Children’s physical activity and well-being

Physical Activity, Wellbeing and Needs Satisfaction in 8 – 9 Year Old Children From Areas of Socio-
Economic Disadvantage
Child Care in Practice

Abstract

Background: Need-supportive environments have been shown to contribute to children’s physical activity levels, and in a few cases, well-being. Grounded in Self-Determination Theory (SDT), the aim of this study was to determine the influence of psychological needs (competence and social relatedness) satisfaction on physical activity levels and well-being in children from areas of social and economic disadvantage.

Method: A total of 211 children aged 8-9 years from areas of low socio-economic status wore an accelerometer for one week, and completed a questionnaire assessing psychological needs satisfaction and well-being. Confirmatory Factor Analysis (CFA) and path analysis was conducted to assess the factor structure of the measures, and test for theory predicting significant relationships between psychological needs, physical activity and well-being.

Results: The factor structure of the instruments was supported, and a significant positive relationship was found between athletic competence and physical activity ($\beta = .19$). Athletic competence ($\beta = .19$), along with parental relatedness ($\beta = .32$), positively predicted children’s well-being. Physical activity alone, did not predict well-being.

Conclusions: Practitioners may want to consider components of SDT, reflective of need-supportive environments, when designing physical activity interventions. Interventions aimed at supporting children’s perceptions of competence, and the involvement of parents, may offer the opportunity to increase well-being.
Introduction

Well-being is defined as ‘optimal psychological functioning and experience’ (Ryan andDeci, 2001, pg142). As such, researchers (Ryan, Huta and Deci, 2008; Huta, 2016) integrating
eudaimonic and hedonic well-being perspectives consider well-being a dynamic and
evaluative concept, wherein the contents and behaviours of one’s life influence how one
subjectively evaluates their well-being. Therefore, well-being conceptually reflects how one’s
way of living (i.e. dynamic eudaimonic perspective) influences one’s subjective evaluation of
their well-being (i.e. evaluative hedonic perspective).

Research with childhood populations has shown positive relationships between
physical activity and psychological well-being (Biddle and Asare, 2011), and suggests that
those who meet the World Health Organisation’s (WHO, 2010) guideline of 60 minutes of
moderate-to-vigorous intensity physical activity (MVPA) per-day are more likely to have
higher well-being (Breslin et al., 2012). Yet, despite these potential positive benefits to
health, studies conducted on global (Hallal et al., 2011) and European (Verlogine et al., 2012)
samples of children indicate the majority are not active enough to meet the WHO’s (2010)
MVPA guideline for health. Many interventions exist which aim to increase physical activity
levels in youth, with varying degrees of success (Salmon et al. 2007; Strong et al., 2005; Van
Sluijs et al., 2008). Promotional strategies to increase physical activity may be enhanced
through the application of behaviour change theory (Moore et al., 2015). Embedded within
Self-Determination Theory (SDT; Deci and Ryan, 2000), Basic Needs Theory (BNT; Ryan
and Deci, 2008) is a framework that can be applied to children’s behaviour change because it describes how and why need-supportive social environments can motivate participation in physical activity; however, few studies have explored their relationship with well-being.

The aim of the current study was to theoretically test components of BNT (Ryan and Deci, 2008) concomitantly with physical activity and well-being in a statistical model. Central to the model is the hypothesis that children’s perceptions of their own physical competence and social relatedness will influence their physical activity and well-being. The findings will be discussed with reference to previous research and health recommendations for children. As there has been limited research on children from areas of social and economic disadvantage, the goal is to contribute to a growing body of literature examining links with theory, physical activity and well-being. Given such evidence is useful for the development and design of health improvement interventions, recommendations for intervening with children along with future research ideas are provided.

Self-determination theory

Theory-based models of behaviour change have demonstrated predictive validity in investigating the antecedents, mediating mechanisms and outcomes involved in physical activity participation (Quaresma, Palmeria, Martins, Minderico and Sardinha, 2014; Hagger and Chatzisarantis, 2014). One such approach used to guide hypotheses pertaining to children’s physical activity and well-being is SDT. SDT is a meta-theory that explains the effects of social environments on human motivation, behaviour and well-being. Collectively, sub-theories within the SDT framework propose that social environments that support the satisfaction of humans’ innate psychological needs for autonomy, competence and social relatedness are essential for optimising self-determined motivation and well-being (Deci and Ryan, 2002). Equally, social contexts that thwart psychological needs are hypothesised to
Children’s physical activity and well-being

negatively influence motivation and well-being. Competence refers to an individual having
the capacity to have an effect on their environment; autonomy refers to behaviour being
experienced as volitional; and social relatedness refers to caring for and feeling cared for in
one’s social environment (Deci and Ryan, 2002).

