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1. Abstract 

Fusarium mycotoxins such as trichothecenes, zearalenone and fumonisins occur on a 

worldwide basis in cereal grains, animal feeds and forages. Practical solutions for multiple 

mycotoxin determination in samples are required by industry and regulators for cost effective 

screening purposes. The feasibility of developing a novel multiplex nanoarray for the 

simultaneous and semi-quantitative detection of three regulated mycotoxins: zearalenone 

(ZEA), T2-toxin (T2) and fumonisin B1 (FUM) was examined. Additionally, the assay was 

also able to detect HT2 toxin and fumonisin B2 and B3 due to the cross reactivity profiles of 

the antibodies used. Individual mycotoxin conjugates specific to the three mycotoxins were 

nano-spotted onto wells of a microtitre plate. Optimisation of assay parameters and antibodies 

was undertaken with both individual and multiplex calibration curves generated. A competitive 

assay format was employed enabling a calibration curve for concentration analysis and 

duplicate results for up to 40 samples in 70 min for the three target mycotoxins. The 

characteristics and performance of the nanoarray were evaluated including sensitivity and 

specificity for each target. Additionally, intra and inter spotting precision, cross reactivity, 

matrix effects and sample analysis in maize and wheat (n=8) was performed. Sensitivity, 

determined as the concentration causing 50 % inhibition, was 70.1, 2.8 and 90.9 ppb in PBS, 

172.4, 3.2 and 129.3 ppb in methanol, 197.4, 0.7 and 216.7 ppb in wheat and 43.6, 0.5 and 25.9 

ppb in maize for ZEA, T2 and FUM respectively. Intra spotting precision was 6, 11 and 10 % 

for PBS and 5, 11 and 12 % for methanol for ZEA, T2 and FUM respectively. Inter spotting 

precision was 4, 14 and 6 % for PBS and 3, 9 and 16 % for methanol for ZEA, T2 and FUM 

respectively. The feasibility of the nanoarray as an easy to use sensitive screening tool in the 

96 well format has been demonstrated for the multiplex detection of three regulated 

mycotoxins. Improvements in automated image and data analysis software for novice end users 

are required to improve the overall rapidity of analysis.  
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2. Introduction 

Mycotoxins are naturally occurring secondary chemical metabolites produced by different 

fungi genera such as Aspergillus, Fusarium, Penicillium, Alternaria and Claviceps [1]. Among 

these genera, Fusarium fungi are the most widespread in cereal crop production. Fusarium 

fungi produce a diversity of mycotoxin types and can have widespread geographical 

distribution influenced primarily by environmental and climatic conditions and crop 

production, storage, processing and transportation methods. Toxins produced by Fusarium 

moulds, include fumonisins, trichothecenes (deoxynivalenol, T2 and HT2 toxin) and 

zearalenone. Mycotoxins are chemically and thermally stable whereby mycotoxin 

contamination of raw materials may also affect processed foods [2]. Furthermore they can enter 

the food chain through animals fed contaminated feed [3]. Mycotoxin contamination is 

inhomogeneous in nature and the toxins can be present at very low levels. Due to their highly 

resistant nature they can remain in the food chain [4] thereby posing a threat as toxic 

contaminants of food products.  

The complex toxic effects of mycotoxins pose significant health risks to humans and animals 

and this necessitates for effective control and surveillance procedures [5-9]. The initial stages 

in the protection against mycotoxin contamination is through the adoption of good agricultural, 

storage and processing practices to ensure mycotoxin levels remain negligible or as low as 

reasonably achievable [10]. In order to protect consumer safety, legislative limits for 

mycotoxins in certain foodstuffs are set out by the European Commission [11-14].  

Contamination of food by these natural toxins is of an increasing safety and economic concern 

due to changes in prevalence with variations in environmental conditions. Therefore, 



innovation in the development of detection methods for implementation is vitally important. 

The detection of mycotoxins is carried out by confirmatory methods for quantitative analysis 

and by rapid diagnostics for screening. Several validated methods are available for the 

measurement of mycotoxins and the literature on this subject has included many 

comprehensive and critical reviews [8, 15-19]. For the quantitative analysis of mycotoxins high 

performance liquid chromatography (HPLC), gas chromatography (GC) and thin layer 

chromatography (TLC) as well as multiple toxin mass spectrometry (MS) methods are used 

[20-24]. These methods, however, require the use of complex and expensive equipment as well 

as skilled operators and extensive sample pre-treatment. Furthermore, these methods 

sometimes may not reach the very low limit of detection required. Immunoassays are often 

employed for the screening of mycotoxin contamination as they provide rapid, sensitive 

detection and easy to use methods. Immunological methods such as enzyme linked 

immunosorbent assay (ELISA) [25-29] and lateral flow devices (LFD) [30-33] are the most 

common approaches. These detection methods are simpler in design, inexpensive, fast, robust, 

user friendly and cost effective allowing high sample throughput with high sensitivity and 

accuracy. LFDs provide a ‘yes/no’ answer, however, in recent years modified devices enabling 

quantitative evaluation and multiplexing have been developed. In the Conffidence project 

funded by the European Union, a LFD enabling the simultaneous detection of Fusarium toxins 

(deoxynivalenol, zearalenone, T2/HT2 toxins, fumonisins) in cereals was developed [34] and 

now commercialised by Unisensor (Belgium). Commercial detection tests based on both 

ELISA and LFDs are also available for many of the mycotoxins from Tecna (Italy), R-

Biopharm (Germany), Europroxima (The Netherlands), Neogen (USA), Charm Sciences 

(USA), Diachemix (USA), Envirologix (USA), Romer Labs (USA) and Vicam (USA) but are 

all based on single toxin analysis for these mycotoxins. Randox (Crumlin, UK) offer a 



commercial test for multiple mycotoxin detection based on a customised biochip with 

chemiluminescent detection using relatively expensive closed technology. 

