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Joint Load Balancing and Interference Management
for Small-Cell Heterogeneous Networks with

Limited Backhaul Capacity
Ho H. M. Tam, Hoang D. Tuan, Duy T. Ngo, Trung Q. Duong and H. Vincent Poor

Abstract—In this paper, new strategies are devised for joint
load balancing and interference management in the downlink of
a heterogeneous network, where small cells are densely deployed
within the coverage area of a traditional macrocell. Unlike
existing work, the limited backhaul capacity at each base station
(BS) is taken into account. Here users (UEs) cannot be offloaded
to any arbitrary BS, but only to ones with sufficient backhaul
capacity remaining. Jointly designed with traffic offload, transmit
power allocation mitigates the intercell interference to further
support the quality of service of each UE. The objective here is
either (i) to maximize the network sum rate subject to minimum
throughput requirements at individual UEs, or (ii) to maximize
the minimum UE throughput. Both formulated problems belong
to the difficult class of mixed-integer nonconvex optimization.
The inherently binary BS-UE association variables are strongly
coupled with the transmit power variables, making the problems
even more challenging to solve. New iterative algorithms are
developed based on an exact penalty method combined with
successive convex programming, where we deal with the binary
BS-UE association problem and the nonconvex power allocation
problem one at a time. At each iteration of the proposed
algorithms, only two simple convex problems need to be solved
in the same time scale. It is proven that the algorithms improve
the objective functions in each iteration and converge eventually.
Numerical results demonstrate the efficiency of the proposed
algorithms in both traffic offloading and interference mitigation.

Index Terms—Combinatorial optimization, heterogeneous net-
work, limited backhaul, load balancing, power allocation, suc-
cessive convex programming
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I. INTRODUCTION

Cell densification is currently the best hope to meet the
unprecedented data increase (the 1000× data challenge) in
the fifth-generation (5G) wireless networks [1]–[3]. By densely
deploying cells of different types and sizes (e.g., macro, micro,
pico, femto), the resulting heterogeneous networks (HetNets)
can offer a substantial growth in area spectral efficiency and
full network coverage in regions traditionally difficult to pene-
trate. Another key benefit of HetNet is data offloading, where
traffic otherwise transported via the traditional macrocell is
directed to the newly deployed small cells.

Traditionally, a user (UE) is associated with the base station
(BS) that offers the maximum signal-to-interference-plus noise
ratio (SINR), i.e., the max-SINR rule (see, e.g., [4]). As a
result, a ‘hotspot’ BS with advantageous link conditions and/or
high transmit power would potentially be inundated with too
many UEs while other BSs only serve a few UEs. Range ex-
pansion is a heuristic method that may help balance the traffic
load among different BSs, in which the SINR is regulated
through a positive bias level [5], [6]. Still, it is challenging to
determine optimal bias levels for multiple cells. Other related
BS-UE association rules proposed in the literature are based on
maximizing the estimated throughput [7] and sum logarithmic
throughput [8]–[10]. Using Lagrangian duality decomposition
[11], the association rule in [12] aims at maximizing the net-
work sum-rate while satisfying the Quality-of-Service (QoS)
constraints. A heuristic adjustment is then proposed to keep
the total number of time slots demanded by the UEs below that
available at the BSs. In [13], [14], a binary relaxation method
is proposed to find the optimal association rule for the sum-
rate and minimum-rate maximization objectives. However, the
proposed method is limited to a two-cell network. An extensive
overview of the state-of-the-art in user association for 5G
networks can be found in [15].

A common assumption in the above existing work is the
availability of ideal backhaul links with unlimited capacity.
This assumption is not true for HetNets. Here, the low-power
BSs of small cells (e.g., pico and femto) connect to the
core network via low capacity backhaul (e.g., DSL links) for
economic benefits [16]. If these small-cell BSs must serve too
many UEs, their non-ideal backhaul becomes the bottleneck
in transporting the required amount of data traffic to the UEs,
resulting in a potentially unacceptable level of delay/jitter
at the UEs. The study of [17] proposes an optimal BS-UE
association rule that maximizes the logarithmic utility function
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while guaranteeing a target delay. Note that one can guarantee
certain levels of delay if the demanded throughput at the BSs
is kept below their respective backhaul capacity [18]. Instead
of maximizing the network sum-rate or the minimum UE’s
throughput, [19] devises a backhaul-aware BS-UE association
rule that is based on biasing, cell size and user distribution.

Interference is a major issue in dense small-cell HetNets,
wherein numerous cell boundaries with poorly defined patterns
are created. Compared with traditional cellular networks, the
effects of the intercell interference are much more acute and
unpredictable, especially at the cell edges [20]. Power control
is an effective way to manage the interference, assuming that
the BS-UE links have already been established. For a given
BS-UE association, [21] devises an optimal BS transmit power
policy for sum-rate maximization with backhaul capacity con-
straints by solving the Karush-Kuhn-Tucker (KKT) conditions.
However, due to the nonconvexity of the considered problem,
a KKT point may not even be locally optimal or feasible.
In addition, the once presumably optimal BS-UE associations
will no longer be optimal when the new transmit power values
are used as a result of power control. It is therefore essential
to design jointly optimal strategies for both traffic offload and
interference management.

For CDMA-based networks, joint optimization of BS-UE
association and interference management is considered in [22]
for network sum-rate maximization and in [23] for minimum
UE’s SINR maximization. It is not straightforward to apply
the results of [22] and [23] to networks in which a BS uses
orthogonal channels to serve its UEs to eliminate intracell
interference. Different from CDMA, each UE here is only
assigned with a fraction of the time/frequency slots depending
on the current load at its serving BS. Assuming zero intracell
interference, [24] proposes an iterative procedure for joint BS-
UE association and interference management that guarantees a
maximum delay not be exceeded. Yet, the convergence of the
proposed heuristic method is not proven. Using game theory,
[25] finds the Nash equilibrium for such joint optimization
problem, albeit without considering QoS constraints. It is
commonly known that a Nash equilibrium may not be efficient
as it could be far away from the actual optimal solution.
Notably, the practical issue of imperfect backhaul links is
not considered in [24] and [25], presumably due to the
nonconvexity of the backhaul capacity constraints even when
the BS-UE association is fixed.

