
Mixing Regime Simulation and Cellulose Particle Tracing in a Stacked
Frame Photocatalytic Reactor

Nagarajan, S., Stella, L., Lawton, L. A., Irvine, J. T. S., & Robertson, P. K. J. (2017). Mixing Regime Simulation
and Cellulose Particle Tracing in a Stacked Frame Photocatalytic Reactor. Chemical Engineering Journal, 313,
301-308. https://doi.org/10.1016/j.cej.2016.12.016

Published in:
Chemical Engineering Journal

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:19. Apr. 2024

https://doi.org/10.1016/j.cej.2016.12.016
https://pure.qub.ac.uk/en/publications/0dd2172c-23ed-413f-9a15-b1e0dcc472d7


1 
 

Mixing Regime Simulation and Cellulose Particle Tracing in a Stacked Frame 

Photocatalytic Reactor  

Sanjay Nagarajana, Lorenzo Stellaa,b, Linda A. Lawtonc, John T.S. Irvined and Peter 

K.J. Robertsona* 

aCentre for the Theory and Application of Catalysis (CenTACat), School of Chemistry 

and Chemical Engineering, Queen’s University Belfast, David Keir Building, 

Stranmillis Road, Belfast, BT9 5AG, United Kingdom; 

bAtomistic Simulation Centre (ASC), School of Mathematics and Physics, Queen's 

University Belfast, University Road, 

Belfast BT7 1NN, UK,  

cSchool of Pharmacy and Life Sciences, Sir Ian Wood Building 

Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom 

dJTSI Group, University of St. Andrews, School of Chemistry, Purdie Building, North 

Haugh, St Andrews, KY16 9ST, United Kingdom;  

*Corresponding authors, p.robertson@qub.ac.uk Tel: +44 (0) 28 9097 4627, 

snagarajan01@qub.ac.uk 

 

  



2 
 

Abstract 

 

To sustainably meet the global energy demand, unconventional methods to produce 

renewable energy must emerge. Biofuels from cellulose (via fermentable sugar 

production) mediated via photocatalysis provides an alternative to conventional fossil 

fuels. In order to effectively drive photocatalytic processes an effective reactor 

design is required, the design of which is influenced by a number of key factors such 

as the catalyst to reactant ratio and residence time, catalyst illumination time, light 

penetration and distribution for the system, mass transfer limitations (mixing) and 

product recovery. In this study we use COMSOL Multiphysics® to simulate and 

assess one of the mentioned parameters – mixing regime of cellulose particles in a 

Stacked Frame Photocatalysis Reactor (SFPR). In the reactor design, we compare 

two mixers: a ‘plus’ shaped magnetic stirrer bar and an 8 blade Rushton impeller. 

The simulations reveal that the Rushton impeller offers a radial mixing pattern with a 

higher fluid velocity of 1.2 m/s when compared to the stirrer bar that offers a fluid 

velocity of 0.9 m/s. Cellulose particle tracing simulations confirm that the particle 

dispersion is superior in the case of the Rushton impeller as the vorticity generated 

during the mixing push the particles to the reactor’s walls. Since the particles are 

forced towards the walls, there is a probability of more particles being illuminated 

than in the case of no or improper mixing. 

 

Keywords: Photocatalysis, COMSOL, fermentable sugars, mixing, simulation. 
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1. Introduction 

 