In addition to safety issues, natural toxin contamination of food is of great economic concern; 

much effort is therefore devoted to the development of novel, rapid, inexpensive, simple and 

sensitive multiple mycotoxin screening methods. The simultaneous identification of several 

mycotoxins in one single test, reducing time and costs per analysis is a most attractive option.  

Nanoarrays are important tools for high throughput analysis enabling miniaturization, higher 

sensitivity and simplified sample preparation and offer a number of applications in the areas of 

medical diagnosis, genetic testing, environmental monitoring and food safety. In recent years 

the nanoarray format has provided a powerful tool in which several targets are separately 

detected in spatially defined zones simultaneously. Oswald et al. (2013) described a multiple 

mycotoxin immunoassay using the Munich chip reader 3 platform and reusable biochips. A 

number of mycotoxins including aflatoxin, ochratoxin A, FUM and DON were spotted onto 

glass slides and detected in cereals using chemiluminescence [35]. Additionally, Beizaei et al. 

(2015) reported a rapid and highly sensitive microarray method for aflatoxin B1 detection in 

cereals using 16-pad nitrocellulose coated FAST slides [36]. The application of 

nanotechnology faces many challenges in order to produce successful commercial products 

that can compete with the traditional methods of mycotoxin analysis. In this study, it is intended 

to introduce the concept and advantages of nanotechnology to the food industry and describe 

the proof of concept and feasibility of a nanoarray for the simultaneous detection of three 

harmful mycotoxins. There are very few studies that effectively employ this promising 

technology for the detection of mycotoxins. Innovative nano science and technology with state 

of the art sensing equipment have allowed novel detection methods to become a reality. The 

aim of this research was therefore to develop a multiplex nanoarray for the simultaneous 



detection of three regulated Fusarium mycotoxins offering high throughput in the 96 well plate 

format compared to LFD platforms.  

 

3. Materials and methods 

3.1. Instrumentation 

A sciFLEXARRAYER S5 (Scienion, Germany) was used for spotting microtitre plates and a 

sciReader CL colorimetric nanoarray reader (Scienion, Germany) was used for scanning and 

analysing spot intensities. 

 

3.2. Reagents 

Antibodies for ZEA, T2 and FUM and mycotoxin-BSA conjugates for ZEA (3.39 mg/ml), T2 

(1.5 mg/ml) and FUM (1.32 mg/ml) were provided by Tecna (Tecna s.r.l, Trieste, Italy). Nunc 

96 well microtitre plates were purchased from VWR (Leicestershire, UK). Alkaline 

phosphatase substrate was purchased from Millipore (Hertfordshire, UK). Bovine serum 

albumin (BSA), anti-rabbit IgG-alkaline phosphatase antibody produced in goat, 5-bromo-4-

chloro-3'-indolyphosphate (BCIP), nitro-blue tetrazolium (NBT), methanol (HPLC grade), 

zearalenone, deoxynivalenol and HT2-toxin were all purchased from Sigma-Aldrich (Dorset, 

UK). Fumonisin B1 was purchased from Trilogy (Darmstadt, Germany). T2-toxin, fumonisin 

B2 and fumonisin B3 were purchased from Romer Labs (Cheshire, UK). 

 

3.3. Printing nanoarrays 

BSA-conjugated mycotoxins were diluted in filtered printing buffer (100 mM sodium 

phosphate, 50 mM sodium chloride, 100 μg/ml BSA, 0.005 % Tween-20, pH 8.0) at 50 µg/ml. 

A spotting volume of 1000 pl for each reagent was spotted onto a 96 well microtitre plate using 

a sciFLEXARRAYER S5. For part one of the study (single spotting analysis) a nine spot matrix 



format (3x3 array) was arrayed with a 1000 µm spot to spot pitch composing of nine replicates 

of each target in separate wells. For part two of the study (multi spotting analysis) a 12 spot 

matrix format (4x3 array) was arrayed with a 750 µm spot to spot pitch composing of four 

replicates of each target (x 3 targets) in the same well. All spotting was carried out at room 

temperature and 65 % humidity. Microtitre plates were left at 65 % humidity for 1 hr on the 

nanospotter before being stored at 25 °C and 30 % humidity overnight in a humidity chamber 

(Deny, China). 