In this paper, we formulate new problems for joint traffic
offload and interference management in the downlink of a
HetNet. Aiming to maximize the network throughput and
the minimum UE rate, our formulations accommodate both
backhaul capacity constraints and UE QoS requirements. The
considered problems belong to the difficult class of mixed
integer nonconvex optimization. The binary BS-UE associa-
tion variables are strongly coupled with the transmit power
variables, making the problems even more challenging to
solve.

We then develop new iterative algorithms based on alter-
nating descent [26] and successive convex programming for
the formulated problems. Alternating descent allows us to
decouple the original problem into two subproblems and deal

MBS 1

PBS 2 PBS 3

PBS 4

Core network

UE k

BS-UE association

Backhaul link

C2

BH
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BH
C3

BH
C4
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Fig. 1. A small-cell HetNet with limited-capacity backhaul links. ‘MBS’,
‘PBS’ and ‘PoP’ refer to macro BS, pico BS and Point of Presence,
respectively.

with them one at a time. Even so, each resulting subproblem
is still challenging. For a fixed power allocation, the BS-UE
association subproblem is combinatorial. And for a fixed BS-
UE association, the power allocation subproblem is highly
nonconvex. We propose to deal with the binary nature of
BS-UE association by relaxation combined with a penalty
method. We then employ successive convex programming to
solve two subproblems in the same time scale. We prove that
our proposed alternating descent algorithms converge, where
only two simple convex problems are to be solved in each
iteration. Simulation results show that the proposed algorithms
enhance the network throughput through better load balancing
and interference management.

The rest of this paper is organized as follows: Sec. II
formulates the problems of joint load balancing and inter-
ference management. Sec. III proposes an alternating descent
algorithm to solve the sum-rate maximization problem. Sec. IV
extends the devised solution to the case of minimum UE rate
maximization. Sec. V presents numerical results to demon-
strate the performance of our proposed algorithms. Finally,
Sec. VI concludes the paper.

Notation. In this paper, boldfaced symbols are used for
optimization variables whereas non-boldfaced symbols are for
deterministic terms, regardless of whether they are matrix, vec-
tor or scalar. The dimensions of these symbols are interpreted
from context, and they will be explicitly specified should there
be any potential ambiguity.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

Consider the downlink of a K-cell HetNet in which one
macrocell is overlaid with K − 1 small cells, as depicted in
Fig. 1. To best exploit the limited radio spectrum, universal
frequency reuse is adopted [8], [10]. Without loss of generality,
we assume that macro base station (MBS) serving the macro-
cell is indexed as BS 1, and the BS serving small cell k (e.g.,
a micro/pico/femto BS) is indexed as BS k ∈ {2, 3, . . . ,K}.
Transmitting at a much lower power than an MBS, the small-
cell BSs are deployed densely in order to extend network
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coverage, increase throughput and offload data traffic from the
MBS.

We assume that each BS k ∈ {1, 2, . . . ,K} connects to a
backhaul link with limited capacity. The backhaul link of each
BS carries the downlink traffic for its serviced UEs from the
core network to that BS via a central access point called ‘Point
of Presence’ (PoP) [17], [27], [28]. The PoP is connected to the
core network via an optical fiber link whose capacity is much
higher than the total capacity of all links from the PoP to all
BSs. Therefore, the effect of core network-PoP link capacity
is neglected in our model [28]. For simplicity, we also neglect
the traffic coming from the control plane [18].

In the considered HetNet, there are N UEs looking for the
serving BSs. Similar to the BSs, the UEs are each equipped
with one antenna. A snapshot model is adopted where the
channels remain unchanged during the optimization process.
This channel assumption is well-justified for networks with a
low degree of mobility and/or very high throughput. A central
processing unit is employed to collect all the channel state
information and perform the underlying network optimization.

In this paper, a UE is allowed to associate with at most
one BS, but a BS can serve multiple UEs. Assume that BS
k ∈ {1, 2, . . . ,K} has a full buffer and transmits with power
pk. First, consider that only one UE n ∈ {1, 2, . . . , N} is
connected to BS k. The achieved data rate in nats/s/Hz of UE
n is expressed as:

rnk(p) , ln

(
1 +

gnkpk∑K
j 6=k,j=1 gnjpj + σ2

)
, (1)

where p , (p1,p2, . . . ,pK)T , gnk is the channel gain from
BS k to UE n, and σ2 is the power of background additive
white Gaussian noise. As seen from (1), UE n is subjected to
the intercell interference from other BS j 6= k.

Next, consider the general case of multiple UEs connecting
to a BS. The BS will then divide the total available time into
a number of time slots and allocates them to its serviced UEs
in a round-robin fashion [8], [10]. As such, each connected
UE will receive an equal amount of transmission time while
there is no intracell interference. Denote xnk ∈ {0, 1} as
the BS-UE association variable, i.e., xnk = 1 if UE n
is associated with BS k and xnk = 0 otherwise. Define
xk , [x1k, . . . ,xNk]T and x ,

[
xT1 , . . . ,x

T
K

]T
. If BS

k serves a total of 〈xk〉 ,
∑N
n̂=1 xn̂k UEs, then each of

these UEs will be allocated 1/〈xk〉 of the total available
time. Effectively, data rate perceived by a connected UE n
is rnk(p)/〈xk〉, which will be further reduced as more and
more UEs are associated to BS k. To reflect the fact that this
rate is only possible if UE n actually connects to BS k, we
define the effective data rate given to UE n by BS k as:

reff
nk(xk,p) ,

xnkrnk(p)

〈xk〉
. (2)

It follows that the sum effective data rate of cell k is

reff
k (x,p) ,

N∑
n=1

reff
nk(p) =

N∑
n=1

xnkrnk(p)

〈xk〉
, (3)

which is required not to exceed the limited backhaul capacity
available to BS k [29], [30]. The total network throughput
across all K cells is then simply

K∑
k=1

reff
k (x,p) =

K∑
k=1

N∑
n=1

xnkrnk(p)

〈xk〉
. (4)

