OGLE16aaa - a signature of a hungry supermassive black hole

Published in:

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors. This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
OGLE16aaa – a signature of a hungry supermassive black hole

Łukasz Wyrzykowski,1* M. Zieliński,1 Z. Kostrzewa-Rutkowska,1,2,3 A. Hamanowicz,1 P. G. Jonker,2,3* I. Arcavi,4,5 J. Guillochon,6 P. J. Brown,7 S. Kozłowski,1 A. Udalski,1 M. K. Szymański,1 I. Sozyński,1 R. Poleski,1,8 P. Pietrukowicz,1 J. Skowron,1 P. Mróz,1 K. Ulaczyk,1,9 M. Pawlak,1 K. A. Rybicki,1 J. Greiner,10 T. Krühler,10 J. Bolmer,10,11 S. J. Smartt,12 K. Maguire12 and K. Smith12

1Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, PL-00-478 Warszawa, Poland
2SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, the Netherlands
3Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands
4Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575, USA
5Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA
6Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
7George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A & M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA
8Ohio State University, Department of Astronomy, 140 West 18th Avenue, Columbus, OH 43210, USA
9Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
10Max-Planck Institute for Extraterrestrial Physics, D-85748 Garching, Giesebachstr. 1, Germany
11European Southern Observatory, D-85748 Garching, Germany
12Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK

Accepted 2016 October 13. Received 2016 October 11; in original form 2016 June 7; Editorial Decision 2016 October 11

ABSTRACT

We present the discovery and first three months of follow-up observations of a currently ongoing unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift $z = 0.1655$. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as ‘changing-look quasars’, if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

Key words: black hole physics – galaxies: active – galaxies: individual: OGLE16aaa.

1 INTRODUCTION

It has become a paradigm that nearly all galaxies at current times harbour a supermassive black hole (SMBH) in their centre (e.g. Magorrian et al. 1998). In the cold dark matter (ΛCDM) theory of cosmology, current (redshift zero) galaxies are the product of hierarchical mergers of smaller galaxies. These smaller building blocks also host black holes in their centres (Kormendy & Richstone 1995, Greene 2012), potentially intermediate-mass black holes (IMBHs), with masses from 100 to 10 000 M_\odot. After two galaxies merge, the two black holes will merge as well (see Begelman, Blandford & Rees 1980). Therefore, mergers of black holes may play an important role in building SMBHs (cf. Pelupessy, Di Matteo & Ciardi 2007). Interestingly, SMBHs with masses of more than a billion solar mass have been found already at redshifts of more than 6 when the Universe was less than 1 Gyr old (see Fan 2006). Such SMBHs may be seeded by 100 M_\odot black holes at redshifts $z > 15$, which then grow by uninterrupted accretion of gas at the Eddington rate with a standard radiative efficiency of 10 per cent (e.g. Haiman 2013). However, quasars grow only for about $\approx 4.5 \times 10^7$ yr before feedback stops the gas supply (Silk & Rees 1998). In order to solve this problem, one can start with more massive black holes such as IMBHs and/or allow mass to be accreted at a rate higher than
OLED16aaa – hungry supermassive black hole

Eddington limit and/or have part of the black hole growth be due to mergers of black holes.

Tidal disruption events (TDEs, e.g. Hills 1975, Rees 1988), in which a star is torn apart by the tidal forces of the SMBH, offer a unique opportunity to study the mass distribution of SMBHs. The intrinsic TDE rate should be dominated by the SMBHs with the lowest mass (Wang & Merritt 2004, Stone & Metzger 2016), so volume-complete TDE samples can measure the occupation fraction of IMBHs in small galactic bulges informing SMBH formation theories. However, the inhomogeneous and small sample of TDEs currently available, found either in X-rays (e.g. Bade, Komossa & Dahlern 1996, Nikolajuk & Walter 2013) or in the UV/optical (e.g. van Velzen et al. 2011, Gezari et al. 2012, Arcavi et al. 2014, Holoien et al. 2014) prevents us from discriminating between various emission mechanisms of TDEs and hence from conclusions on the SMBH mass function (e.g. Stone & Metzger 2016).