 

3.4. Assay protocol 

The microtitre plate was blocked with 0.2 % BSA (100 µl) for 60 min at room temperature 

followed by 3 washes with ELISA wash solution (0.15 M NaCl, 0.0125 % Tween) and dried 

on lint free paper. Antibody (50 µl) diluted in PBS (0.1 M, pH 7.2) and sample/standard (50 

µl) diluted in PBS (0.1 M, pH 7.2) were applied to each well and incubated for 40 min at room 

temperature. The microtitre plate was washed 3 times with ELISA wash solution and dried 

with lint free paper. Alkaline phosphatase anti-rabbit IgG (100 µl) diluted 1/500 in PBS (0.1 

M, pH 7.2) was added to each well and incubated for 20 min at room temperature. The 

microtitre plate was washed 3 times with ELISA wash solution and dried with lint free paper. 

BCIP/NBT substrate (100 µl) was added to each well and incubated for 10 min at room 

temperature. Finally, the microtitre plate was washed 3 times with ELISA wash solution and 

dried with lint free paper.  

 

3.5. Image and data processing 

Microtitre plates were scanned using the sciReader colorimetric nanoarray reader at an 

exposure of 100 ms. An image of each well of the microtitre plate was taken and saved as a 

TIFF file. One microtitre plates takes approximately 1 min to scan. The images are opened and 



processed using sciANA software from Scienion. The spotting matrix of each well is defined 

by the number of blocks (1x1) and number of spots (4x3) so that the software knows the 

spotting configuration. Next the image is evaluated and the software attempts to find the 

spotting configuration that has been specified. If the software successfully detects the spots it 

will draw grids around each spot automatically. If the intensity between the spots and the 

background is similar the software will not be able to find the spots and instead the grids must 

be manually aligned by the user. Once grids are aligned the data can be exported into excel. 

The excel sheet will contain information on each spot of the well including for example X and 

Y coordinates, diameter, median intensity of spot and intensity of background. The median 

intensity (with background removed) measured in pixels is used for further data analysis. 

 

3.6. Optimisation  

A chequerboard design was employed to optimise the assay parameters. Microtitre plates were 

spotted in a single system (ZEA, T2 or FUM) to determine optimum parameters for each 

mycotoxin. Single antibodies to each mycotoxin were assessed. For ZEA microtitre plates were 

spotted at varying spotting volumes (330, 670, 1000, 2000 pl) at varying protein concentrations 

(0.5, 5 and 50 µg/ml) of the ZEA-BSA conjugate. For T2 and FUM a spotting volume of 1000 

pl at varying protein concentrations of 10, 50, 100 and 200 µg/ml of the mycotoxin-BSA 

conjugates were assessed. Two antibodies were compared for T2 (ABT-1 and ABT-2) and 

FUM (ABF-1 and ABF-2) while only one antibody was available for ZEA (ABZ). These were 

assessed at different dilutions ranging from 1/500 – 1/15,000. A negative and positive standard 

were assessed for each parameter to determine optimum spotting conditions for each 

mycotoxin. 

 

 



3.7. Individual calibration curves 

Microtitre plates were spotted in a single system (ZEA, T2 or FUM) to assess individual 

calibration curves for each mycotoxin. Spotting parameters and the assay parameters were 

determined during the optimisation stage. The microtitre plates were spotted using mycotoxin-

BSA conjugates at a spotting volume of 1000 pl and a protein concentration of 50 µg/ml for all 

three mycotoxin-BSA conjugates. Single antibodies for ZEA ABZ (1/10,000), T2-ABT-1 

(1/4000) T2-ABT-2 (1/4000), FUM-ABF-1 (1/4000) and FUM-ABF-2 (1/4000) were 

examined during the assay. Eight point calibration curves for ZEA, T2 or FUM were prepared 

in PBS (0.1 M, pH 7.2) and 23.3 % methanol (in water v/v) at concentrations across the full 

dynamic range for a full evaluation for individual mycotoxin analysis. The methanol curve 

(23.3%) was included throughout for comparison as the final extract in matrix (maize and 

wheat) was optimised providing 23.3% as the final percentage methanol in samples applied to 

the assay. Individual calibration curves were assessed and examined (n=2 analysis, 9 spots per 

analysis) and sensitivity was assessed using the 50 % inhibition concentration. The 50 % 

inhibition concentrations were determined from a 4 parameter fit curve using BIAevaluation 

version 4.1 software (Biacore, GE Healthcare). 

 

3.8. Multiplex calibration curves 

Microtitre plates were spotted in a three-plex system (ZEA, T2 and FUM) to assess multiplex 

calibration curves for each mycotoxin. Spotting and assay parameters were determined during 

the optimisation stage. Microtitre plates were spotted using mycotoxin-BSA conjugates at a 

spotting volume of 1000 pl and a protein concentration of 50 µg/ml for all three mycotoxin-

BSA conjugates. Antibodies for ZEA (ABZ 1/10,000), T2 (ABT-1 1/4000) and FUM (ABF-2 

1/4000) were examined during the assay. Eight point calibration curves for ZEA, T2 and FUM 

were prepared in PBS and methanol at concentrations across the full dynamic range for a full 



evaluation for individual mycotoxin analysis. Where necessary additional standards were 

added to improve the curve shape. Multiplex calibration curves were assessed and examined 

(n=6 analysis, 4 spots per analysis, 3 spotting days) and sensitivity was assessed using the 50 

% inhibition concentration. The 50 % inhibition concentrations were determined from a 4 

parameter fit curve using BIAevaluation version 4.1 software (Biacore, GE Healthcare). 