This work aims to enhance the network throughput by
joint optimization of BS-UE association and transmit power
allocation. Importantly, our design takes into account both the
QoS requirement of each UE and the limited backhaul capacity
at each BS. If too many UEs connect a particular BS (e.g.,
due to favorable channel conditions), then (i) the perceived
rate of each UE will decrease and potentially not satisfy the
minimum QoS requirement, and (ii) the sum effective rate of
the corresponding cell may increase and potentially exceed
the backhaul capacity. With a proper BS-UE association, the
traffic load will be more balanced among different BSs and
the network crowding issue can be alleviated. With adaptive
power allocation, the intercell interference can be effectively
managed to further improve the throughput. Here, we will
consider the following joint design problem for sum-rate
maximization.

max
p,xnk∈{0,1}

K∑
k=1

N∑
n=1

xnkrnk(p)

〈xk〉
(5a)

s.t.
K∑
k=1

xnk = 1, n = 1, . . . , N (5b)

〈xk〉 ≥ 1, k = 1, . . . ,K (5c)
K∑
k=1

xnkrnk(p)

〈xk〉
≥ RQoS

n , n = 1, . . . , N (5d)

N∑
n=1

xnkrnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . ,K

(5e)
0 ≤ pk ≤ Pmax

k , k = 1, . . . ,K. (5f)

Constraint (5b) ensures each UE be connected with one BS
only. Constraint (5c) requires each BS serves at least one UE
[8]–[10], [17]. In (5d) and (5e), RQoS

n ≥ 0 and CBH
k ≥ 0

specify the minimum throughput requirement for UE n and
the backhaul capacity for cell k, respectively. Finally, (5f) caps
the maximum transmit power of each BS k.

We also consider the following problem of maximizing the
minimum effective rate among all UEs:

max
p,xnk∈{0,1}

min
n=1,...,N

{
K∑
k=1

xnkrnk(p)

〈xk〉

}
s.t. (5b), (5c), (5e), (5f).

(6)

In problem (6), our aim is to support the most vulnerable UEs,
e.g., those at the cell edges.

Both problems (5) and (6) belong to the difficult class of
mixed-integer programming. The strong coupling between the
binary variables x and the continuous variables p make the
problems even more challenging. State-of-the-arts in existing
literature typically apply the alternating optimization frame-
work [10], [22], [23], [31], [32]. In this ‘divide-and-conquer’
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approach, instead of dealing with x and p simultaneously,
one decouples the original problems into subproblems of lower
dimensions and resolve one subproblem at a time. Still for our
problems (5) and (6) at hand, the BS-UE association problem
for optimization in binary x scales exponentially with the num-
ber of BSs and UEs. It is not practical to try all the possible
BS-UE combinations, even for networks of small-to-medium
size. Moreover, for a given BS-UE combination, the power
allocation for optimization in p remains highly nonconvex.
Specifically, problem (5) has a nonconvex objective subject
to nonconvex QoS and backhaul constraints, whereas problem
(6) has a nonsmooth nonconvex objective subject also to a
nonconvex set.

In what follows, we will address both problems (5) and
(6) by a novel alternating descent method, which aims at
improving the iterative solutions. It is noteworthy that the
proposed joint user association and power control algorithms,
although designed for single-antenna networks, can serve as
a fundamental building block for subsequent development of
joint user association and beamforming/precoding in multiple-
antenna networks [10].

III. PROPOSED ALTERNATING DESCENT ALGORITHM FOR
SUM-RATE MAXIMIZATION

A. BS-UE Association for Fixed Transmit Power

Given a fixed p := p, we aim to solve problem (5) in
variable x. References [13], [14] considered the simplest case
with K = 2 cells, under which the objective function (5a)∑N

n=1 xn1rn1(p)

〈x1〉
+

∑N
n=1 xn2rn2(p)

〈x2〉

=

∑N
n=1 xn1rn1(p)〈x2〉+

∑N
n=1 xn2rn2(p)〈x1〉

〈x1〉〈x2〉
is a fraction of linear functions in the new rank-one constrained
matrix variable X = xxT for x =

[
xT1 ,x

T
2

]T
. By dropping

the constraint rank(X) = 1 and relaxing binary constraints
on its entries to real numbers belonging to the interval [0, 1],
a bisection search is used in finding the optimal solution of
the resultant program. It should be emphasized again that such
relaxation only works if there are two cells in the network. This
is because for K > 2 the objective function (5a) becomes a
fraction of nonlinear functions in X = xxT .

Our objective here is to devise a solution that works for a
general network with an arbitrary number of cells. To begin
with, notice that all the constraints (5b), (5c) and (5e) are
linear in x, but not (5d). The following proposition allows
us to equivalently recast the nonconvex constraint (5d) as a
system of linear constraints on x.

Proposition 1: Under the constraint (5b), the constraint (5d)
is equivalent to

(M − (M − 1)xnk) rnk(p) ≥ RQoS
n 〈xk〉, (7)

n = 1, . . . , N, k = 1, . . . ,K

for a sufficiently large number M .
Proof: Denote by (5d)n the constraint (5d) for n. It is

sufficient to show that each (5d)n is equivalent to the following

K constraints:

(M − (M − 1)xnk) rnk(p) ≥ RQoS
n 〈xk〉, k = 1, . . . ,K. (8)

Under the constraint (5b), for each n there is kn such that
xnkn = 1 and xnk = 0,∀k ∈ {1, . . . ,K} \ {kn}. Therefore,
(8) merely means that

rnkn(p) ≥ RQoS
n 〈xkn〉, (9)

and

Mrnk(p) ≥ RQoS
n 〈xk〉, k 6= kn. (10)

Note that (9) is (5d)n, showing the implication (8)⇒ (5d)n.
On the other hand, (10) holds true for 0 < M < +∞

because its right hand side is obviously bounded while the
factor rnk(p) on the left hand side is strictly positive. The
inverse implication (5d)n ⇒ (8) thus follows, yielding the
equivalence between (8) and (5d)n.