Fossil fuel depletion and raising greenhouse gas emissions have increased 

the need for alternative renewable energy technologies. Along with solar energy, 

wind energy and tidal energy, biofuels could also contribute to the global clean 

energy production. Biofuel production could be brought about from various sources 

such as waste vegetable oil, food waste, animal fats, algae and cellulose. Among 

these sources, cellulose is the most attractive raw material as it is the world’s most 

abundant organic material [1]. However, cellulose as such cannot be used directly as 

a fuel and has to be converted to fermentable sugars which can then lead to the 

production of bio alcohols via fermentation. Conventionally, cellulose hydrolysis has 

been achieved through environmentally unfavourable, high energy consuming 

physico-chemical methods such as steam explosion, pyrolysis or acid/alkali 

hydrolysis [2]. A potential new route for cellulose breakdown using photocatalysis 

could be an alternative, more sustainable method to breakdown the cellulose 

molecule to smaller carbohydrate species [3]. Photocatalysis is a light driven 

chemical reaction. When light of a specific wavelength with energy greater than or 

equal to band gap energy illuminates a photocatalyst, an electron from the valence 

band (VB) gets promoted to the conduction band (CB) leaving behind a positive hole 

in the VB. These positive holes react with water or OH- to form hydroxyl radicals 

which can carry out oxidation reactions such as break down of cellulose.  

 

Conventional reactors for chemical engineering are well established and 

classified, whereas photocatalytic reactor designs are relatively new [4]. In addition 
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to the conventional reactor design parameters such as reactor geometry, mixer 

configuration, mode of operation (continuous or batch), separation efficiency, 

residence time, reaction selectivity, materials of construction and cost, the following 

parameters with respect to illumination needs to be considered while designing a 

photocatalytic reactor [5], 

 

(i) Type of illumination source 

(ii) Output power of the light source 

(iii) Spectral distribution 

(iv) Maintenance 

(v) Inclusion of reflectors, mirrors and windows 

(vi) Construction materials to facilitate light transmission 

 

Furthermore, the illumination source also influences the choice of materials 

for reactor construction. When external ultraviolet (UV) light sources are used for 

photocatalysis, expensive fused silica (quartz) is the primary choice of material for 

the reactor vessel as standard glass is not t fully transparent to UV radiation, 

especially at wavelengths less than 400 nm. Pyrex glass, which is a cheaper 

alternative may, however, be used under near UV illumination (350-400 nm) or for 

visible light photocatalysis. When illumination sources are deployed within the 

reactor, the unit is made of materials such as aluminium or stainless steel (for 

reflection and light distribution), however Pyrex or quartz lamp housing units will still 

be required. A range of light sources that could be used to illuminate the TiO2 

photocatalytic system is summarised in Table 1. In addition, sample spectra of two 
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commonly used UV lamps (500 W Xenon lamp and 36 W fluorescent UV lamps) are 

shown in Figure 1. 

 

Table 1. 

 

Figure 1. 

 

As previously reported in the literature, photocatalytic reactor designs can 

potentially fulfil the following objectives: [6-8] 

 

(i) Improve the catalyst to reactant ratio and residence time, 

(ii) Increase the catalyst illumination time, 

(iii) Improve light penetration and distribution for the system, 

(iv) Eliminate mass transfer limitations and 

(v) Increase the product production and recovery. 

 

Photocatalytic reactors can be broadly grouped under either suspended or 

immobilised photoreactors based on the mode of photocatalyst deployment. It is not 

feasible to compare the current reactor designs on a common scale as they have 

their own advantages and disadvantages based on their area of application [4]. 

Recently, however, 12 different photocatalytic reactors for wastewater treatment 

were compared using a benchmark ratio proposed as the photocatalytic space time 

yield (PSTY) [6].  According to Leblebici et al. PSTY is defined as “the volume of 

water treated for each kW lamp power per volume of reactor per unit of time” [6]. 

After normalising various designs using PSTY, they concluded that the pilot scale 
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slurry reactor with a suspended photocatalyst system outperformed the other 

designs. This was as a result of issues such as high light distribution, decreased 

mass transfer limitation and high photocatalyst surface area available for illumination 

and hence is also the most commonly used reactor design in the field of 

photocatalysis [9, 10].  