 

3.9. Cross reactivity 

Microtitre plates were spotted as described in section 3.7. Antibodies for ZEA (ABZ 1/10,000), 

T2 (ABT-1 1/4000) and FUM (ABF-2 1/4000) were examined during the assay for ZEA, T2, 

HT2, FUM B1, FUM B2, FUM B3, DON as individual calibration curves. Eight point 

calibration curves were prepared in methanol at concentrations across the full dynamic range 

for an evaluation of each mycotoxin. Where necessary additional standards were added to 

improve the curve shape so that the IC50 of the curve could be determined. Cross reactivity was 

determined from the following calculation whereby the main mycotoxin refers to ZEA, T2 and 

FUM B1. 

  % Cross reactivity = IC50 main mycotoxin / IC50 mycotoxin to be determined x 100  

 

3.10. Intra and inter spotting precision 

Microtitre plates were spotted as described in section 3.7. Antibodies for ZEA (ABZ 1/10,000), 

T2 (ABT-1 1/4000) and FUM (ABF-2 1/4000) were examined during the assay. Intra-spotting 

precision (n=96) was examined by analysing the mean intensity, of the maximum antibody 

binding achieved, on application of the 0 ppb standard in all 96 wells of the microtitre plate 

prepared using both PBS and methanol. Inter-spotting precision was assessed and examined 

over three separate spotting days.  The mean intensity, of the maximum antibody binding 

achieved on application of the 0 ppb standard, from all 96 wells was calculated and compared 



over the three different spotting days. Intra and inter spotting precision was determined from 

the coefficient of variation (% CV). 

 

Intra-spotting precision:  

% CV = Standard deviation (calculated from the intensity of 0 ppb) from 96 wells of one 

microtitre plate / Mean intensity of 0 ppb from 96 wells of one microtitre plate x 100 

 

Inter-spotting precision:  

% CV = Standard deviation (calculated from the mean intensity of the 0 ppb from 96 wells) of 

three microtitre plates / Mean intensity of 0 ppb from 96 wells of three microtitre plates x 100 

 

3.11. Sample preparation 

Blank and naturally incurred ground maize and wheat samples (2.5 g ± 0.02 g) were weighed 

into plastic centrifuge tubes. Methanol/deionised water (70/30, v/v, 12.5 ml) was added and 

the samples were mixed for 3 min using a roller mixer. Samples were filtered (Whatman 1 filter 

paper) and the extracts were diluted 1 in3 in deionised water to give a final percentage of 

methanol at 23.3 % (v/v).  All samples were also analysed at a further dilution of 1 in15 with 

sample 9E additionally analysed at a further dilution of 1 in 60. This was to allow the intensity 

determined for highly contaminated samples to present within the calibration curve range. 

These further dilutions were carried out in 23.3% methanol to keep the final percentage of 

methanol comparable to the calibration curve.  

 

3.12. Matrix effects 

Microtitre plates were spotted as described in section 3.7. Antibodies for ZEA (ABZ 1/10,000), 

T2 (ABT-1 1/4000) and FUM (ABF-2 1/4000) were examined during the assay. Blank material 



for both maize and wheat were sourced by Queen’s University Belfast and were confirmed as 

blank for the analytes of interest by mass spectrometry. Six calibration curves were examined 

including PBS, methanol, maize spiked at the start of extraction, wheat spiked at the start of 

extraction, maize spiked at the end of extraction and wheat spiked at the end of extraction. 

 

3.13. Sample analysis 

Microtitre plates were spotted as described in section 3.7. Antibodies for ZEA (ABZ 1/10,000), 

T2 (ABT-1 1/4000) and FUM (ABF-2 1/4000) were examined during the assay. Maize and 

wheat samples (n=8) were extracted following the sample preparation method described in 

section 3.10. The sample concentrations for maize and wheat were determined from a 4 

parameter fit calibration curve using BIAevaluation version 4.1 software (Biacore, GE 

Healthcare). Results were compared to those obtained by analysing the same samples with 

Tecna screening test kits (Celer ZON v3, Celer T2 and Smart Strip FUMO) and HPLC/MS. 

Sample MA110 was a Reference Material whose FUM concentration was assessed by Test 

Veritas (Padova, I). 

 

4. Results and Discussion 

4.1. Optimisation 

In the optimisation of the ZEA assay it was noted that spot intensity was very low for the 

spotting concentration of 0.5 µg/ml with many spots not visible. Very little difference was 

observed in intensity between the four different spotting volumes (330, 670, 1000, 2000 pl) 

within each spotting concentration (0.5, 5 and 50 µg/ml). Nonetheless a spotting volume of 

1000 pl was selected as visually spots were easier to see for the alignment of grids.  