Next, we deal with the binary nature of x. For xn̂k ∈ {0, 1},
one has xn̂k = x2

n̂k and thus 〈xk〉 = 〈x2
k〉 ,

∑N
n̂=1 x

2
n̂k. The

objective function (5a) is then expressed as

K∑
k=1

N∑
n=1

x2
nkrnk(p)

〈x2
k〉

. (11)

On one hand, it is straightforward to see that xnk ∈ {0, 1} is
equivalent to x2

nk = xnk, xnk ∈ [0, 1]. On the other hand, it
holds true that x2

nk ≤ xnk for xnk ∈ [0, 1]. Following [33],
we relax binary xnk to xnk ∈ [0, 1] and introduce a penalty
term in the objective function (11) to enforce x2

nk = xnk, thus
making xnk binary. This leads to the following problem:

max
xk∈[0,1]N

P1(x, p) ,
K∑
k=1

N∑
n=1

x2
nkrnk(p)

〈x2
k〉

+λ
∑K
k=1

∑N
n=1

(
x2
nk − xnk

)
s.t. (5b)− (5e),

(12)

where λ ≥ 0 is a constant penalty factor. Parameter λ
signifies the relative importance of recovering binary val-
ues for x over throughput maximization. In (12), the term∑K
k=1

∑N
n=1(xnk − x2

nk) is always nonnegative and can
therefore be used to measure the degree of satisfaction of
the binary constraints xnk ∈ {0, 1}, ∀n, k. Without squaring
such a term, the above penalization is exact, meaning that the
constraints x ∈ {0, 1}, ∀n, k can be satisfied by a maximizer
of (12) with a finite value of λ (see, e.g., [34, Ch. 16]). This
nice property makes such exact penalization attractive.

With Proposition 1, problem (12) becomes

max
xk∈[0,1]N

P1(x, p)

s.t. (5b), (5c), (5e), (7).
(13)

With an appropriate choice of λ, problems (13) and (5) are
equivalent in the sense that they share the same optimal
solution [33, Sec. II]. Since problem (13) is still nonconvex,
we now employ successive convex programming to solve it.
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Proposition 2: For a given point (x(κ), p), the following
convex problem is a global lower bound maximization for (13):

max
xk∈[0,1]N

P̃(κ)
1 (x, p) ,

K∑
k=1

N∑
n=1

α
(κ)
nk (x, p)

+λ
∑K
k=1

∑N
n=1 γ

(κ)
nk (x)

s.t. (5b), (5c), (5e), (7),

(14)

where we define

α
(κ)
nk (x, p) ,

(x
(κ)
nk )2rnk(p)

〈(x(κ)k )2〉
+

2x
(κ)
nk

(
xnk − x(κ)nk

)
rnk(p)

〈(x(κ)k )2〉

−
(x

(κ)
nk )2rnk(p)(
〈(x(κ)k )2〉

)2 (〈x2
k〉 − 〈(x

(κ)
k )2〉

)
, (15a)

γ
(κ)
nk (x) , (x

(κ)
nk )2 − x(κ)nk + (2x

(κ)
nk − 1)

(
xnk − x(κ)nk

)
.

(15b)

Proof: See Appendix A, where we show that the objective
P̃(κ)
1 (., p) in (14) is a global lower bound of the objective
P1(x, p) in (13), i.e.

P1(x, p) ≥ P̃(κ)
1 (x, p), ∀x and P1(x(κ), p) = P̃(κ)

1 (x(κ), p).
(16)

The nonconvex problem (13) can then be addressed by
instead solving its global lower bound maximization (14) in a
sequential manner as follows: After initializing from a feasible
point x(0) of problem (13), we iteratively solve problem (14)
to generate a sequence {x(κ)}, κ = 1, 2, . . . of feasible and
improved points toward the optimal solution of (13). More
specifically, at iteration κ we use x(κ−1) as a feasible point to
solve (14) and obtain x(κ).

Theorem 1: Initialized from a feasible point x(0), the
sequence {x(κ)} obtained by iteratively solving (14) is a
sequence of improved points of (13), which converges to a
KKT point.

Proof: Note that x(κ) and x(κ+1) are a feasible point and
the optimal solution of (14), respectively. By using (16),

P1(x(κ+1), p) ≥ P̃(κ)
1 (x(κ+1), p) ≥ P̃(κ)

1 (x(κ), p)

= P1(x(κ), p), (17)

i.e. x(κ+1) is a better point of (13) than x(κ). Since the
sequence {x(κ)} is bounded, by Cauchy’s theorem there is
a convergent subsequence {x(κν)} with a limit point x̄, i.e.

lim
ν→+∞

[P1(x(κν), p)− P1(x̄, p)] = 0.

For every κ there is ν such that κν ≤ κ ≤ κν+1 so

0 = lim
ν→+∞

[P1(x(κν), p)− P1(x̄, p)]

≤ lim
ν→+∞

[P1(xκ), p)− P1(x̄, p)]

≤ lim
ν→+∞

[P1(xκν+1), p)− P1(x̄, p)] = 0,

showing that lim
κ→+∞

P1(xκ), p) = P1(x̄, p). Then, each ac-

cumulation point x̄ of the sequence {x(κ)} is a KKT-point
according to [35, Theorem 1]. The proof of Theorem 1 is thus
complete.

B. Power Allocation for Fixed BS-UE Association

Given x := x, we proceed to solving problem (5) in the
variable p. Although the difference-of-convex iterations (DCI)
approach of [36] can be applied in the absence of backhaul
constraints (5e), the required log-determinant optimization is
computationally expensive even for commercialized convex
solvers. This drawback is particularly severe in HetNets which
consist of a large number of densely deployed BSs and UEs.
Reference [21] proposes solving the KKT conditions, followed
by applying the gradient descent method to update Lagrangian
multipliers in order to satisfy (5e). Nevertheless, a solution
derived from the KKT conditions of a nonconvex problem
may not be locally optimal or even feasible.

Our aim here is to devise an efficient and optimal power
allocation solution. Using Proposition 1 and simple algebraic
manipulations, (5d) is expressed as the following linear con-
straints:

gnkpk ≥
[
exp

(
RQoS
n 〈xk〉

M − (M − 1)xnk

)
− 1

]
× K∑

j 6=k,j=1

gnjpj + σ2

 , n = 1, . . . , N, k = 1, . . . ,K.

(18)

Problem (5) is then reduced to

max
p
P1(x,p) ,

K∑
k=1

N∑
n=1

(xnk)2

〈x2k〉
rnk(p) (19a)

s.t.
N∑
n=1

xnkrnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . ,K (19b)

(5f), (18).

Because (19a) and (19b) are still nonconvex in p, we instead
consider their convex bounds as given in the following result.