A social context that is need-supportive provides the opportunity for self-directed
behaviour (i.e. autonomy support), optimal challenge (i.e. competence support) and social
belongingness (i.e. relatedness support) (Reeve, 2015). In Ryan and Deci’s (2000) SDT
motivational continuum, they propose social contexts that support and subsequently satisfy
these needs will facilitate autonomous motivation (i.e. intrinsic or self-determined extrinsic
motivation) which predicts lasting behaviour change (Fortier, Duda, Guerin and Teixeira,
2012). Further in BNT, a sub-theory within the SDT framework, Ryan and Deci (2008)
suggest that psychological need satisfaction facilitates growth-orientated eudaimonic well-
being. As described above, the interrelationship between eudaimonic and hedonic well-being
is proposed to be a dependent relationship, wherein eudaimonic well-being yields positive
hedonic well-being outcomes such as positive affect and happiness, and protects against
negative outcomes such as anxiety (Ryan, Huta and Deci, 2008).

Research with self-determination theory

Studies have empirically tested components of SDT with most focusing on the role of
psychological needs influencing motivation for physical activity. The role of autonomy need
support has received extensive attention by researchers and demonstrates positive
relationships with physical activity through motivation (Hagger et al., 2009). A meta-analysis
of 64 studies (Babic et al., 2014) revealed that in comparison to other self-concept constructs,
perceived physical competence was the strongest predictor of physical activity. Yet, the
influence of relatedness to physical activity has received less research attention than
Children’s physical activity and well-being

compétence and autonomy. That said, the studies that have been conducted from integrated
theoretical perspectives demonstrated a significant positive relationship between physical
activity and peer support (Seabra et al., 2010), and between physical activity and parental
support (Trost and Loprinzi, 2011). Taking the evidence collectively, there is empirical
support for a positive correlation between psychological needs, motivation and physical
activity (Sebire, Jago, Fox, Edwards and Thompson, 2013). As outlined below however, the
degree to which needs satisfaction facilitates well-being is less clear. Although researchers have explored the link between physical activity and well-being
(Biddle and Asare, 2011), there are few studies investigating this relationship from a BNT
perspective. Deci and Ryan (2002) propose that the social environment in which a given
behaviour (i.e., physical activity in this case) is experienced needs to be supported by
competence, autonomy and relatedness to be conducive to well-being. In the social context of
physical activity, a small number of studies have demonstrated positive correlations with
psychological needs satisfaction and well-being. These studies reveal that need-supportive
climates predict well-being in children (Reinboth, Duda and Ntoumanis, 2004; Gillison,
Standage and Skevington, 2008; Quaresma et al., 2012; Standage, Gillison, Ntoumanis and
Treasure, 2012) and adolescent boys (Lubans et al., 2016); and also result in positive
affective responses to gymnastics training (Gagne, Ryan & Bargmann, 2003) and dancing
practice (Hancox, Quested, Ntoumanis, & Duda, in press).

Despite these studies, research incorporating BNT could be extended further. Firstly,
most of the studies have used self-report measures of physical activity. Objective measures of
physical activity could be included to improve the reliability of physical activity assessment.
Secondly, aside from some of the aforesaid studies (Gagne, Ryan and Bargmann, 2003;
Reinboth et al., 2004; Gillison et al., 2006; Standage et al., 2012) SDT research with youth
Children’s physical activity and well-being

has focused on correlating physical activity with motivation variables, but has overlooked the well-being component of the SDT model. Finally, most research has been conducted on the general population, with adolescents, and in specific contexts such as the physical education setting (e.g. Hagger et al., 2009; Lonsdale, Sabiston, Raedeke, Ha and Sum, 2009).

Hagger and Chatzarntis (2014) propose that theory-based models should be tested in multiple populations to determine if the hypothesised effects are generalizable. However, no research has studied a BNT model in populations of low social economic status (SES).