 

Simulation is a useful tool to compare various reactor configurations or to 

compare different modifications done to the same reactor design without having to 

fabricate the actual unit thereby making it a useful tool in engineering design to 

reduce the time and costs. There are numerous software packages available for 

such simulations including MATLAB®, ANSYS®, COMSOL Multiphysics®, and 

SOLIDWORKS®. The rotating machinery turbulent flow k-ε model in COMSOL 

Multiphysics® 5.1 was used in this study [11]. The reason for choosing k-ε model for 

the simulations are as follows,  

 

(i) This model uses minimal computational resources, 

(ii) Offers a good trade-off between accuracy and the computational resource 

requirement, 

(iii) Performs well when the pressure drop in the system is expected to be 

negligible, 

(iv) Provides an approximation of the flow patterns for a new design, such as the 

SFPR. 

 

Simulation and modelling have been reported earlier for chemical reactions, 

multi-phase fluid flow, mixing, filtration, dialysis and other processes, [11-16] but only 
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for a limited number of applications in photocatalytic reactors. Simulations focussing 

especially on mixing regimes in a reactor using COMSOL Multiphysics® have been 

performed in the past for reactor design verification and bioethanol fermentation 

purposes [11, 16]. Patel et al. performed COMSOL Multiphysics® simulations to 

determine the best possible mixing profiles to understand the mass transfer for a 

combination of either ellipsoidal or flat base vessel with five different impeller blade 

configurations [11]. Similarly, Rana performed simulations to determine the mixing 

profiles of marine impeller and Rushton impeller for bioethanol fermentation [16]. 

Furthermore, Rana reported that marine impellers were superior in performance and 

cost efficient over Rushton impellers for bioethanol fermentation in a stirred tank 

reactor. This paper describes the design of a novel SFPR (slurry reactor design) 

along with its mixing regime simulations of a commercially available ‘plus shaped’ 

stirrer bar and an 8 blade Rushton impeller configuration for the SFPR.  

 

2. Methodology 

 

2.1 Stacked Frame Photocatalysis Reactor (SFPR) design 

 

A novel SFPR was designed using FreeCAD 15.0. The SFPR design consists 

of the following parts, 

 

(i) Perspex frames (with and without inlet/outlet ports) 

(ii) Pyrex end plates 

(iii) Acrylic inlet and outlet port tubes 

(iv) Silicone rubber gaskets 
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(v) Nylon threaded rods, nuts and washers 

(vi) ‘Plus’ shaped magnetic stirrer bar or a stainless steel 316 grade impeller (8 

blade Rushton impeller) 

 

Figure 2 shows the front view of the SFPR frames displaying the dimensions, 

M6 slots for inserting the threaded rods and the slots for holding the reaction mixture 

(cellulose + water + TiO2). The thickness of each frame is 10 mm and the liquid 

holding volume of each frame is 12 ml. All the silicone gaskets were of the same 

dimensions as the Perspex frames, except that the thickness was 1.5 mm. Similarly, 

the Pyrex end plates were also of the same dimensions as the Perspex frames, 

except that the thickness was 3.8 mm and there was no slot for the liquid holding 

volume.  

 

Figure 2 

 

Two Perspex frames were also designed to have inlet and outlet ports as 

shown in Figure 3. Multiple frames were stacked together with alternating gaskets 

and sandwiched between Pyrex end plates on either side to form the SFPR.  

 

Figure 3 

 

Threaded ports (Figure 4) made of acrylic tubes were further fixed to the inlet 

and the outlet ports of the frames to facilitate inflow and outflow of the reaction 

mixture. A light source would be positioned in such a way so that it faces the end 

plate adjacent to the frame with the inlet port. 
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Figure 4 

To facilitate mixing in the reactor, a commercially available ‘plus shaped’ 

magnetic stirrer bar configuration and an 8 blade Rushton impeller was designed to 

fit the liquid holding volume of the SFPR (Figure 5). The dimensions of the stirrer bar 

are 19.1 mm × 9.5 mm × 2mm (width × height × thickness) and that of the stirrer bar 

are 20 mm × 15 mm (total width × total height), 4 mm × 5 mm (blade height × blade 

width) and a shaft diameter of 1 mm.  