Additionally, intensity decreased as the alkaline phosphatase anti-rabbit IgG dilution increased 

to 1/20,000 with a dilution of 1/500 chosen for the assay. A spotting concentration for ZEA of 



50 µg/ml and an antibody dilution ZEA ABZ (1/10000) was therefore selected as this provided 

a suitable intensity and differential between negative and positive for the development of a 

calibration curve. For the optimisation of T2 and FUM parameters it was observed that spots 

were not visible for FUM antibody ABF-1 and T2 antibodies ABT-1 and ABT-2 at the spotting 

concentration of 10 µg/ml. Very little difference in spot intensity was observed between 50, 

100 and 200 µg/ml spotting concentrations for T2 and FUM. As the spotting concentration 

increased the sensitivity of the assay decreased and a higher antibody dilution was required. 

However, at the highest antibody dilutions the spots were barely visible with quite low spot 

intensities obtained. A spotting concentration of 50 µg/ml was therefore selected for T2 and 

FUM with antibody dilutions 1/4000 for both ABT-1/ABT-2 and ABF-1/ABF-2 antibodies as 

these conditions provided suitable intensity and differential between negative and positive to 

allow further assay development. 

 

4.2. Individual calibration curves 

Individual calibration curves, in a nine spot format (3x3 array), for ZEA (ABZ antibody), T2 

(ABT-1 and ABT-2 antibodies) and FUM (ABF-1 and ABF-2 antibodies) using both PBS and 

methanol were examined. For T2 and FUM antibodies ABT-1 and ABF-2 were selected for 

the final multiplex assay as illustrated in Figures 1 and 2. The average spot intensity of the nine 

spots per well was calculated and the average of the two wells was determined. The spot 

intensity for ZEA was approximately 2000 pixels (0 ppb) and sensitivity of the assay (based 

on the 50 % inhibition concentrations) decreased from 21.9 ppb to 100.2 ppb between PBS and 

methanol calibration curves (Table 1). Since mycotoxins such as ZEA tend to be lipophilic and 

organic solvents are often used to extract analytes from samples for immunoassays it is 

necessary to use a water miscible organic solvent in the assay buffer for ELISAs. Methanol 

tends to be the most widely used. However, it has been shown that with increased methanol 



concentration the sensitivity of the assay can decrease [37]. The methanol may affect either the 

immobilised protein conjugate or the antibody protein structure causing reduced binding to the 

ZEA due to interference and thereby decreasing the sensitivity. For T2 the spot intensity for 

both antibodies was very low at approximately 800 – 1000 pixels (0 ppb) whereby grids had to 

be manually aligned. Sensitivity for both the ABT-1 and ABT-2 antibodies were very similar 

based on the 50 % inhibition concentrations (1 ppb) and remained similar between PBS and 

methanol calibration curves (Table 1). The ABT-1 antibody was selected for the multiplex 

calibration curve as the intensity was slightly higher and whereby automatic grid alignment 

could be achieved to determine signal intensity. For FUM the starting intensity (0 ppb) for the 

ABF-2 antibody was slightly higher at approximately 2000 pixels compared to the ABF-1 

antibody (1500 pixels). Sensitivity for both the ABF-1 and ABF-2 antibodies were very similar 

based on the 50 % inhibition concentrations; however, sensitivity did decrease from 

approximately 60 ppb to 100 ppb between PBS and methanol calibration curves (Table 1). 

Again, the methanol may affect the FUM antibody and cause some interference in binding to 

FUM decreasing the sensitivity. The ABF-2 antibody was selected as the antibody to use for 

the multiplex calibration curve because the intensity was much higher. Reduced sensitivities 

for the methanol calibration curves was possibly because methanol will cause reduced antibody 

binding due to the target due to solvent effects on the antibody. However, for these mycotoxins 

due to their solubility properties it is necessary to use an extraction solvent in the sample 

preparation methods. 

 

4.3. Multiplex calibration curves 

Multiplex calibration curves, in a 12 spot format (4x3 array), for ZEA (ABZ antibody), T2 

(ABT-1 antibody) and FUM (ABF-2 antibody) using both PBS (Figure 1) and methanol (Figure 

2) over six wells and over three days are illustrated. Variation in the average intensity of the 



four spots per well was 18.8, 20.5 and 12.7 % for the PBS calibration curve and 18.5, 20.1 and 

12.4 for the methanol calibration curve for ZEA, T2 and FUM respectively. This was 

determined as the average % CV of all standards in the calibration curve over 6 wells and 3 

days. Improved curve shapes were produced for T2 as multiplex calibration curves with only a 

slight difference between PBS and methanol. Spot intensity for T2 was very low therefore the 

grid alignment had to be completed manually. Calibration curves for FUM were similar 

between PBS and methanol until the final two standards. It is, however, more difficult to align 

the grids when the spot intensity is faint and so this may account for this difference. Sensitivity, 

assessed by examining the 50 % inhibition concentration of the assay, for the nanoarray for 

