replace input matrix P in Eq. 2 by the output
matrix from the previous convolutional layer, Al−1. Given
output matrix AL from the final convolutional layer, max-
pooling [27] is then used over the program length dimension
as follows

f = [max(aL,1) | max(aL,2) | ... | max(aL,m)] (4)

to give a vector f of length mL, which contains the maxi-
mum activation of each convolutional filter over the program
length. Using max-pooling over the length of the opcode
sequence allows a program of arbitrarily length to be repre-
sented by a fixed-length feature vector. Moreover, selecting
the maximum activation of each convolutional filter using
max-pooling also focuses the attention of the classification
layer on parts of the opcode sequence that are most relevant
to the classification task.

3.2.3 Classification Layers
Finally, the resulting vector f is passed to a multi-layer

perceptron (MLP), which consists of a full-connected hidden
layer and a full-connected output layer. The purpose of the
MLP is to output the probability that the current example
is malware. The use of the MLP with hidden layer allows
high-order relationships between the features extracted by
the convolutional layer to be detected [6] and used for clas-
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Figure 2: Malware Detection Network Architecture.

sification. We can write the hidden layer as follows

z = relu(Whf + bh) (5)

where Wh, bh, are the parameters of the fully-connected hid-
den layer, and where the rectified linear activation function
is used. Finally, the output, z, from the MLP is passed to a
soft-max classifier function, which gives the probability that
program X is malware, denoted as follows

p(y = i|z) =
exp(wT

i z + bi)∑I
i′=1 exp(wT

i′z + bi′)
(6)

where wi and bi denote the parameters of the classifier for
class i ∈ I, and the label y indicates whether the current
sample is either malware or benign. The softmax classifier
outputs the normalized probability of the current sample
belonging to each class. As malware classification is a two
class problem (benign/malware) i.e., I = 2 and z is a two
element vector. Other applications such as the problem of
malware family classification, could be targeted by increas-
ing the number of classes, I, to be equal to the number of
malware families to be classified.

3.3 Learning Process
Given the above definitions, the cost function to be min-

imized during training for a batch of b training samples,
{X(1) . . . X(b)}, can be written as follows

C = −1

b

b∑
j=1

I∑
i=1

1{y(j) = i}log p(y(j) = i|z(j)) (7)

where z(j) is the vector output after applying the neural

network to example training example X(j), where y(j) is the
provided correct label for the example X(j), and where 1{x}
is an indicator function that is 1 if its argument x is true and
is 0 otherwise. The cost is dependent on both the parameters
of the neural network, Θ, i.e. the weights and bias across all
layers -WE , wl,m, bl,m,Wh, bh,wi, and bi - and on the current
training sample. The objective during training is to update
the network’s parameters, which are initialized randomly
before training begins, to reduce the cost. This update is
performed stochastically by computing the gradient of the
cost function with respect to the parameters, ∂C

∂Θ
, given the

current batch of samples, and using this gradient to update
the parameters after every batch to reduce the cost as follows

Θ(t+1) = Θ(t) − α∂C
∂Θ

(8)

where α is a small positive real number called the learning
rate. During training the network is repeatedly presented
with batches of training samples in randomized order until
the parameters converge.

To deal with an imbalance in the number of training sam-
ples available for the malware and benign classes, the gra-
dients used to update the network parameters are weighted
depending on the label of the current training sample. This
helps to reduce classifier bias towards predicting the more
populous class. Let the number of malware samples in the
training-set be M and number of benign samples in the
training-set be B. Assuming there are more samples of be-
nign software than malware, the weight for malware sam-
ples is 1 −M/(M + B) and the weight for benign samples
is M/(M + B) i.e. the gradients are weighted in inverse
proportion to the number of samples for each class.



Note that a consideration when designing our proposed ar-
chitectures was to keep the number of parameters relatively
low, in order to help prevent over-fitting given the relatively
small number of training samples usually available. A typi-
cal deep network may have millions of parameters [20], while
our malware detection network has only tens of thousands
of parameters, which drastically reduces the need for large
numbers of training samples.

4. RESULTS

In order to evaluate the performance of our approach a
set of experiments was designed. The architecture used in
all experiments had only a single convolutional layer. This
architecture was used because the available datasets have
a relatively small number of training samples which means
that networks with large numbers of parameters could be
prone to over-fitting. Convolutional networks with only a
single convolutional layer have been shown to perform well
on natural language text classification tasks [27]. In this
architecture, the remaining hyperparameters, such as the
dimension of the embedding space and the length and the
number of convolutional filters, are set empirically using 10-
fold cross validation on the validation-set of the small and
large dataset. The resulting values are a 8-dimensional em-
bedding space, 64 convolutional filters of length 8, and 16
neurons in the hidden fully connected layer.