Therefore, although motivational studies have been efficacious in predicting physical activity, available studies cannot be extrapolated to children of low SES, and the empirical links between needs satisfaction, objective physical activity and well-being in children from low SES is non-existent. The current study addresses many of the evident research gaps in this area by presenting the first study exploring a BNT model with children from low SES.

Study hypotheses

First, in accordance with the motivational perspective described in SDT (Ryan and Deci, 2000), we hypothesised that needs satisfaction would directly and positively predict physical activity (Hypothesis 1, H1). Second, congruent with the assumptions in BNT (Ryan and Deci, 2008), we hypothesised that needs satisfaction would directly predict well-being (Hypothesis 2, H2). Third, we hypothesised an indirect relationship with needs satisfaction and well-being through the mediation of physical activity (Hypothesis 3, H3). Fourth, H3 was proposed as a consequence of Hypothesis 4 (H4), which is that, in support of previous research (Biddle and Asare, 2011), physical activity would directly and positively predict well-being. The purpose of developing the hypothesised model is to determine the role of children’s needs satisfaction on their physical activity levels and well-being. Extending previous research (Standage et al., 2012; Seibre et al., 2013), the model presented here was developed using a two-step model.
Children’s physical activity and well-being

Method

Participants and Procedure

Participants of this study were 211 children (116 male, 95 female) aged 8-9 (M=8.74, SD=.50) from both Northern Ireland and the Republic of Ireland. Geographically the sample was selected from across the four Irish provinces with 70 participants from Ulster, 80 from Leinster, 30 from Munster, and 31 from Connacht. In Northern Ireland participants were recruited from urban schools in areas of social and economic disadvantage based on the Multiple Deprivation Measure in Northern Ireland (2010). This database consists of seven domains of deprivation including: income, employment, health, education, proximity to services, living environment and crime. In the Republic of Ireland the Delivering Equality of Opportunity in Schools (DEIS) programme was used to identify schools in areas of social disadvantage. Socio-economic variables included in the DEIS database which includes: local authority accommodation, lone parenthood, Travellers, large families (defined as 5 or more children) and pupils eligible for free books (Department of Education, 2005). A sample of the schools (n=27) was chosen via a manual random number generator.

School Principals were contacted. All Principals agreed and distributed information sheets about the study to the classroom teacher, and to children’s parents. Only participants who provided written assent and consent from their parents participated in the study. To ensure anonymity participants were given a unique code for the questionnaire. The questionnaires were administered to the participants under quiet classroom conditions. Instructions and information regarding the completion of the questionnaire were explained by
a lead researcher and minor details such as word pronunciation were described to the children in groups of 5-10 with one researcher accompanying each group. Questionnaire completion took no more than one hour with each class group. Accelerometers were secured to the participants’ waists with an elasticated belt and positioned on the midaxillary line above the right hip. Participants were asked to wear the device for 8 days and asked to remove the device for water based activities and before bed-time.

Outcome Measures

Physical Activity

Objective physical activity was measured using Actigraph GT3x accelerometers to estimate daily duration, frequency, and intensity of the children’s physical activity. Accelerometers are valid and reliable measures of physical activity with children (Trost, Loprinzi, Moore and Pfeiffer, 2011). The criteria chosen to define valid wear-time were at least 10 hours on a minimum of 3 weekdays and 1 weekend day, as were used in a previous study of children of this age and SES (Breslin and Brennan, 2012). The devices were set to record data in 5 second epochs which is considered a valid capturing period for children’s movement patterns at this age (Mattock’s et.al, 2007; Trost et al., 2011). The first day of data was excluded to account for the children’s subjective reactivity to wearing the device (Trost et al., 2011) and the remaining data were then processed using Actilife software. Time spent in light, moderate and vigorous physical activity was calculated using Mattock’s et al’s (2007) physical activity cut-off points. Non-wear time was defined as 20 minutes of consecutive zeros which was then excluded from the data file. This parameter estimates that it is unlikely that children will record no movement for longer than 20 minutes and has been used in previous studies with children (Breslin et al., 2012; Griffiths et al., 2013).