Proposition 3: The rate function rnk(p) in (1) admits

rnk(p) ≤θ(κ)nk (p)

, rnk(p(κ)) +
1

K∑
j 6=k,j=1

gnjp
(κ)
j + σ2

×
K∑

j 6=k,j=1

(gnjp
(κ)
j )2

(
1

gnjpj
− 1

gnjp
(κ)
j

)

+
1

K∑
j=1

gnjp
(κ)
j + σ2

K∑
j=1

gnj(pj − p(κ)j ) (20)
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as its upper bound, and

rnk(p) ≥β(κ)
nk (p)

, rnk(p(κ))− 1
K∑
j=1

gnjp
(κ)
j + σ2

×
K∑
j=1

(gnjp
(κ)
j )2

(
1

gnjpj
− 1

gnjp
(κ)
j

)

− 1
K∑

j 6=k,j=1

gnjp
(κ)
j + σ2

K∑
j 6=k,j=1

gnj(pj − p(κ)j )

(21)

as its lower bound.
Proof: See Appendix B.

With the bounds in (20) and (21), we now address the
nonconvex problem (19) by successive convex programming.
Specifically, after initializing a feasible point p(0) of problem
(19), we iteratively solve the following global lower bound
maximization of (19):

max
p
P̄(κ)
1 (x,p) ,

K∑
k=1

N∑
n=1

(xnk)2

〈x2k〉
β
(κ)
nk (p) (22a)

s.t.
N∑
n=1

xnkθnk(p) ≤ CBH
k 〈xk〉, k = 1, . . . ,K (22b)

(5f), (18)

to generate a sequence {p(κ)}, κ = 1, 2, . . . of feasible and
improved points toward the solution of (19). At iteration κ, we
use p(κ−1) as a feasible point to solve (22) and obtain p(κ).
Similarly to Theorem 1, we can prove the following result.

Theorem 2: Initialized from a feasible point p(0), the
sequence {p(κ)} obtained by iteratively solving (22) is a
sequence of improved points, which converges to a KKT point
of (19).

C. Joint Optimization of BS-UE Association and Power Allo-
cation

The alternating optimization framework requires solving a
series of convex problems (14) [cf. Section III-A] followed by
solving a series of convex problems (22) [cf. Section III-B]
and repeating until convergence. Realizing that solving one
instant of (14) and (22) alone already provides a better point,
we use them as an alternating descent to achieve a much faster
convergence speed. The proposed joint optimization of BS-UE
association and power allocation for sum-rate maximization is
summarized in Algorithm 1. Our alternating descent approach
gives flexibility in executing user association and power con-
trol in the same time slot (as in Algorithm 1) or different time
slots (by selectively deactivating Step 3 or 4 of Algorithm 1).

At each iteration of Algorithm 1, the computational com-
plexity of solving convex problems (14) and (22) is only
polynomial in the number of variables and constraints. To
see this, (14) can be equivalently reformulated as an opti-
mization problem with a , (NK + 1) real-valued scalar

Algorithm 1 Joint BS-UE Association and Power Allocation
for Sum-Rate Maximization

1: Initialize x(0)nk := 1
KN , n = 1, . . . , N, k = 1, . . . ,K and

p
(0)
k := Pmax

k , k = 1, . . . ,K. Set κ := 0.
2: repeat
3: Solve convex program (14) with p := p(κ) to find

optimal solution x?.
4: Solve convex program (22) with x := x∗ to find

optimal solution p?.
5: Set (x(κ+1), p(κ+1)) := (x?, p?) and κ := κ+ 1.
6: until

∣∣∣P1(x
(κ),p(κ))−P1(x

(κ−1),p(κ−1))
P1(x(κ−1),p(κ−1))

∣∣∣ < ε

decision variables, a linear objective, b , (N + 2K + NK)
linear constraints and one quadratic constraint. Similarly, (22)
can be equivalently reformulated as a semidefinite program
with (2K + 1) scalar variables, a linear objective and a
system of linear matrix inequalities. The complexity required
to solve (14) and (22) is thus O

(
(1 + a+ b)a2

√
b+ 1

)
and O

(
(2K + 1)2

[
(K + 1)3 +NK3

]√
3K +NK + 1

)
, re-

spectively [37].
Theorem 3: Initialized from a feasible point (x(0), p(0)),

Algorithm 1 converges to a solution of problem (5) after a
finite number of iterations for a given error tolerance ε > 0.

Proof: The BS-UE association problem (13) and the
power allocation problem (19) have the same objective func-
tion P1(x,p). From (17), (20) and (21), we have the following
relations:

P1(x(κ+1), p(κ+1)) ≥ P̄(κ)
1 (x(κ+1), p(κ+1))

≥ P̄(κ)
1 (x(κ+1), p(κ)) = P1(x(κ+1), p(κ))

≥ P̃(κ)
1 (x(κ+1), p(κ)) ≥ P̃(κ)

1 (x(κ), p(κ))

= P1(x(κ), p(κ)). (23)

It means that alternatingly solving their respective convex
minorants (14) and (22) always improves P1(x,p) in each
iteration. As such, once initialized from a feasible point
(x(0), p(0)) that satisfies (5b), (5c) and (5f), Algorithm 1
generates a sequence {(x(κ), p(κ))} of feasible and improved
points which eventually converges to a solution (x̄, p̄) of (5).
Note that x̄ is a KKT point of (13) for p = p̄ while p̄ is a
KKT of (19) for x = x̄. Under the stopping criterion∣∣∣∣P1(x(κ+1), p(κ+1))− P1(x(κ), p(κ))

P1(x(κ), p(κ))

∣∣∣∣ < ε, (24)

Algorithm 1 terminates after a finite number of iterations for
a given ε > 0.

IV. PROPOSED ALTERNATING DESCENT ALGORITHM FOR
MINIMUM UE RATE MAXIMIZATION

The above developed Algorithm 1 is readily extendable to
solve the max-min problem (6). In this case, we consider the
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following objective function.