Our experiments were carried out on three different datasets.
The first dataset consists of malware from the Android Mal-
ware Genome project [28] and has been widely used [10,
11]. This dataset has a total of 2123 applications, of which
863 are benign and 1260 are malware from 49 different mal-
ware families. Labels are provided for the malware family
of each sample. The benign samples in this dataset were
collected from the Google play store and have been checked
using virusTotal to ascertain that they were highly probable
to be malware free. We refer to this dataset as the ’Small
Dataset’.

The second dataset was provided by McAfee Labs (now
Intel Security) and comes from the vendor’s internal reposi-
tory of Android malware. After discarding empty files or
files that are less than 8 opcodes long, the dataset con-
tains 2475 malware samples and 3627 benign samples. This
dataset does not include malware family labels and may in-
clude malware and/or benign applications present in the
small dataset. Hence to ensuring training hygiene i.e. to
ensure we do not train on the testing-set, the network is
trained and tested on each dataset separately without cross-
contamination. We refer to this dataset as the ’Large Dataset’.

We also have an additional dataset provided by McAfee
Labs containing approximately 18,000 android programs,
and which was collected more recently than the first two
datasets. This was used for testing the final system after
setting the hyper-parameters using the smaller datasets. Af-
ter discarding short files, the dataset contains 9268 benign
files and 9902 malware files. We refer to this dataset as the
’V. Large Dataset’.

Each dataset was split into 90% for training and validation
and the remaining 10% was held-out for testing. Care was
taken to ensure that the ratio of positive to negative samples
in the validation and testing sets was the same as in the
dataset as a whole.

Results are reported using the mean of the classification

accuracy, precision, recall and f-score. The key indicator of
performance is f-score, because the number of samples in the
malware and benign classes is not equal. In this situation,
classification accuracy is too influenced by the number of
samples in each class. For example if the majority of samples
were of class x, and the classifier simply reported x in all
cases, the classification accuracy would be high, although
the classifier would not be useful. However, given the same
conditions, the f-score, which is based on the precision and
recall, would be low.

Our neural network software was developed using the Torch
scientific computing environment [4]. During training the
network parameters were optimized using RMSProp [3] with
a learning rate of 1e-2, for 10 epochs, using a mini-batch
size of 16. The network weights were randomly initialized
using the default Torch initialization. We used an Nvidia
GTX 980 GPU for development of the network, and training
the network to perform malware classification takes around
25 minutes on the large dataset (which contains approxi-
mately 6000 example programs). Once the network has been
trained our implementation can classify approximately 3000
files per-second on the GPU.

4.1 Computational Efficiency
In this experiment we compare the computational effi-

ciency of our proposed malware classification system with
our implementation of a conventional n-gram based mal-
ware classification system [10]. Note that when reporting
the results we do not include the time take to disassemble
the malware files as this is constant for both systems. The
results in Table 2 are presented in terms of both the average
time to reach a classification decision for a single malware
file, and the corresponding average number of programs that
can be classified per second.

It can be seen from Table 2 that our system can produce
a much higher number malware classification decisions per
second than the n-gram based system. The n-gram based
system also experiences exponential slow-down as the length
of the n-gram features are increased. This severely limits the
use of longer n-grams, which are necessary for improved clas-
sification accuracy. Our proposed system is not limited in
the same way, and in fact, the features extracted by the first
layer of the CNN can be thought of as n-grams where n = 8.
Use of such features with a conventional n-gram based sys-
tem would be much too computationally expensive. Our
proposed neural network system is implemented on a desk-
top GPU, specifically an Nvidia GTX-980, however it could
easily be moved to the GPU of a mobile device, allowing for
fast and efficient malware classification of Android applica-
tions.

Finally, the memory usage required to execute the trained
neural network is constant. Increasing the length or number
of convolutional filters, or increasing the number of training
examples linearly increases memory usage. Whereas with
n-gram based systems, increasing the training-set size dra-
matically increases the number of unique n-grams and hence
memory usage. For instance, with the small dataset there
are 213 unique 1-grams, 1891 unique 2-grams, and 286471
unique 3-grams. This means our proposed neural network
based system also more efficient in terms of memory usage
during training.