Well-being
Children’s physical activity and well-being

Kidscreen-27 (Ravens-Sieberer et al., 2007) was used to assess well-being. As no eudaimonic measures of well-being exist for pre-adolescent children, Kidscreen-27 aligns with the hedonic well-being perspective by subjectively evaluating physical, social and psychological health functioning which is theorised to be directly influenced by psychological needs satisfaction (Ryan and Deci, 2008). Kidscreen-27 was developed by the Kidscreen Group as part of the first cross-cultural attempt to standardise the measurement of children’s well-being in Europe (Ravens-Sieberer et al., 2014). Kidscreen-27 has been shown to be a valid and reliable well-being measure for children (Ravens-Sieberer et al., 2007). Recently, Kidscreen-27 was shown to have a 7-factor structure for children aged 8-9 from areas of low socio-economic status in Ireland (Shannon, Breslin, Fitzpatrick, Hanna and Brennan, 2016). The measure was developed in three stages: (a) following a Delphi procedure, (b) focus groups with children, and (c) criterion and construct validity assessments from a European-wide sample of 22,827 children (Ravens-Sieberer et al., 2014). In the development of Kidscreen-27, Ravens-Sieberer et al. (2007) produced five well-being dimensions: Physical Well-being (5 items) measures the children’s perceptions of their physical health and vitality; Psychological Wellbeing (7 items) assesses feelings of positive and negative affect and life satisfaction; Parent Relations and Autonomy (7 items) includes items on relationships with parents, availability of free-time and satisfaction with their financial resources; Social Support and Peers (4 items) examines the quality of the children’s interactions with their peers; School Environment (4 items) measures perceptions of their cognitive functioning and relationship with teachers. Items were answered on a 5 point likert scale ranging from ‘never,’ ‘seldom,’ ‘quite often,’ ‘very often,’ to ‘always’.

Basic Psychological Needs

Subscales from the Youth Physical Activity Promotion model (YPAP; Rowe, Raedeke, Wiersma and Maharl, 2007) were used to measure psychological needs satisfaction. A
modified version of Harter’s (1982) Perceived Physical Competence scale (7 items) was used as a context-specific measure of athletic competence, and the Physical Self-Worth Scale (6 items) (Whitehead, 1995) was used as it represents a domain-level measure of physical competence. Relatedness during physical activity from peers and parents was measured using a subscale from Brustad’s (1993) Children’s Attraction to Physical Activity (CAPA) scale (5 items) and Brustad’s (1996) Parent Encouragement subscale (6 items). Although these measures give a diverse picture of competence and relatedness satisfaction, the YPAP questionnaire does not include a measure of autonomy satisfaction, thus restricting full testing of BNT. All of the subscales have a structured alternative response format where the children select which statement is most relevant to them (e.g. ‘some kids have parents who really help them to be good at games and sports BUT other kids have parents who don’t help them very much at games and sports’). The children select which side of the statement is most true for them, and if it is ‘sort of true’ or ‘really true’ for them. Scores for each item are then calculated on a 4 point Likert scale.

Data Analysis

The mean and standard deviation scores were calculated for minutes spent in total (light + moderate + vigorous) and MVPA (moderate + vigorous) physical activity intensities per-day by dividing the total minutes accumulated by the amount of valid days the child wore their accelerometer. We then dichotomised MVPA to determine the percentage of children who achieved the WHO’s (2010) physical activity recommendations (≥60 minutes) and those who did not (<60 minutes). Mean and standard deviation scores were also calculated for each of the well-being dimensions (total scale score) and total well-being (combined score for 27 items, see Table 1). For the demographic variable gender a series of one-way between groups analyses of variance (ANOVA’s) were conducted to test for differences in total and MVPA,
and for each of the well-being dimensions, and total well-being. Alpha significance was set to p<.05, and partial eta squared (η^2_p) was calculated as a measure of effect size.