P2(x,p) ,

min
n=1,...,N

{
K∑
k=1

x2
nkrnk(p)

〈x2
k〉

}
+ λ

K∑
k=1

N∑
n=1

(
x2
nk − xnk

)
,

(25)

where xnk ∈ [0, 1], n = 1, . . . , N, k = 1, . . . ,K and λ ≥ 0
is a constant penalty factor. The BS-UE association problem
for a fixed power allocation p := p is now

max
xk∈[0,1]N

P2(x, p)

s.t. (5b), (5c), (5e).
(26)

Although the constraint set of (26) is convex, its objective is
nonsmooth and nonconvex. Similar to Proposition 2, it can be
shown that the following convex problem is a global lower
bound maximization of (26):

max
xk∈[0,1]N

P̃2(x, p) , min
n=1,...,N

{
K∑
k=1

α
(κ)
nk (x, p)

}
+λ
∑K
k=1

∑N
n=1 wnkγ

(κ)
nk (x),

s.t. (5b), (5c), (5e),

(27)

where α(κ)
nk (x, p) and γ(κ)nk (x) have previously been defined in

(15).
Next, the power allocation problem for a fixed x := x is

max
p

P2(x,p) , min
k=1,...,K

{
N∑
n=1

x2nk
〈x2k〉

rnk(p)

}
s.t. (5e), (5f),

(28)

which has a nonsmooth nonconvex objective function and
a nonconvex set. Similar to Proposition 3, it can be shown
that the following convex problem is a global lower bound
maximization of (28):

max
p

P̄(κ)
2 (x,p) , min

k=1,...,K

{
N∑
n=1

x2nk
〈x2k〉

βnk(p)

}
s.t. (22b), (5f),

(29)

where βnk(p) has previously been defined in (21).
To solve problem (6) in both x and p, we modify Algo-

rithm 1 as follows. In Step 3, we solve convex problem (27)
instead of (14). In Step 4, we solve convex problem (29)
instead of (22). And because the objective function is now
P2(x,p), the proposed algorithm for problem (6) terminates
when

∣∣∣P2(x
(κ),p(κ))−P2(x

(κ−1),p(κ−1))
P2(x(κ−1),p(κ−1))

∣∣∣ < ε. We shall refer to
this modified algorithm as Algorithm 2.

In each iteration of Algorithm 2, the compu-
tational complexity of solving problem (27) is
O
(
(N + a+ d)c2

√
c+N

)
, because (27) can be equivalently

reformulated as an optimization problem with a = (NK + 1)
scalar real decision variables, a linear objective, c , (N +K)
linear constraints and N quadratic constraints [37].
Similarly, the complexity of solving problem (29) is
O
([
cd2(K + 1)2 + d2NK3

]√
3K +NK +N

)
, because

(29) can be reformulated as a semidefinite program with
d , (2K+1) scalar variables, a linear objective and a system

0 0.25 0.5 0.75 1 (km)
0

0.25

0.5

0.75

1 (km)

Fig. 2. A three-tier network with one fixed MBS (black square), four
fixed PBSs (black diamonds), twenty random FBSs (black triangles) and 200
random UEs (red circles)

of linear matrix inequalities. Finally, similar to Theorem 3,
it can be proved that once initialized from a feasible point
(x(0), p(0)) that satisfies (5b), (5c) and (5f), Algorithm 2
converges after a finite number of iterations for a given error
tolerance ε.

V. ILLUSTRATIVE EXAMPLES

Consider a three-tier HetNet where four pico BSs (PBSs)
and twenty femto BSs (PBSs) are deployed within a macrocell
of size 1, 000m×1, 000m. The locations of MBS and PBSs are
fixed whereas those of FBSs are random, as shown in Fig. 2.
We assume there are N = 200 UEs randomly distributed
over the macrocell coverage area. The network topology is
then fixed during the optimization process. Without loss of
generality, we only consider the effect of pathloss when gen-
erating the channel gains. To illustrate the impact of imperfect
backhaul links, we assume that the MBS, PBSs, and FBSs are
each equipped with a backhaul link of capacity CBH, CBH/3
and CBH/10, respectively. Following [38], we choose CBH ∈
{100, 150, 200,∞} Mbps where CBH = ∞ represents the
ideal backhaul. For simplicity, we set the required minimum
UE throughput as RQoS

n = RQoS, n = 1, . . . , N . The error
tolerance for the algorithms is set as ε = 10−4. Other 3GPP
LTE parameters used to setup our simulations are listed in
Table I [39]. Note that we divide the obtained rate results by
ln(2) to arrive at the unit of bps/Hz.

First, we compare the sum-rate performance of the joint
design in Algorithm 1 to that of Algorithm 1 but with full BS
transmit power (i.e., no power control). We use the heuristic
BS-UE association schemes, namely, max-SINR and DCD
[10] as benchmarks where full BS transmit power is also
assumed. As both benchmark schemes assume ideal backhaul,
we set CBH = ∞ here for a fair comparison. And since the
max-SINR and DCD schemes do not include the minimum
UE throughput constraint, we first assume RQoS = 0 in these
two schemes to find their BS-UE associations, followed by
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TABLE I
SIMULATION PARAMETERS USED IN ALL NUMERICAL EXAMPLES

Parameter Value

Minimum distance between MBS-UE 35m

Minimum distance between PBS/FBS-UE 10m

Path loss model for MBS-UE links 128.1 + 37.6 ln10(d), d is in km

Path loss model for PBS-UE links and FBS-UE links 140.7 + 36.7 ln10(d), d is in km

Maximum MBS transmit power 43dBm

Maximum PBS transmit power 24dBm

Maximum FBS transmit power 20dBm

Background noise power −104dBm

System bandwidth 10MHz

Frequency reuse factor 1
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DCD [10]
Max−SINR

Fig. 3. Sum-rate performance of Algorithm 1 under ideal backhaul links.

calculating their achieved sum-rates and minimum UE rates.
Fig. 3 shows that joint design of load balancing and interfer-
ence management in Algorithm 1 gives much higher network
throughput over load balancing alone. This can be explained
by noting that the joint design has an extra dimension of
BS transmit power to optimize to further enhance the sum-
rate performance. When comparing Algorithm 1 with full
BS transmit power to the max-SINR and DCD schemes, the
former offers more flexibility in setting the desired minimum
RQoS. Furthermore, for the same values of RQoS that are
achieved by the max-SINR and DCD schemes, the sole BS-
UE design by Algorithm 1 gives a slightly better sum-rate
performance as can be observed from Fig. 3.