4.2 Classification Accuracy



Classification System Feature Types Benign Malware Acc. Prec. Recall F-score

Ours (Small DS) CNN applied to raw opcodes 863 1260 0.98 0.99 0.95 0.97
Ours (Large DS) CNN applied to raw opcodes 3627 2475 0.80 0.72 0.85 0.78
Ours (V. Large DS) CNN applied to raw opcodes 9268 9902 0.87 0.87 0.85 0.86

n-grams (Small DS)
opcode n-grams (n=1) 863 1260 0.95 0.95 0.95 0.95
opcode n-grams (n=2) 863 1260 0.98 0.98 0.98 0.98
opcode n-grams (n=3) 863 1260 0.98 0.98 0.98 0.98

n-grams (Large DS)
opcode n-grams (n=1) 3627 2475 0.80 0.81 0.80 0.80
opcode n-grams (n=2) 3627 2475 0.81 0.83 0.82 0.82
opcode n-grams (n=3) 3627 2475 0.82 0.83 0.82 0.82

DroidDetective [13] Perms. combination 741 1260 0.96 0.89 0.96 0.92
Yerima [23] API calls, Perms., intents, cmnds 1000 1000 0.91 0.94 0.91 0.92
Jerome [10] opcode n-grams 1260 1246 - - - 0.98
Yerima [25] * API calls, Perms., intents, cmnds 2925 3938 0.97 0.98 0.97 0.97
Yerima (2) [24]* API calls, Perms., intents, cmnds. 2925 3938 0.96 0.96 0.96 0.96

Table 1: Malware classification results for our system on both the small and large datasets compared with
results from the literature. Results from the literature marked with a (*) use malware from the McAfee
Labs dataset i.e. our large dataset, while all others use malware sampled from the Android Malware Genome
project [28] dataset i.e. our small dataset

System Time per program (s) Programs per second

Ours 0.000329 3039.8

1-gram 0.000569 1758.3
2-gram 0.010711 93.4
3-gram 0.172749 5.8

Table 2: Comparing the time taken to reach a clas-
sification decision and number of programs that can
be classified per second, for our proposed neural net-
work system and a conventional n-gram based sys-
tem.

In this experiment, the network’s performance is measured
in terms of accuracy. The network was trained using the
complete training and validation set, then tested on the held-
out test-set that was not seen during hyper-parameter tun-
ing. We compare the performance of our proposed system
with our own implementation of an n-gram based malware
detection method [10]. For both datasets we measured the
performance of this system using 1, 2 and 3-gram features.
The same training and testing samples were used for both
systems in order to allow for direct comparison of their per-
formance. The results for the small and large and v. large
datasets are shown in Table 1. We have endeavored to select
papers from the literature that use similar Android malware
datasets to give as fair a comparison as possible.

In the small dataset our proposed method clearly achieves
state-of-the-art performance, and is comparable to methods
such as [10] and [23]. It achieves better performance than
our baseline n-gram system with 1-gram features and near
identical performance to the baseline with 2 and 3-gram fea-
tures.

The large dataset is more challenging due to the greater
variably of malware present. Our system achieves similar
performance to the baseline n-gram system, while having far
greater computational efficiency (See Section 4.1). Although
other methods have achieved better performance on similar
tests, they make use of additional outside information such

as the application’s requested permissions or API calls [25].
In contrast, our proposed method needs only the raw op-
codes, which avoids the need for features manually designed
by domain experts. Moreover, our proposed method has
the advantage over existing methods of being very compu-
tational efficient, as it is capable of classifying approximately
3000 files per-second.

The results on the v. large dataset, which was obtained
from the same source as the large dataset and hence likely
shares similar characteristics, shows that our system’s per-
formance improves as more training data is provided. This
phenomenon has been observed when training neural net-
works in other domains, where performance is highly corre-
lated with the number of training samples. We expect that
these results can be further improved given greater quan-
tities of training data, which will also allow more complex
network architectures to be explored. Unfortunately com-
parisons with the baseline n-gram system on the v. large
dataset were not possible due to computational cost associ-
ated with the n-gram method.

4.3 Learning Curves
In this experiment we aim to understand the system’s per-

formance as a function of the quantity of training data, with
the aim of predicting how its performance is likely to change
if more training data were to be made available.