 

Figure 5 

 

 Despite the extensive use of baffles in conventional chemical reactors, no 

baffles were installed in this assembled photocatalytic reactor. The reasons for this 

being that the baffles might block the light reaching the photocatalyst, avoid vortex 

formation thereby diminishing chances of forcing the reaction mixture towards the 

walls (and the illumination source), hence creating “dead layers” and decreasing the 

fluid-particle mass transfer [17]. 

 

2.2 Mixing simulation 

 

A flow chart on the simulation procedure is given in Figure 6. Firstly, the 

geometry of the fluid domain (liquid holding domain) of the SFPR was created in the 

COMSOL Multiphysics® 5.1 workspace assuming that 4 frames were stacked 

together. When 4 frames are stacked together, the liquid holding domain measures 

40 mm × 40 mm × 30 mm (thickness × width × height) and has a volume of 48 ml. 
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The inlets and the outlet ports were also created. Secondly, the mixer (either the 

stirrer bar or the impeller) was created.  

 

Figure 6 

 

Once the geometry of the system was defined, rotating machinery turbulent 

flow k-ε model with a frozen rotor study (stationary with respect to the reactor) was 

selected in COMSOL Multiphysics®. This model uses incompressible fluid flow and 

assumes Reynolds-Averaged-Navier-Stokes (RANS) equation for the fluid flow [11]. 

Next, the material in the fluid domain was defined as water. Its fluid properties were 

defined with the density being 1000 Kg/m3 and the dynamic viscosity being 1.002 × 

10-3 Pa.s. Then the rotating domains were allotted and the speed of rotation of the 

mixer was set at 1000 rpm. Subsequently, the inlet was assigned and the normal 

inflow velocity of the system was set at 0.01 m/s. The outlet for the system was then 

defined with the backflow suppressed. Finally, flow continuity was set up for the 

rotating and the fluid domains. All domains were meshed using the “physics 

controlled mesh” option provided by COMSOL Multiphysics® model builder and 

hence automatic (Figure 7).  

 

Figure 7 

 

2.3 Particle tracing 

 

Once mixing simulation was completed, particle tracing module was added to 

the model to simulate the motion of cellulose particles in the SFPR. Then a new time 
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dependent study was included in the model for particle tracing. A drag force node 

was introduced to the module where the fluid domain defined in the mixing 

simulation was chosen as the domain where the particles will be present. The 

velocity field and the dynamic viscosity from the mixing simulation results were used 

to compute the drag force on the cellulose particles. The inlet and the outlet for the 

cellulose particles were then defined. The number of particles per release was set as 

3000. From the mixing simulation results, the velocity field was chosen and defined 

as the initial velocity of the particles for particle tracing. In the particle properties 

section, the density of the cellulose particles was set as 1500 kg/m3 (an average 

value obtained from literature) [18] and the particle diameter was set as 55 µm 

(obtained as an average diameter for cellulose particle from various suppliers). 

Furthermore, to use the results from the mixing simulation for the velocity field and to 

reduce the computation time for particle tracing, in the time dependent solver 

settings, the mixing simulation study was selected and included. The time range to 

compute the motion of the cellulose particles was chosen from 0 seconds to 1 

second, with a step time of 0.1 seconds to visualise the mixing at the initial stages. It 

has to be noted that, this SFPR was originally designed for the purpose of 

photocatalytic cellulose breakdown and hence cellulose particles were used as 

model particles to simulate particle tracing, however this reactor could also be used 

for other generic photocatalytic applications such as wastewater treatment. 