Optical/UV TDEs are relatively luminous ($M_{\text{peak}} \sim -20$) and blue ($T \sim 10^{4}$ K) few-months- to years-long transients with broad H and/or He emission lines (Arcavi et al. 2014). Arcavi et al. (2014) and French, Arcavi & Zabludoff (2016) noted that 75 per cent of optically found TDEs occurred in quiescent Balmer-strong (called E + A by some) galaxies, which account for 2.3 per cent of Sloan Digital Sky Survey (SDSS) galaxies. Such galaxies are thought to be products of a recent merger (within 1 Gyr), which triggered an observed increase in star formation (Balmer absorption series in their spectra are caused by a significant amount of A-type stars). That preference might be due to disturbed dynamics of the nuclear star cluster, or the presence of a coalescing black hole, causing nearby stars to go on a collision course with their central black holes (e.g. Wegg & Nate Bode 2011).

However, a fraction of the optical/UV TDEs seems to not match such scenario. Host-galaxy spectra of extreme coronal line emitters (ECLE), SDSS J095209.56+214313.3 (Komossa 2008; Palaversa 2016) and SDSS J0748 (Wang et al. 2011), as well as ASASSN-14li (Holoien et al. 2016) and PTF09axc (Arcavi et al. 2014) this weak, narrow emission lines, which could be indicative of a weak active galactic nucleus (AGN) present in the core.

AGNs are known to exhibit photometric variability at a level of few tens of magnitude (e.g. Kozłowski et al. 2016). However, occasionally, flares are observed well above the level of their typical variability, both in X-rays (e.g. Stroj typingham et al. 2016) and optical (e.g. Tanaka 2013). The reasons for such significant changes in mass accretion rate are still under debate and include binary black hole interactions with the disc as well as stellar disruptions.

Long-term and wide-field spectroscopic and photometric data obtained by the SDSS, as well as on-going transient searches [All Sky Automated Survey for Supernovae (ASAS-SN), Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), Mobile Astronomy System of Telescope Robots (MASTER) surveys], have revealed nearby AGNs (Seyfert galaxies), which changed their spectral characteristics, often accompanied with a temporal increase in observed flux, e.g. Lawrence et al. (2016). In particular, an event observed in the quasar SDSS J0159+0033 (LaMassa et al. 2015), has been recently interpreted as a TDE by a massive SMBH (Merroni et al. 2015). In large fraction of other similar object, so-called changing-look quasars (hereafter, CH-L-QSOs) (MacLeod et al. 2016), the appearance of a broad component to the Hα emission line was found to be transient (Baldassare et al. 2016), i.e. the broad line disappeared on the time-scale of years. Moreover, one of such CH-L-QSOs, found in NGC 2617 by ASAS-SN in 2013 (Shappee et al. 2014) has recently been reported to show a re-brightening (Oknyansky et al. 2016a). If those flares are indeed due to TDEs, the stellar disruption must be induced fairly frequently, namely, on a time-scale of years. An X-ray TDE candidate in an AGN IC 3599 was found to show a re-occurrence period of about nine years (Campana et al. 2015), which could be explained with a binary central black hole.

In this Letter, we describe the discovery and first months of follow-up of an unusual transient, OLED16aaa. We propose that OLED16aaa is a TDE candidate in a low-luminosity AGN host galaxy, and it may be another link in the chain of disruption events which occur from quiescent to active galaxy cores.

2 DISCOVERY AND EARLY FOLLOW-UP

OLED16aaa (Fig. 1) was discovered by the OLED transient detection system (Wyrzykowski et al. 2014), a programme within the Optical Gravitational Lensing Experiment (OGLE-IV; Udalski, Szymański & Szymański 2015). This transient, located at RA, Dec. ($\alpha = 1:07:02.88, \delta = -64:16:20.7$), was found during visual inspection of candidates detected by the automated pipeline on 2016 January 2, at I-band magnitude ~ 20 mag (Wyrzykowski et al. 2016). It was found at the centre of GALEXASC J010720.81–641621.4 galaxy of 17.00 ± 0.32 mag in GALEX near-ultraviolet and far-ultraviolet, respectively. Fig. 2 shows the host-galaxy image from a deep stack of ~ 100 OGLE I-band images (all taken before the event) with the position of the transient.