ZEA, T2 and FUM are presented in Table 1. Sensitivity decreased for ZEA in PBS from 21.9 

ppb (individual) to 70.1 ppb (multiplex) and similarly for methanol from 100.2 ppb (individual) 

to 172.4 ppb (multiplex). The standard deviation of the intensity of each spot is greater in the 

multiplex assay for ZEA indicating that there may be interference occurring from the other 

assays. Sensitivity decreased for T2 in PBS from 1.0 ppb (individual) to 2.8 ppb (multiplex) 

and similarly for methanol from 0.9 ppb (individual) to 3.2 ppb (multiplex). Similar to ZEA 

the standard deviation of the intensity of each spot is greater in the multiplex assay for T2 

indicating that there may be interference occurring from the other assays. Finally, sensitivity 

also decreased for FUM in PBS from 63.9 ppb (individual) to 90.9 ppb (multiplex) and 

similarly for methanol from 105.0 ppb (individual) to 129.3 ppb (multiplex). Reduced 

sensitivities between the individual and multiplex calibration curves is possibly due to 

interference and non-specific binding of reagents between the assays. As the standard deviation 

of the spots increased more significantly in the ZEA and T2 assays when multiplexed compared 

to the FUM assay the reagents in these assays may be interacting. Multiplexing assays with 

different antibodies may lead to some degree of interference between antibodies and between 



targets even due to steric hindrance. Nonetheless, certain benefits of multiplexing outweigh the 

loss of sensitivity in most applications. 

 

4.4. Cross reactivity 

For the multiplex nanoarray the characterisation of the antibodies, especially in regard to their 

cross reactivity is important to know. The cross reactivity profile for each antibody was 

examined by analysing individual calibration curves prepared in methanol for ZEA, T2, HT2, 

FUM B1, FUM B2, FUM B3 and DON as illustrated in Figure 3. The results demonstrated that 

the T2 antibody ABT-1 showed 74 % cross reactivity to HT2. FUM antibody ABF-2 showed 

48 % and 24 % cross reactivity to FUM B2 and FUM B3 respectively. Moreover, the antibodies 

used turned out to be specific for their corresponding mycotoxin and showed minimal to no 

cross reactivity for the concentrations used in the assay for the other mycotoxins (Figure 3). 

 

4.5. Intra and inter spotting precision  

The data for the spotting precision of each mycotoxin was examined by analysing a 0 pbb 

standard in all 96 wells of a three-plex (ZEA, T2 and FUM) spotted system using both PBS 

and methanol. Results are shown in Table 2. Intra-spotting precision was 6, 11 and 10 % for 

PBS and 5, 11 and 12 % for methanol for ZEA, T2 and FUM respectively. Inter-spotting 

precision was 4, 14 and 6 % for PBS and 3, 9 and 16 % for methanol for ZEA, T2 and FUM 

respectively over 3 spotting days. 

 

4.6. Sample preparation 

Both maize and wheat were extracted according to the protocol described in section 3.11. All 

extracts were diluted 1 in 3 and 1 in 15 to give a final dilution of 15 and 75 and a percentage 

of methanol at 23.3 %. Sample 9E was highly contaminated for T2 and FUM and therefore the 



extract was diluted 1 in 60 to give a final dilution of 300 so that the response would present 

within the calibration range. Taking into account the 50 % inhibition concentration and the 1 

in 3 extraction dilution this converts to 1050.9, 42.0 and 1364.1 µg/kg for ZEA, T2 and FUM 

respectively which meets the regulatory limits for these mycotoxins in feed. It was observed 

that for wheat samples using only a 1 in 3 dilution produced a white cloudy extract. There is 

some component of the wheat that is causing a cloudy supernatant which is not present in the 

maize. It may therefore be better to increase the dilution to 1 in 15 for the assay (final dilution 

75). This would dilute out the extract and minimize the cloudy extract interfering with the test. 

 

4.7. Matrix effects 

The calibration curves were assessed for ZEA (ABZ antibody), T2 (ABT-1 antibody) and FUM 

(ABF-2 antibody) for matrix effects in maize (Figure 4) and wheat (Figure 5). . For ZEA the 

intensity for the 0 ppb standard for maize and wheat were very similar to the PBS and methanol 

curves. However, the difference in the curve shape was more pronounced for the maize and 

wheat. Sensitivity for ZEA in matrix is somewhat reduced for both maize and wheat (Table 1). 

For T2 the intensity for the 0 ppb standard for maize and wheat was approximately 16 % and 

13 % lower than the PBS and methanol curves respectively. The calibration curves for maize 

showed a large drop between the first two standards giving a poor curve shape. In comparison, 

the wheat produced a better curve shape and compared better with the PBS and methanol 

curves. Sensitivity for T2 for both maize and wheat is reduced when spiked at the start of the 

extraction, however, is similar to PBS and methanol curves when spiked at the end into 

negative extract (Table 1). For FUM the intensity for the 0 ppb standard for maize was 

approximately 11 % lower than the PBS and methanol curves with wheat showing an intensity 

approximately 7 % higher in comparison. The calibration curve for the maize spiked at the end 

of the extraction showed a slightly different curve shape compared to the others. Sensitivity for 



FUM in matrix is somewhat reduced for both maize and wheat (Table 1). A differential in the 

calibration curves prepared pre and post extraction illustrates the extent of the recovery of the 

assay.  It was evident that due to substantial differences between these two curves that recovery 

was not 100% and whereby some mycotoxins may not be extracted during the extraction 

process. This would mean that the concentration of unknown samples should be determined 

from a calibration curve prepared pre-extraction during the final validation of the assay or the 

extraction procedure should be examined further to help improve the recovery of the assay. 