A two-step approach for Structural Equation Modelling (SEM) involved testing a Confirmatory Factor Analysis (CFA) measurement model followed by a structural path model (Schumaker and Lomax, 1996). A range of goodness-of-fit indices were used as a guideline to assess model fit. The Chi-Square (χ^2) goodness-of-fit index was reported with a small non-significant χ^2 statistic indicating good model fit. This value was approached with caution given that large sample sizes tend to result in statistically significant Chi-Square values (Schumaker and Lomax, 1996). The comparative fit index (CFI), the Tucker-Lewis Index (TLI), and the goodness of fit index (GFI) were reported with values of .90 or .95 considered as acceptable or good model fit respectively (Bentler, 1990; Byrne, 2001). The root mean square error of approximation (RMSEA) was reported as a badness of fit index, with values of 0.8 or below considered acceptable. Cronbach’s alpha, as a measure of internal consistency, were conducted with values of above .6 considered acceptable for measures with fewer than 10 items (Field, 2013). Two specifications to improve model fit were made including: applying a covariance path to two observed variables on one factor (physical self-worth) because of a methodological similarity in wording that the other items did not share, and trimming an item with a low factor loading (athletic competence) (Brown, 2015).

A CFA was conducted on the BNT scales to examine factorial validity. Also, a CFA on a 5 (Detmar et al., 2006) and 7-factor structure of the Kidscreen-27 instrument, based upon mixed success for the original 5-factor structure, were calculated (see, Ng, Burnett, Ha, & Sum, 2015; Shannon et al., 2016). Results of the CFA analysis were largely successful with some minor modifications to the physical self-worth and athletic competence factors. To this end, the total scale score for BNT scales, total physical activity, and total well-being, were treated as observed variables to conduct path analysis on the hypotheses for model 1.
Children’s physical activity and well-being

(H1, H2, H3 and H4, see figure 1). Covariance paths were applied between each of the psychological needs as previous research suggests that these variables share covariance with each other (Seibre et al., 2013). For H3 analyses using a bootstrapping technique using 1000 samples was conducted to examine indirect effects of competence and relatedness, through physical activity, on well-being (Brown, 2015). The analyses and hypotheses for model 2 was repeated using MVPA instead of total physical activity, as MVPA is deemed to have an effect on health (O’Donovan et al., 2010). Statistical Package for the Social Sciences (SPSS) Version 21 and AMOS Version 21 were used to analyse the data.

Figure 1: Hypothesised path model

Note: H1 = paths from psychological needs to physical activity; H2 = paths from psychological needs to well-being; H3= path from physical activity to well-being; H4 = indirect effects of psychological needs on well-being through physical activity.
Results

Descriptive statistics

Accelerometer data for average MVPA per-day was dichotomised to calculate the percentage of children achieving the WHO’s (2010) physical activity guidelines for health. A total of 6.8% of the children met the recommendation (M: 35.12; SD: 15.03). Boys (M: 38.12; SD: 16.60) were significantly more active than girls (M: 31.45; SD: 11.95) (F(1,209) = 10.736, p<0.01, \(\eta^2 = .049 \)) in terms of MVPA per-day, however no significant difference between boys and girls for total physical activity was found.

The mean score for total well-being was 116.81 (SD: 10.99) out of a possible score of 135. A series of one-way between groups ANOVA statistical tests revealed no significant differences between boys and girls on each of the well-being dimensions, or for total well-being (p≥0.05). See Table 1 (appendix) for a description of the data.

Confirmatory Factor Model for BNT and Well-being

The model fit indices are presented in Table 2. The fit indices ranged from unacceptable to good fit. The athletic competence scale had good fit indices after the removal of 1 item which
had a low factor loading ($\beta=0.12$). The physical self-worth factor had an acceptable model fit after two items on the model were correlated because of a methodological similarity in wording (i.e. other kids feel really confident about themselves physically; other kids always seem to feel good about themselves physically). Peer relatedness and parental relatedness had acceptable to good fit indices and required no modifications. The Kidscreen-27 original 5-factor model was not an acceptable fit, however, the Kidscreen-27 7-factor model revealed a good fit to the data.

Path Models

The first model examining BNT constructs with total physical activity and well-being is presented in Figure 2 and demonstrated a good fit to the data ($\chi^2 (1) = 7.44$, $p=0.33$; $CFI=1.00$; $TLI=1.014$; $GFI=0.999$; $RMSEA=0.00$ (90% CI=.00 to .17)). Regarding structural relations detailed in H1, the hypothesis had some support. Athletic competence had a significant positive relationship with physical activity ($\beta=0.19$; $p<0.05$). There was no statistically significant relationship with physical activity and any of the three BNT variables of parental relatedness ($\beta=0.13$; $p \geq 0.05$), physical self-worth ($\beta=-0.14$; $p \geq 0.05$) and peer relatedness ($\beta=-0.11$; $p \geq 0.05$). H2 also had some support. There was a significant positive relationship between athletic competence and well-being ($\beta=0.19$; $p<0.05$), and parental relatedness and well-being ($\beta=0.32$; $p<0.001$). There was no significant relationship between well-being and physical self-worth ($\beta=0.06$; $p \geq 0.05$) or peer relatedness ($\beta=0.09$; $p \geq 0.05$). For H3 there were no significant effects present for BNT constructs on well-being through the mediation of physical activity (β ranges= -.01 to .01; $p \geq 0.05$). For the final hypothesis (H4), there was a positive relationship between physical activity and well-being ($\beta=0.09$) but this was not significant ($p \geq 0.05$).