On 2016 Jan 17, the Public ESO Spectroscopic Survey for Transients2 (PESTTO; Smartt et al. 2015) took a spectrum of

\[^1\text{http://ogle.astrouw.edu.pl/ogle4/transients}\]
\[^2\text{www.pessto.org}\]
emission and absorption lines consistent with a redshift of \(z = 0.1655 \), as shown in Fig. 2, and is consistent with the position of the nucleus.

Host galaxy – from the light distribution of the host on the deep OGLE \(I \)-band image, we obtained a Sérsic index of \(n = 1.08 \), which corresponds to a black hole mass of \(\log M_b = 6.58 (\approx 4 \times 10^6 M_\odot) \) using the relation in Savorgnan (2016).

Since there is, to our knowledge, no pre-flare host spectrum available, we have to wait until the event fades out completely to obtain the spectrum of the nucleus of the galaxy alone. However, the Le PHARE (Photometric Analysis for Redshift Estimate) (Ilbert et al. 2006) best matching template spectrum to the spectral energy distribution from archival UV, optical, near- and far-infrared observations is found for a galaxy with a stellar mass of \(\log M = 10.3 \pm 0.2 M_\odot \), with no strong evidence for star formation.

Signatures of the host are already present in the PESSTO spectrum of the flare. The spectrum shows weak [O III], [O II] and [N II] emission lines, respectively, corresponding to full widths at half-maximum of \(\sim 850 \) Å (54 000 km s\(^{-1}\)).

Flare spectrum – the flare spectrum, taken by PESSTO at \(-3\) rest-frame days from the \(I \)-band maximum, supplemented with the earliest *Swift* observation in UVM2, taken at around the peak, is consistent with blackbody model with temperature higher than 22 000 K. The host emission is clearly present in the spectrum at wavelengths longer than rest-frame 4000 Å. The residual spectrum, after subtraction of the blackbody continuum, shows two broad emission features around He \(\alpha \) and H\(\alpha \), as seen in all optically selected TDEs. Arcavi et al. (2014) reported on a continuum of broad He \(\alpha \) and H\(\alpha \) emission lines (after the host-galaxy light has been subtracted) in the spectra of TDEs. OGLE16aaa seems to fit the picture very well, though with somewhat higher velocity dispersion \(\sim 23 \) 000 and \(\sim 19 \) 000 km s\(^{-1}\) for He \(\alpha \) and H\(\alpha \) lines, respectively, corresponding to full widths at half-maximum of \(\sim 850 \) Å (54 000 km s\(^{-1}\)) and \(\sim 970 \) Å (45 000 km s\(^{-1}\)), respectively.

Light curve – There is no apparent flaring nor variability activity in the historical (3.5 yr) OGLE \(I \)-band light curve of the nucleus of the host galaxy at a level below \(I \sim 22 \) mag (host subtracted), less than 1 per cent of host light. The optical light curve reached the peak in about 30 rest-frame days and then exhibited significant variability, particularly around 15 rest-frame days after \(I \)-band maximum. Comparing our brightest UV measurements to the archival GALEX data, we estimate the overall UV amplitude of the flare of about 3 mag. The overall decline of the light curve in both optical and UV is very slow; however, the actual slope of the decline is yet to be determined in the observations in the second half of 2016. No X-ray emission was detected by *Swift*/X-ray Telescope (XRT) at a
level above 0.002 counts s\(^{-1}\) (3\(\sigma\)), corresponding to an upper limit for the unabsorbed luminosity of \(5 \times 10^{42} \text{ erg s}^{-1}\) (0.3–10 keV), for a power law with photon index of \(-2\).