 

4.8. Sample analysis 

 The analysis of the wheat and maize samples (n=8) using the multiplex nanoarray in 

comparison with other screening methods and HPLC are presented in Table 3. Comparing the 

nanoarray results to concentrations for ELISA, LFD and HPLC/MS it was observed that for 

ZEA there were five samples that correlate in terms of negative and positive results. Samples 

L2 and GT were both expected to be < 50 ppb but have a higher concentration when analysed 

by the mycotoxin nanoarray at 132 ppb and 206 ppb respectively. Additionally, sample MA110 

had a higher concentration when analysed by the mycotoxin nanoarray. For the ZEA assay only 

ZEA was determined whereby for future work other analogues of ZEA should be examined to 

ensure differences between the assays are not due to the cross-reactivity towards these 

analogues. For T2 there were six samples that correlate in terms of negative and positive results. 

Sample GT was expected to be < 5 ppb but had a higher concentration of 86 ppb when analysed 

by the mycotoxin nanoarray. Additionally, sample MA110 had a higher concentration when 

analysed by the mycotoxin nanoarray. Finally, for FUM there were seven samples that match 

up in terms of negative and positive results. The reference material MA110 had a higher 

concentration of 116 ppb when analysed by the mycotoxin nanoarray compared to the certified 

concentration of < 50 ppb. Differences detected for certain samples may be due to the non-



homogeneity of the sample as it is well known that mycotoxins are very heterogeneous in 

nature [38], sensitivities of the different testing platforms and possible variations in cross 

reactivity profiles of the antibodies used to analogues of the compounds in the screening tests 

as analysed in different laboratories at different times. The sample for analysis provided for the 

nanoarray study was relatively small and in this study the analysis by the different methods 

was performed over different sites and whereby the sample may have been stored under 

different conditions. The differences detected for certain samples may also be due to the 

heterogeneity in distribution of the mycotoxin in the sample provided to the different sites. It 

is well established that mycotoxin distribution in a sample can be very heterogeneous in nature 

and storage conditions are important. This paper is a proof of concept and feasibility study to 

show that the mycotoxin nanoarray application is highly feasible. Further work would include 

a single laboratory validation and substantive survey of real samples in direct analytical 

comparison with other routine testing platforms.  

 

4.9 Image and Data Analysis  

For the implementation of the nanoarray application the reader must be employed that can 

record the spot intensity at the spatially defined zones compared to the whole well as in current 

laboratory ELISA applications. For novice end users a current major drawback of the reader 

technology is the time required for image analysis and data processing. Currently all 96 wells 

are imaged and each image must be opened by the software for grid alignment and calculation 

of spot intensity. Aligning grids for one microtitre plate takes approximately 2 hr, generating 

96 excel sheets. Further data processing can take a further 1 hr therefore data processing per 

plate can take up to 3 hr. This is not applicable from a commercial point and unless data 

processing software solutions can be addressed it would be unsuitable for commercial and 

routine laboratory use. Reference spots should be assessed and included in future work which 



may help with grid alignment. For this to be a viable method the reader software needs to be 

enhanced for automated data processing for all 96 wells generating calibration curves and 

interpolating unknown samples to these curves. Additionally, another drawback is that any dust 

or particles present in the well can interfere with the image and spot intensity especially if it is 

covering a spot within the nanoarray. Therefore, clean room facilities for production and use 

may need to be a consideration. 

 

5. Conclusions 

Monitoring programmes for mycotoxins have become a necessity because of the potential 

consequences to human and animal health. New innovations in technology applications to 

improve surveillance for the industry are essential. A sensitive and novel multiplex nanoarray 

has been developed allowing for the semi-quantitative and simultaneous screening of three 

regulated mycotoxins. The immunological format offers a high throughput detection method 

for ZEA, T2 and FUM, whereby with improved software utilities on the reader results, results 

would be available in around 70 min. The benefit to this system is that it follows established 

ELISA protocols whereby laboratories with immunological screening methods already in place 

have end users familiar to the steps in analysis and comparable to LFD offers a higher 

throughput of samples. The simplicity, sensitivity and comparative labour to ELISA of the 

mycotoxin nanoarray assay means it could be used as a screening method in a monitoring 

environment for the presence of these harmful mycotoxins in food. This technology 

demonstrates the potential feasibility for an easy to use and sensitive multiplex mycotoxin 

detection method. This study has shown some very promising data and required considerations 

that are worthy of further research to determine the nanoarray suitability for a commercial 

diagnostic test. Prior to implementation a full validation and inter-laboratory trial of the 

nanoarray should be conducted following accreditation guidelines for screening methods. 
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Table 1: Sensitivity of the mycotoxin nanoarray for ZEA, T2 and FUM as both individual and 

multiplex curves in PBS, 23.3 % methanol and extract (maize and wheat) based on 50 % 

inhibition concentrations. 