The second model that examined BNT constructs with MVPA, and well-being demonstrated a good fit to the data ($\chi^2 (1) = 4.98$, $p=0.39$; $CFI=1.00$; $GFI=0.999$; $TLI=1.003$; $RMSEA=0.00$ (90% CI=.00 to .17)).
Children’s physical activity and well-being

RMSEA≈.00 (90% CI=.00 to .18). All correlations were in a positive direction, but only one hypothesis (H2) had support as there was a significant positive relationship between parental relatedness and well-being ($\beta=.32; p<.001$); and athletic competence and well-being ($\beta=.21; p<.05$). The relationship between well-being and peer relatedness ($\beta=.07; p\geq.05$), and well-being and physical self-worth ($\beta=.04; p\geq.05$) was not significant. There was no significant relationship between BNT constructs on MVPA (H1; β ranges=.02 to .07; $p\geq.05$) and on well-being through the mediation of MVPA (H3; β ranges=.00 to .00; $p\geq.05$). There was no statistically significant relationship between MVPA and well-being (H4; $\beta=.07; p\geq.05$).

Figure 2: Path Model 1 Results
Discussion

The purpose of this study was to test a BNT-based model that incorporates needs satisfaction, physical activity and well-being. This study is the first to present a BNT model with children of low socio-economic status with an objective measure of physical activity and a holistic measure of well-being. Support was provided for some of the hypotheses. Psychological needs were shown to have a significant positive influence on children’s physical activity levels and well-being. Such findings reinforce the SDT position that need-supportive social contexts can facilitate positive health behaviour and improved psychological functioning (Fortier et al., 2012).

Specifically, this study demonstrates that physical activity is influenced by gender (Sallis et al., 2000), which is consistent with other studies in Europe (Griffiths et al., 2013; Verloigne et al., 2012), wherein boys are more active than girls. Only 6.8% of children in this study met the WHO’s recommended guideline of at least 60 minutes of MVPA per-day. Trost et al. (2011) have previously discussed how cut-points influence the results of physical activity studies. The use of cut points aside, this low figure is not exclusive to Ireland, with studies in England demonstrating similar adherence rates (Basterfield et al., 2014). Children’s behavioural patterns decline as they reach adulthood (Telema et al., 2009) and as such, the implications of physical activity levels as low as these in the current study are significant for the potential negative effects of inactivity on children’s physical health (Strong et al., 2005).

How promotional strategies to positively influence physical activity and well-being can benefit from the evidence provided using an SDT model are now discussed.

Predicting physical activity

Note: * refers to significant paths (p<.05)
Consistent with previous studies testing SDT models, there were significant positive relationships between perceptions of physical competence and total physical activity (Moreno, 2005; Taylor et al., 2010). This supports the position that competence may play a casual role in affecting self-determined motivation for performing a behaviour (i.e. physical activity in this case) (Deci and Ryan, 2002). Contrary to other studies (Quaresma et al., 2014) this study found non-statistically significant relationships with parental and peer relatedness and physical activity. A reason for this null finding may be the sequential mediating mechanisms in SDT (Fortier et al., 2012). SDT hypothesises a casual link between needs satisfaction, motivational regulation and behaviour, and these links have received support in children’s physical activity (Owen et al., 2014). Therefore the inclusion of motivation variables may potentially further strengthen and mediate the effect of need satisfaction on behaviour (Deci and Ryan, 2002).