Tidal disruption model – we fit OGLE16aaa’s photometry with the tidal disruption light-curve fitting software TDEFFIT (Guillochon, Manukian & Ramirez-Ruiz 2014; Vinkó et al. 2015) (see Fig. 4), a Monte Carlo modelling code. For OGLE16aaa, we presume that the observed light comes from a combination of the light produced by a viscously driven disc component (Guillochon & McCourt 2016), emission from circularization (Jiang, Guillochon & Loeb 2016), and reprocessing of light from the debris which ensheaths the accretion disc structure (Guillochon et al. 2014). We assume a flat prior for \(M_\beta\) which allows all black hole masses between 10\(^2\) and 10\(^5\) M\(_\odot\), a prior on impact parameter \(\beta\) which assumes pinhole scattering (\(P(\beta) \propto \beta^{-2}\)), a Kroupa stellar mass function (Kroupa 2001), and flat priors on all other parameters. We find that the most likely combination of disruption parameters is \(M_\beta = 10^{2.20 \pm 0.15} \text{M}_\odot\), \(M_\alpha = 10^{-0.5 \pm 0.3} \text{M}_\odot\) (between 0.1 and 0.8 M\(_\odot\), median \(-0.3\text{M}_\odot\)) and \(\beta = 1.77 \pm 0.53\), with a degeneracy between a sub-solar star suffering a full disruption and a solar star suffering a partial disruption. The total observed energy emitted in the event is about 5 \times 10^{52} \text{ erg}. For assumed (median) 8 per cent of efficiency, the total accreted mass is therefore about 0.3 M\(_\odot\), indicating either complete or partial disruption of the star and suggesting that the mass of the star was probably higher than 0.6 M\(_\odot\).

4 DISCUSSION

The characteristics of OGLE16aaa resemble those of other optically found TDEs. First, the flare’s location coincides with the nucleus of the host galaxy. Also, the derived photospheric blackbody temperature remains high (\(\sim 20,000 \text{ K}\)) throughout the available data for this event, significantly higher than in typical supernovae. Moreover, the temperature seems to rise at 35 rest-frame days from \(I\)-band maximum, as seen before in ASASSN-14ae TDE (Holoien et al. 2014).

Both the optical light curve and the presence of very broad He \(\beta\) and H\(\alpha\) in the spectra resemble those of other optical/UV TDEs (Arcavi et al. 2014). OGLE16aaa seems, therefore, to be a TDE. Lack of any variability in 3.5 yr prior to the flare and large amplitude of the flare strongly disfavour regular AGN flaring.

However, the underlying host galaxy is somewhat different in OGLE16aaa than in most of known TDEs so far. French et al. (2016) have shown that most optically found TDEs detected so far occur in quiescent, Balmer-strong galaxies, which are considered post-mergers. The Balmer absorption line series are not present in case of OGLE16aaa; however, a deep post-flare spectrum is still needed to verify it. Another TDE candidate, SDSS J0748, also does not show Balmer series and is an outlier on fig. 2 of French et al. (2016).

Among the X-ray-detected TDEs, IGR J12580, interpreted as due to a flare due to disruption of a Jupiter-mass planet was also detected in a weak AGN/Seyfert galaxy NGC4845 (Nikolajuk & Walter 2013). The narrow emission lines ratios in all those three hosts, as well as their WISE colours indicate that the host contains weak AGN.

For most TDEs found so far, the black hole was assumed dormant, since there was no evidence to the contrary. Here, we propose that OGLE16aaa and several other TDE candidates are due to a stellar disruption in a weak AGN or Seyfert 1-type galaxy, where narrow emission lines originate from the circumnuclear material, photoionized by X-ray photons generated due to accretion. Bennert et al. (2006) showed that for several Seyfert II galaxies the projected distance of the narrow-line region extends to hundreds and even thousands of parsecs. Such accretion is likely to have been due to regular AGN accretion, but it could also have been due to a previous TDE. TDEs are expected to repeat on time-scales of 10\(^7\) yr (Wang & Merritt 2004), and if the paths from the lines of sight from the narrow-line region to us represent a broad delay function, we could still see an echo of previous TDEs in the spectra (e.g. Wegg & Nate Bode 2011).