Mycotoxin System Antibody Matrix n 
50 % Inhibition 

(ppb) 

ZEA 

Individual ABZ PBS 2 21.9 

Individual ABZ 23.3 % methanol 2 100.2 

Multiplex ABZ PBS 20 70.1 

Multiplex ABZ 23.3 % methanol 20 172.4 

Multiplex ABZ Wheat spiked at start 2 299.6 

Multiplex ABZ Wheat spiked at end 2 197.4 

Multiplex ABZ Maize spiked at start 2 > 500 

Multiplex ABZ Maize spiked at end 2 43.6 

T2 

Individual ABT-1 PBS 2 1.1 

Individual ABT-1 23.3 % methanol 2 1.7 

Individual ABT-2 PBS 2 1.0 

Individual ABT-2 23.3 % methanol 2 0.9 

Multiplex ABT-1 PBS 20 2.8 

Multiplex ABT-1 23.3 % methanol 20 3.2 

Multiplex ABT-1 Wheat spiked at start 2 6.0 

Multiplex ABT-1 Wheat spiked at end 2 0.7 

Multiplex ABT-1 Maize spiked at start 2 2.9 

Multiplex ABT-1 Maize spiked at end 2 0.5 

FUM 

Individual ABF-1 PBS 2 61.5 

Individual ABF-1 23.3 % methanol 2 110.0 

Individual ABF-2 PBS 2 63.9 

Individual ABF-2 23.3 % methanol 2 105.0 

Multiplex ABF-2 PBS 20 90.9 

Multiplex ABF-2 23.3 % methanol 20 129.3 

Multiplex ABF-2 Wheat spiked at start 2 369.7 

Multiplex ABF-2 Wheat spiked at end 2 216.7 

Multiplex ABF-2 Maize spiked at start 2 141.7 

Multiplex ABF-2 Maize spiked at end 2 25.9 
 

 

Table 2: Intra and inter assay precision for the multiplex mycotoxin nanoarray for both PBS 

and 23.3 % methanol. 

Mycotoxin Matrix 

Intra Assay Precision (% CV) Inter Assay 

Precision  

(% CV) 

(n=3) 

Day 1 

(n=96) 

Day 2 

(n=96) 

Day 3 

(n=96) 

Average 

(n=3) 

ZEA PBS 6 5 6 6 4 

23.3 % methanol 5 6 5 5 3 

T2 PBS 15 7 11 11 14 

23.3 % methanol 9 14 10 11 9 

FUM PBS 9 8 13 10 6 

23.3 % methanol 8 18 9 12 16 



 

Table 3: Mycotoxin concentrations for maize (n=5) and wheat (n=3) samples expressed as ppb. Samples were analysed by the multiplex mycotoxin 

nanoarray and compared to screening (ELISA and LFD) and HPLC/MS results for these mycotoxins.   

Sample 

No. 

Sample        

Type 

Sample     

Code 

ZEA Concentration (ppb) T2 Concentration (ppb) FUM Concentration (ppb) 

ELISAa HPLC 
Mycotoxin 

Nanoarray 
ELISAb HPLC 

Mycotoxin 

Nanoarray 
LFDc HPLC 

Mycotoxin 

Nanoarray 

1 Maize 9E 277 325 210 650 787 487 - 37,100 41,756 

2 Maize AZF < 25 < 50 17 < 25 - 0 < 150 < 100 0 

3 Maize L2 < 25 - 132 < 25 < 25 5 - 3554 1536 

4 Maize GR2 55 56 217 < 25 < 25 11 5361 - 2376 

5 Maize MA110* < 25 < 50 178 - < 25 50 < 150 < 50* 116 

6 Wheat WH43 223 - 197 133 101 111 2186 - 2249 

7 Wheat FR2 < 25 <5 22 < 25 - 23 - 111 274 

8 Wheat GT < 25 < 10 206 - < 5 86 - 97 299 

       

 

           a Tecna Celer ZON v3 

      b Tecna Celer T2 

     c Tecna Smart Strip FUMO 

     *Test Veritas (I) Reference Material for fumonisins. Assigned value according to the Certificate of the Provider 

     - No result available 

 



Figure 1: Individual and multiplex calibration curves in PBS buffer for ZEA (a), T2 (b) and 

FUM (c) using the mycotoxin nanoarray (Individual curves: n=2 analysis, 9 spots per 

analysis; Multiplex curves: n=6 analysis, 4 spots per analysis, x 3 spotting days). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2: Individual and multiplex calibration curves in 23.3% methanol for ZEA (a), T2 (b) 

and FUM (c) using the mycotoxin nanoarray (Individual curves: n=2 analysis, 9 spots per 

analysis; Multiplex curves: n=6 analysis, 4 spots per analysis, x 3 spotting days). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3: Cross reactivity for ZEA (a), T2 (b) and FUM (c) using the multiplex mycotoxin 

nanoarray (n=2 analysis, 4 spots per analysis). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4: Matrix effects for maize for ZEA (a), T2 (b) and FUM (c) using the multiplex 

mycotoxin nanoarray (n=2 analysis, 4 spots per anaysis). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5: Matrix effects for wheat for ZEA (a), T2 (b) and FUM (c) using the multiplex 

mycotoxin nanoarray (n=2 analysis, 4 spots per anaysis). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 