Predicting well-being

Akin with existing BNT research, the present study revealed statistically significant positive relationships with competence satisfaction and well-being (Reinboth et al., 2004), and relatedness satisfaction and well-being (Standage and Gillison, 2007; Standage et al., 2012; Quaresma et al., 2014) (H2). This evidence can be interpreted with reference to the theoretical tenets of a hierarchical model (Vallerand, 1997) that proposes transference of effects from domain-specific measures of psychological needs (i.e. competence during physical activity) to global measures (i.e. day-to-day well-being). Accordingly, the hierarchical model suggests that psychological need satisfaction mediates a top-down, bottom-up interchange of motivational regulation at the situational, domain, and global level – resulting in different consequences for behaviour and well-being (Vallerand, 1997).

Findings from this study suggest that physical activity settings that support children’s
Children’s physical activity and well-being

Psychological needs for competence and relatedness may play a significant positive role in children’s day-to-day psychological functioning.

The relationship between physical activity and well-being was not statistically significant in the current study. Previous literature has demonstrated a positive link between physical activity and psychological (Biddle and Asare, 2011), physical (Babic et al., 2015) and holistic (Breslin et al., 2012) measures of well-being. However, the authors in the aforesaid studies urged caution on these links, as most studies are restricted to single dimensions of well-being (i.e. psychological well-being; Rafferty, Breslin, Brennan and Hassan, 2016); and do not account for the psychological climate and social interactions in which physical activity is experienced (Biddle and Asare, 2011). Support for H2 adds credence to the assertion that the social environment in which physical activity is experienced may play a more prominent role in enhancing well-being than the physical activity itself (Biddle, Gorely and Stensel, 2007; Biddle and Asare, 2011).

Practical implications

Practitioners may want to be cognisant of the social environment when designing a physical activity intervention. Specifically, the model presented in this study supports the application of needs-supportive instructional strategies for increasing physical activity and well-being in children. A study by Silva et al. (2008) describes intervention strategies for promoting a need-supportive and self-determined motivational climate in a weight management intervention. Strategies include: giving positive instructional feedback to enhance competence and intrinsic motivation; providing participants with a menu of options for behaviour change to enhance autonomy, and; providing social support to participants to enhance relatedness. These strategies have been adapted and applied in different social
Children’s physical activity and well-being

contexts including schools (see Jago et al., 2013) and the sports coaching environment (see Duda, 2013).

Limitations

There are several limitations to the current study. As data was collected from different geographical areas of Ireland, on different days the weather may have influenced physical activity levels in each region. Also, while accelerometers provide objective physical activity data, they do not give researchers an indication of the context of the physical activity (i.e., walking to and from school, type of activity, games played, or with whom). Future studies could apply self-report measures alongside accelerometers to afford more information on context providing a more complete assessment of children’s physical activity. Despite our data collection procedure controlling for response bias when completing the questionnaire (i.e. ratio of one researcher for every five children), all socially desirable answers could not be accounted for, a limitation of any self-report measure of children’s well-being. Motivational measures were not included in the model (e.g., external, introjected, identified, integrated and intrinsic motivation) to complete the sequential process in SDT proposed by Ryan and Deci (2000). The cross-sectional design does not permit causal inferences between the variables. Addressing these issues, future research is currently ongoing employing longitudinal experimental designs to test for causal inferences, and applying self-report physical activity measures alongside accelerometers with validated motivational measures designed for testing SDT with children in Ireland.

Conclusion

This study makes a contribution to children’s physical activity and well-being research by testing a SDT model with children of socio-economic disadvantage. The study findings highlight that the vast majority of children did not meet the physical activity guidelines for
health. The tested model demonstrated that physical activity settings that support and satisfy children’s psychological needs may positively contribute to increasing physical activity levels and well-being. A somewhat unexpected finding was the null relationship with physical activity and well-being, and therefore consideration should be given to the multifaceted nature of children’s well-being (see Rafferty et al, 2016 for a review). It is recommended that practitioners replicate behaviour change techniques used in previous interventions that target need-supportive social environments (Silva et al., 2008; Duda, 2013; Jago et al., 2013). Such efforts can contribute to the enhancement of children’s physical activity, which will have positive physical health benefits, and also positively influence well-being. As such, future research employing longitudinal designs, with the inclusion of motivational measures, would contribute to the field of behaviour change by providing further clarity on the links between psychological needs, physical activity and well-being in children.