Next, we evaluate the effects of QoS constraints and limited
backhaul capacity in the joint design of Algorithm 1. Fig. 4
shows that as we move away from the assumption of ideal
backhaul, the total throughput is gradually degraded. This
observation is as expected because the feasible region of
problem (5) becomes more restricted. For each value of CBH,
Fig. 4 also shows that lowering the UE throughput requirement
RQoS actually increases the total throughput. However, while
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300
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CBH=∞
CBH=200 Mbps

CBH=150 Mbps

CBH=100 Mbps

Fig. 4. Effects of QoS constraints and limited backhaul capacity on the sum-
rate performance of Algorithm 1

such an throughput improvement is pronounced for the ideal
backhaul, it is not much so for limited backhaul capacity
cases where reducing RQoS beyond 0.2Mbps only marginally
improves the sum-rate. Our numerical analysis reveals that
most of the PBSs and FBSs have fully utilized their respective
limited backhaul capacities of CBH/3 and CBH/10, leaving
no room for further throughput improvement at these small
cells even if RQoS is small. Such an observation again verifies
that backhaul capacity is in fact a bottleneck for network
performance.

Fig. 5 further demonstrates that for a given RQoS, switching
from ideal backhaul (CBH = ∞) to non-ideal backhaul
(CBH = 100Mbps) may limit the offloading capability of small
cells. Indeed, many UEs will be transferred from the small
cells back to the macrocell. This observation can be explained
as follows. The small cells are more easily overloaded in the
non-ideal backhaul case as their backhaul capacity is much
smaller than that of the macrocell. To meet their backhaul lim-
itations, small-cell BSs decrease their transmit power to shrink
their cell size and serve fewer UEs with lower cell throughput.
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Fig. 6. Changes in BS-UE associations by Algorithm 1 under various choices of UE QoS requirements and backhaul capacity
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Fig. 5. Effects of QoS constraints and limited backhaul capacity on the load
distribution by Algorithm 1

With 19dB-23dB higher in power budget compared to that
available to small-cell BSs, the MBS then increases its transmit
power (and effectively its coverage area) to take over the UEs
pushed out by the small cells. And with 3-10 times more
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Algorithm 1 with
RQoS=0.05 Mbps
Algorithm 2

+∞

Network sum rate

Minimum UE’s rate

Fig. 7. Fairness by Algorithm 2 and effects of limited backhaul capacity on
the minimum UE rate

backhaul capacity, the MBS is still able to accommodate the
incoming traffic. This can be best observed in Fig. 6(b) [cf.
Fig. 6(a)] and Fig. 6(d) [cf. Fig. 6(c)], where the MBS serves
more distant UEs for CBH = 100Mbps.

Fig. 7 demonstrates the fairness given by Algorithm 2 for



10

0 0.5 1 (km)
0

0.5

1 (km)

(a) CBH =∞

0 0.5 1 (km)
0

0.5

1 (km)

(b) CBH = 50 Mbps

Fig. 8. More UEs switch to MBS when backhaul capacity is limited in Algorithm 2
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Fig. 9. Convergence of proposed algorithms for ε = 10−4

max-min UE rates. Here, we compare against Algorithm 1 for
sum-rate maximization where RQoS = 0.05Mbps is assumed.
As seen from the figure, Algorithm 2 improves the minimum
UE rate as the cost of reduced total throughput. Furthermore,
for CBH ≥ 150 Mbps, reducing backhaul capacity does not
affect much the minimum UE rate and sum-rate performance
of Algorithm 2 because the ample backhaul capacity at each
cell can still accommodate more data traffic. However, for
CBH ≤ 100 Mbps, the minimum UE rate by Algorithm 2
starts to fall dramatically. And at CBH = 50Mbps, the achieved
minimum UE rate drops by more than 4.5 times compared to
that in the ideal backhaul case. At this point, a significantly
larger number of UEs turns to the MBS for service as shown
Fig. 8. This is because the MBS still has available backhaul
capacity while the PBSs and FBSs are more likely to be
overloaded.

Finally, we examine the convergence of the proposed algo-
rithms. It is sufficient to choose a large value of the penalty
factor λ in the exact penalty method. To improve the conver-
gence speed of Algorithms 1 and 2, our implementation starts
with λ = 103 and fine-tunes λ through a bisection search until
the objective functions no longer change and binary values of
x are found. For brevity, only the case of CBH = 100Mbps is
presented for illustration. Fig. 9(a) plots the convergence of the

objective function (19) by Algorithm 1 for RQoS = 0.1Mbps.
Fig. 9(b) plots the convergence of the objective function (25)
by Algorithm 2. In these plots, the system bandwidth is
normalized to unit to ensure the compatibility of the utility
function and the penalty term in (19) and (25). The number
of iterations in each plot corresponds to the presented values
of λ. As can be seen from Fig. 9, the proposed algorithms only
require at most ten iterations to converge. It is worth noting
that each iteration of our algorithms involves solving only two
easy convex problems, each with polynomial complexity.

VI. CONCLUSIONS

In this paper, we have proposed new joint BS-UE asso-
ciation and power control schemes for HetNets. Specifically,
we have addressed two difficult mixed-integer optimization
problems: (i) sum-throughput maximization under QoS con-
straints and (ii) maximization of minimum UE throughput. Our
problem formulations also include the practical constraint of
limited backhaul capacity. Our developed alternative descent
algorithms are based on an exact penalty method combined
with successive convex programming, where we address the
binary BS-UE association problem and the nonconvex power
allocation problem separately. At each iteration, only two
simple convex problems are solved in the same time scale. Our
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algorithms improve the objective functions in each iteration
and converge eventually. Simulation results have demonstrated
the usefulness of our devised algorithms in both traffic offload-
ing and interference management.

APPENDIX A
PROOF OF PROPOSITION 2

Firstly, notice that functions

fnk(xnk,yk) ,
rnk(p)xxx2nk

yk
, k = 1, . . . ,K

are jointly convex in xnk and yk. Therefore, fnk(xnk,yk)

admits its first order approximation at (x
(κ)
nk , y

(κ)
k ) as a lower

bound [40] as follows

fnk(xnk,yk) ≥ fnk(x
(κ)
nk , y

(κ)
k ) +

2rnk(p)x
(κ)
nk

(
xnk − x(κ)nk

)
y
(κ)
k

−
rnk(p)(x

(κ)
nk )2

(y
(κ)
k )2

(
yk − y(κ)k

)
.