This experiment was performed on the V. Large dataset.
As in previous experiments, the dataset is split into train-
ing and validation sets. Throughout the experiment the
validation-set remains fixed. An artificially reduced size
training-set is constructed by randomly sub-sampling from
the complete set of training examples. The network is then
trained from scratch on this reduced size training-set, and
the system’s performance measured on both the training and
validation sets. This process is repeated for several different
sizes of training-set, ranging from a small number of exam-
ples up to the complete set of all training-examples. The
system’s performance on the validation-set and training-set
are then plotted as a function of the training-set size. Per-
formance is recorded in terms of 1 − f-score, meaning that



perfect performance would produce a value of zero.
In figure 3, we can see that when only a small number of

training-examples are provided, training-set performance is
perfect, while validation-set performance is very poor. This
is to be expected as with such a small number of training-
examples the system will over-fit to the training-set and
the learned parameters will not generalize to the unseen
validation-set. However, as more training-examples are pro-
vided the validation-set error decreases, showing that the
system has learned to generalize from the training-set. We
can predict from the learning curves in figure 3 that if more
training-examples were to be provided, the validation-set er-
ror would continue to decrease.

These results suggest that our system benefits from larger
quantities of training-data as expected with neural networks [20].
They also show that the poor performance on the ’Large
Dataset’, which was obtained from the same source as the
’V. Large dataset’ and hence shares similar characteristics,
is caused by lack of data. This is indicated by the gap be-
tween the validation and testing-set errors when only ap-
proximately 6000 training examples are provided.
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Figure 3: Learning curves for the Validation-set and
Training-set as the number of training examples is
varied. Note the log-scale on the x-axis.

4.4 Realistic Testing
In order to assess the potential of our proposed classi-

fication technique in realistic environments we apply our
trained network to a completely new dataset. This allows us
to demonstrate the real-world potential of our classification
technique when applied to an unknown and realistic dataset
at a bigger scale. The network used in this experiment was
trained on the V. Large dataset, introduced in Section 4.

Our new dataset consists of 96,412 benign apps and 24,103
malware apps. The benign apps were randomly selected
from the Google Play store, and were collected during July
and August 2016. To represent a distinct set of malicious
apps, we used another dataset containing known malware
apps, including those from the Android Malware Genome
project [28], but removing the ones overlapping with the
training set of the network.

Approximately 1 TB of APKs were used in this experi-
ment. The APKs were converted to opcode sequences using

a cloud architecture consisting of 29 machines running in
parallel, in a process which took around 11 hours. Clas-
sification of the opcode sequences was performed using an
Nvidia GTX 1080 GPU, and took an hour to complete.

Note that for this experiment we assume that all APKs
in the Google Play dataset are benign, and all the APKs in
the malicious dataset are malicious. Of course, this may be
a naive assumption, as it is possible for malicious apps to
exist on Google Play.

Cross validation testing was performed on our new dataset.
In each cross validation fold approximately 24,000 malware
applications and 24,000 benign application were used. There-
fore, in order to present all applications to the network four-
fold cross validation was used. The results of this experiment
are reported in Table 3.

Classification System Acc. Prec. Recall F-score

Ours 0.69 0.67 0.74 0.71

Table 3: Malware classification results of our sys-
tem tested on an independent dataset of benign and
malware Android applications.

We can see from the results in Table 3 that although the f-
score is lower than previous experiments, our system has the
potential to work in realistic environments. This is because
our new testing dataset is much larger than the one used
for training the network and contains greater variability of
applications. The results of this experiment show that the
network has learned features with the ability to generalise
to realistic data. In future work we hope to take advan-
tage of our new dataset to explore more complex network
architectures that can be learned given more training data.

5. CONCLUSIONS
In this paper we have presented a novel Android mal-

ware detection system based on deep neural networks. This
innovative application of deep learning to the field of mal-
ware analysis has shown good performance and potential in
comparison with other state-of-art techniques, and has been
validated in four different Android malware datasets. Our
system is capable of simultaneously learning to perform fea-
ture extraction and malware classification given only the raw
opcode sequences of a large number of labeled malware sam-
ples. The main advantages of our system are that it removes
the need for hand-engineered malware features, it is much
more computationally efficient than existing n-gram based
malware classification systems, and can be implemented to
run on the GPU of mobile devices.

As future work, we would like to extend our methodology
to both dynamic and static malware analysis in different
platforms. Our proposed method is general enough that it
could be applied to other types of malware analysis with only
minor changes to the network architecture. For instance, the
network could process sequences of instructions produced by
dynamic analysis software. Similarly, by changing the dis-
assembly preprocessing step the same network architecture
could be applied to malware analysis on different platforms.

Another open problem for malware classification, which
may allow networks with more parameters, and hence greater
discriminative power, to be used, is data augmentation. Data
augmentation is a way to artificially increase the size of the
training-set, by slightly modifying existing training-examples.



The transformations used in data augmentation are usually
chosen to simulate variations that occur in real world data,
but which may not be extensively covered by the available
training-set. We would like to investigate the design of data-
augmentation schemes appropriate to malware detection.
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