 

3. Results and discussion 

3.1  Mixing simulation 

Mixing simulation for the SFPR with the ‘plus shaped’ stirrer bar and an 8 

blade Rushton impeller configurations were performed and results in the form of slice 
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plots, XY streamline plots and YZ streamline plots were generated and summarised 

in Figure 8 and Figure 9 respectively. As seen from Figure 8, the arrows indicate the 

direction of fluid flow as a result of mixing where the size of the arrows is proportional 

to the fluid velocity at that point. It can be observed that the fluid velocity is higher (as 

seen from the proportional arrows) close to the blades of the Rushton impeller when 

compared to the walls of the stirrer bar. This observation is explained by the flat 

blade impeller exerting a relatively stronger force on the fluid than the convex walls 

of the stirrer bar. This explanation is further supported by the specific velocity 

magnitudes where the maximum fluid velocity close to the walls of the impeller blade 

and the stirrer bar is 1.2 m/s and 0.9 m/s respectively. 

 

Figure 8 

 

Figure 9 shows the XY and YZ streamline plots of the mixing profiles 

respectively in the SFPR with a plus shaped stirrer bar and the 8 blade Rushton 

impeller. As can be seen from the XY plot, a prominent circular flow is developed 

with the stirrer bar, however it is not the case with the Rushton impeller. The arrows 

indicate the direction of fluid flow during mixing. The velocity magnitude spread 

across the XY plane for the stirrer bar is in the range of 0.2-0.4 m/s and that for the 

impeller is in the range of 0.1-1.2 m/s as seen from the streamlines and the spatial 

velocity fields.  

 

Figure 9 

 

 Furthermore, Figure 9 also shows that there are no obvious “dead layers” in 

both the cases, which is an indication that when particles are introduced in the 
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SFPR, they will stay in suspension. The maximum fluid velocity in both the cases is 

observed close to the walls of the impeller blades and the stirrer bar. Once the fluid 

is pushed away from the stirrer bar, the fluid velocity drops to 0.4 m/s along the walls 

of the SFPR. Whereas in the case of the impeller, a fully developed radial mixing 

pattern is observed. This observation is consistent with the existing literature [19-21]. 

The fluid velocity close to the top centre of the SFPR is small, indicating that a tiny 

vorticity is generated when the stirrer bar is used. This conclusion is also supported 

by the XY streamline plot. In the case of the impeller, a well-developed vorticity is 

seen in the middle thereby pushing the fluid towards the walls. In the case of a 

photocatalytic reactor (SFPR), when the liquid is forced towards the walls of the 

reactor, it will help in illuminating the reaction mixture evenly thereby fulfilling the 

need for light penetration.  

 

3.2 Particle tracing simulation 

Once the mixing simulation was completed, particle tracing simulations for 

cellulose in the SFPR were performed. The particle tracing simulations revealed that 

the motion of the cellulose particles in both the cases followed the fluid flow patterns 

initiated by the mixing. As a result of mixing, in both the cases, cellulose particles 

were well dispersed in the suspension. In the case of the impeller, as a result of a 

prominent vorticity developed due to agitation, the particles enter the vortex first 

along with the fluid flow and with the constant rotation of the impeller they are pulled 

closer to the blades and instantaneously pushed towards the walls.  

 

TiO2 photocatalyst particles are water insoluble white odourless transition 

metal oxide powders that have a bandgap of 3.2 eV which corresponds to an 
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excitation wavelength of 387 nm [22]. One of the most commonly used forms of TiO2 

is the Evonik P25 form which is a mixture of 70 % anatase and 30 % rutile crystal 

phases of TiO2. This combination is commercially preferred to avoid photocatalytic 

losses due to recombination [23]. The average size of TiO2 particles are in the range 

of 25 – 65 nm [24], which could aggregate to form particles in the size range of 

microns or could adsorb on to the cellulose surface thereby considerably increasing 

the combined particle size. In addition, since the motion of particles in the fluid 

domain are proportional to the fluid motion, these photocatalyst particles are 

expected to have a similar motion such as that of cellulose in the fluid domain. Since 

the particles are forced towards the walls, the chances of more photocatalyst 

particles being illuminated are higher than a system which offers no mixing. This 

mechanism also decreases the mass transfer limitations and will help to improve the 

cellulose-TiO2 particle interaction, thereby producing desired products. The videos of 

the cellulose particle tracing in a SFPR with the stirrer bar and the impeller can be 

found in the supplements as video 1 and video 2 respectively.  