By replacing yk := 〈x2
k〉 > 0, ∀k = 1, . . . ,K, we have

fnk(xnk, [〈x2
k〉]k=1,...,K) =

rnk(p)xxx2nk
〈xxx2k〉

≥ α(κ)
nk (x, p).

Secondly, since x2
nk − xnk is a convex quadratic function,

it also admits its first order approximation at x(κ) as a lower
bound as

x2
nk − xnk ≥ (x

(κ)
nk )2 − x(κ)nk +

(
2x

(κ)
nk − 1

)(
xnk − x(κ)nk

)
= γ

(κ)
nk (x).

Therefore, we have

P1(x, p) ≥ P̃(κ)
1 (x, p)

at a point (x(κ), p). This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

To prove Proposition 3, we need some preliminary results
first. Let us define

gn(x1, . . . , xn) ,

(
n∑
i=1

x−1i

)−1
. (30)

Theorem 4: For x1 > 0, x2 > 0, g2(x1, x2) is a concave
and monotonically increasing function in (x1, x2).

Proof: One has

g2(x1, x2) = x1 − x21/(x1 + x2)

which is concave in x1 > 0, x2 > 0. Moreover, as x−11 +x−12

is monotonically decreasing in x1 > 0, x2 > 0, g2(x1, x2) =
1/(x−11 +x−12 ) is monotonically increasing in x1 > 0, x2 > 0.

Theorem 5: The function gn(x1, . . . , xn) =
(∑n

i=1 x
−1
i

)−1
is concave in xi > 0, i = 1, . . . , n, ∀n ≥ 1.

Proof: In Theorem 4, we have proved that g2(x1, x2)
is concave in x1 > 0, x2 > 0. Assuming that

gn−1(x1, . . . , xn−1) is concave in xi > 0, i = 1, . . . , n − 1
for some n, we now show that gn(x1, . . . , xn) is also concave.
Firstly, one has

gn(x1, . . . , xn) =

(
n∑
i=1

x−1i

)−1
= xn − x2n (xn + gn−1(x1, . . . , xn−1))

−1

= g2 (xn, gn−1(x1, . . . , xn−1)) .

Since g2(x, y) is a concave and monotonically increasing
function in (x, y) and gn−1(x1, . . . , xn−1) is assumed to be
concave, we have

gn(α(x1, . . . , xn) + β(y1, . . . , yn))

= g2 (αxn + βyn, gn−1(α(x1, . . . , xn−1)

+β(y1, . . . , yn−1)))

≥ g2 (αxn + βyn, αgn−1(x1, . . . , xn−1)

+βgn−1(y1, . . . , yn−1))

≥ αg2(xn, gn−1(x1, . . . , xn−1))

+ βg2(yn, gn−1(y1, . . . , yn−1))

= αgn(x1, . . . , xn) + βgn(y1, . . . , yn)

for α ≥ 0, β ≥ 0, α + β = 1 and ∀xi > 0, yi > 0, i =
1, . . . , n > 0. Thus, gn(x1, . . . , xn) is also concave in xi >
0, i = 1, . . . , n, ∀n ≥ 2.

Theorem 6: The function ln
(∑n

i=1 x
−1
i

)
is convex in xi >

0, i = 1, . . . , n, ∀n ≥ 1.
Proof: Let us define f(x) , ln(x). Then

ln
(∑n

i=1 x
−1
i

)
= −f(gn(x1, . . . , xn)). Since gn(x1, . . . , xn)

is a concave function in xi > 0, i = 1, . . . , n, according to
Theorem 5 we have

gn(α(x1, . . . , xn) + β(y1, . . . , yn))

≥ αgn(x1, . . . , xn) + βgn(y1, . . . , yn),

with α ≥ 0, β ≥ 0, α + β = 1 and ∀xi > 0, yi >
0, i = 1, . . . , n > 0. Moreover, since f(x) is a concave and
monotonically increasing function, we have

f(gn(α(x1, . . . , xn) + β(y1, . . . , yn)))

≥ f(αgn(x1, . . . , xn) + βgn(y1, . . . , yn))

≥ αf(gn(x1, . . . , xn)) + βf(gn(y1, . . . , yn)).

This shows the concavity of f(gn(x1, . . . , xn)). Therefore,
−f(gn(x1, . . . , xn)) is a convex function.

We are now ready to prove Proposition 3. One can write

rnk(p) , ln

 K∑
j=1

gnjpj + σ2

−ln

 K∑
j 6=k,j=1

gnjpj + σ2

 .

Since ln(x) is a concave function with x > 0, it is true that

ln

 K∑
j=1

gnjpj + σ2

 ≤ ln

 K∑
j=1

gnjp
(κ)
j + σ2


+

∑K
j=1 gnj(pj − p

(κ)
j )∑K

j=1 gnjp
(κ)
j + σ2

, (31)
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at some point p(κ).
In addition, upon defining f(x) , ln

(∑n
i=1 x

−1
i

)
with x =

[x1, . . . , xn], xi > 0, ∀i, one has

f(x) ≥ ln

(
n∑
i=1

(x
(κ)
i )−1

)
− 1∑n

i=1(x
(κ)
i )−1

n∑
i=1

(
xi − x(κ)i

(x
(κ)
i )2

)
at some x(κ), due to the convexity of f(x) by Theorem 6.
Thus, one also has the following bound

ln

(
n∑
i=1

xi

)
≥ ln

(
n∑
i=1

x
(κ)
i

)

− 1∑n
i=1 x

(κ)
i

n∑
i=1

(x
(κ)
i )2

(
1

xi
− 1

x
(κ)
i

)
.

It follows that

ln

 K∑
j 6=k,j=1

gnjpj + σ2


≤ ln

 K∑
j 6=k,j=1

gnjp
(κ)
j + σ2

− 1∑K
j 6=k,j=1 gnjp

(κ)
j + σ2

×
K∑

j 6=k,j=1

(
gnjp

(κ)
j

)2( 1

gnjpj
− 1

gnjp
(κ)
j

)
. (32)

By combining (31) and (32), (20) follows. Similarly, (21) can
be proved with minor modifications to (31) and (32).
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