Moreover, the TDEs in narrow emission line hosts seem to be bridging stellar disruptions by dormant SMBHs and those in much more active AGN, which exhibit a transient appearance of broad-line He \(\beta\) and/or H\(\alpha\) and increase in blue continuum in previously QSO-like spectra with strong narrow emission lines (e.g. MacLeod et al. 2016). Merloni et al. (2015) has already suggested that the first example of CH-L-QSO from Stripe 82 can actually be a stellar disruption on a fairly massive SMBH (\(\sim 10^6\text{M}_\odot\)). In such a case, the observed effect of a star getting too close to the main engine is the luminosity increase due to an increase in accretion rate (blue continuum from the thermal emission) and the disrupted material allows for the formation of broad He \(\beta\) and H\(\alpha\) lines with very large dispersion. If TDEs are common enough, especially in post-merger galaxies, where the disruption rate is increased either due to dynamical instabilities of the nuclear cluster, or presence of a binary black hole, they could play an important role in growth of nuclear black holes (e.g. Hills 1975, Volonteri, Sikora & Lasota 2007).

While AGN are known to vary on small scales, none of the hosts of weak AGN TDEs exhibit any significant pre-flare photometric variability. Primarily, this is due to lack of long-term photometric data for most of them. OGLE16aaa is probably the first TDE candidate in a weak AGN where we have a long (3.5 yr) history of pre-flare observations indicating no detectable variability.

Based on pre-flare variability, van Velzen et al. (2011) rejected several candidates in Stripe 82 data, and since then, all the current surveys are using this criterion when selecting TDEs among nuclear flares. However, as already suggested in Strojohann et al. (2016), significant and temporal (flare-like) changes in the accretion in AGN are hard to explain with changes in gas flow and can be attributed to disruptions of stars. Restricting nuclear flares solely to apparently quiet nuclei might introduce biases in observational optically selected TDE rate determinations.

The approximate monthly variability observed in the optical and UV bands during the flare and seen in the residuals of the TDE model remains puzzling in OGLE16aaa. Possible explanations include precession of the disc (e.g. Janiuk & Czerny 2011; Tchekhovskoy 2014), duty cycle imposed by the orbital period of the returning debris (Jiang et al. 2016), or even a binary SMBH (Liu, Li &
5 CONCLUSIONS

In the course of OGLE-IV search for extragalactic transients, we have discovered a new candidate for a TDE of a 0.1–0.8M\(_{\odot}\) star by a 10\(^6\)M\(_{\odot}\) SMBH.

OGLE16aaa event, along with SDSS J095209.56+214313.3, SDSS J0748, ASASSN-14li and IGR J1258 seem to form a subclass of TDEs in galaxies hosting a weak AGN, with weak narrow emission lines. Moreover, the existence of such TDEs supports one of the explanations for so-called CH-L-QSOs, where persistent strong narrow emission lines get superimposed with variable broad emission lines.

A possible explanation of the observed variability in the light curve of OGLE16aaa is that it is induced by a binary black hole on a tight orbit or due to disc precession or circularization on a timescale of about a month; however, further multimessenger follow-up is required to understand this.

The fact that TDEs could also be found in (weak) AGNs is important for determining TDE rates, since currently there is likely an observational bias against selection of optically found TDEs. Whereas only 10 per cent of galaxies host an AGN, this bias could be larger given that AGN activity is triggered or enhanced by re-activation of a SMBH.

REFERENCES

Firth R. et al., 2016, Astron. Telegram, 8559, 1
Greiner J. et al., 2012, Nature Commun., 3, 1304
Greiner J. et al., 2008, PASP, 120, 405
Greiner J. et al., 2016, Astron. Telegram, 8579, 1
Ochner V. L. et al., 2016, Astron. Telegram, 9015, 1
Wright E. L. et al., 2010, AJ, 140, 1868
Wyrzykowski Ł. et al., 2014, Acta Astron., 64, 197
Wyrzykowski Ł. et al., 2016, Astron. Telegram, 8577, 1
Zhang W., Yu W., Yan Z., 2016, Astron. Telegram, 8644, 1

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a T\(HELPH\)\(TEX/LATEX\) file prepared by the author.