 

From literature, the scattering and absorption coefficients of P25 could be 

obtained which correspond to 54208 cm2 g-1 and 887 cm2 g-1 at 365 nm respectively 

[25]. It should be noted that the scattering coefficient is multiple folds (60 times) 

higher than the absorption coefficient which means that the majority of the light 

extinction depends on scattering. This was also supported by Egerton and Tooley, 

who reported that when illuminated at 360 nm, TiO2 particles of a mean size 50 nm 

contributed only a meagre 22% for extinction [26]. They also reported that with the 

increase in particle size, scattering coefficient would increase. This increase could be 

possible in the case of cellulose-TiO2 mix in a SFPR. With cellulose being poor light 
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absorbers [27] and with the possibility of TiO2-cellulose aggregate formation, the 

scattering coefficient for these particles (and aggregates) would tend to increase in 

the SFPR and would contribute to a uniform light distribution within the reactor. In 

addition, from the numbers reported in literature it is evident that minimal light 

absorption by TiO2 particles occurs and therefore would have an effect on 

photocatalysis. Hence to avoid a negative effect of minimal absorption on 

photocatalysis, proper mixing has to be established as reported in this study. It 

should be noted that more insight on the motion of particles and radiation scattering 

could be revealed when particle-particle interaction and the particle-radiation 

interaction studies are undertaken in the future. 

 

4. Conclusion 

 

Mixing profiles in the SFPR with various impeller and stirrer bar configurations 

were determined using the rotating machinery turbulent flow k-ε model in COMSOL 

Multiphysics® 5.1. Simulations were performed with water present in the fluid 

domain. The mixers were set to be operated at 1000 rpm. The results reveal that the 

plus shaped stirrer bar had a circular flow with the highest average fluid flow velocity 

around 0.9 m/s whereas, the 8 blade Rushton impeller had a superior performance 

than the stirrer bar and produced a radial mixing profile in addition to having higher 

fluid flow velocity of 1.2 m/s.  

 

Further to the mixing profiles, particle tracing simulations were also performed 

in the SFPR using cellulose as the model particle. The drag force of the cellulose 

particles in the particle tracing were proportional to the fluid velocity obtained from 
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the mixing simulations. In the cases with both the stirrer bar and the Rushton 

impeller, the particles were well dispersed, however the particle dispersion was 

superior in the case of the Rushton impeller where the vorticity generated during 

mixing pushed the particles towards the walls. A similar particle motion is expected 

with the TiO2 P25 photocatalyst due to the mixing regime generated by the Rushton 

impeller, thereby facilitating better illumination of the photocatalyst. 
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Type of illumination source Spectral range Power Reference 

Mercury arc lamp UV and visible  
(265 nm – 580 nm) 

300 W [28] 

Medium pressure mercury 
arc lamp 

UV (peak at 365 nm) 700 W [29] 

Incandescent lamps UV and visible  
(200 nm – 600 nm) 

200 W [30] 

Mercury vapour fluorescent 
lamp 

UV (peak at 254 nm) 6 - 10 W [31-33] 

PL-L-40 Philips UV lamps UV (peak at 365 nm) 40 W [34] 

Blacklight blue Panasonic 
Fluorescent lamps 

UV (300 nm – 400 nm) 4 W [35] 

Light emitting diodes 

(FoxUV™) 

UV (peak at 360 nm) 454 µW [36, 37] 

InGaN Light emitting diodes UV (390 nm – 410 nm) 10 – 20 mW [38] 

TG Purple Hi LED E1L5M-
4P0A2-01 Light emitting 
diodes 

UV (peak at 383 nm) 20 mW [39] 

 

Table 1. 