References

Children’s physical activity and well-being

Children’s physical activity and well-being

Children’s physical activity and well-being

24
Children’s physical activity and well-being

Children’s physical activity and well-being

from the British Association of Sport and Exercise Sciences. *Journal of sports sciences*, 28(6), 573-591.

Children’s physical activity and well-being

Children’s physical activity and well-being

Children’s physical activity and well-being

Verloigne, M., Van Lippevelde, W., Maes, L., Yildirim, M., Chinapaw, M., Manios, Y., . . . De Bourdeaudhuij, I. (2012). Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 european countries using accelerometers:
Children’s physical activity and well-being

An observational study within the ENERGY-project. *International Journal of Behavioral Nutrition and Physical Activity*, 9(1), 34.

Table 1: Descriptive statistics for physical activity and well-being

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.89</td>
<td>38.12</td>
<td>19.80</td>
<td>17.02</td>
<td>13.77</td>
<td>21.43</td>
<td>7.47</td>
<td>18.01</td>
<td>117.47</td>
<td>116.27</td>
</tr>
<tr>
<td></td>
<td>(15.29)</td>
<td>(16.60)*</td>
<td>(2.86)</td>
<td>(2.55)</td>
<td>(1.71)</td>
<td>(3.13)</td>
<td>(2.45)</td>
<td>(3.02)</td>
<td>(2.48)</td>
<td>(11.45)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.52</td>
<td>31.45</td>
<td>20.12</td>
<td>17.17</td>
<td>13.38</td>
<td>21.80</td>
<td>7.94</td>
<td>18.31</td>
<td>117.47</td>
<td>117.47</td>
</tr>
<tr>
<td></td>
<td>(14.39)</td>
<td>(11.95)</td>
<td>(2.65)</td>
<td>(2.72)</td>
<td>(2.16)</td>
<td>(3.14)</td>
<td>(2.07)</td>
<td>(2.93)</td>
<td>(2.53)</td>
<td>(10.41)</td>
</tr>
</tbody>
</table>
Table 2: Summary of Fit Indices and Loadings; original (O) and modified (M) factors

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>χ²</th>
<th>p</th>
<th>g</th>
<th>CFI</th>
<th>GFI</th>
<th>TLI</th>
<th>RMSEA</th>
<th>Factor Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDT Scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athletic competence</td>
<td>9</td>
<td>22,206, p=.009</td>
<td>.63</td>
<td>.970</td>
<td>.989</td>
<td>.950</td>
<td>.047 (90% CI=.022-.072)</td>
<td>.37, .49, .29*, .57, 9, .63</td>
<td></td>
</tr>
<tr>
<td>Physical self-worth (M)</td>
<td>7</td>
<td>15.854, p=.026</td>
<td>.58</td>
<td>.975</td>
<td>.992</td>
<td>.946</td>
<td>.044 (90% CI=.41-.073)</td>
<td>.56, .46, .36, .46, .26, .40</td>
<td></td>
</tr>
<tr>
<td>Parental relatedness (O)</td>
<td>9</td>
<td>31.987, p=.000</td>
<td>.70</td>
<td>.966</td>
<td>.983</td>
<td>.943</td>
<td>.062 (90% CI=.040 - .086)</td>
<td>.26, .67, .60, .37, .75, .96</td>
<td></td>
</tr>
<tr>
<td>Peer relatedness (O)</td>
<td>5</td>
<td>9.082, p=.106</td>
<td>.59</td>
<td>.987</td>
<td>.995</td>
<td>.973</td>
<td>.086</td>
<td>.48, .55, .61, .56, .19</td>
<td></td>
</tr>
<tr>
<td>Kidscreen-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Factor model</td>
<td>314</td>
<td>793.005, p=.000</td>
<td>.65-.72</td>
<td>.863</td>
<td>.917</td>
<td>.847</td>
<td>.048 (90% CI=.044 - .052)</td>
<td>Factor loading ranges PH (.48 to .61), PsyWB (.26 to .66), P&A (.40 to .54); SS (.56 to .74); SC (.61 to .67)</td>
<td></td>
</tr>
<tr>
<td>7 Factor model</td>
<td>303</td>
<td>534.089, p=.000</td>
<td>.65-.72</td>
<td>.934</td>
<td>.944</td>
<td>.924</td>
<td>.034 (90% CI=.029 - .039)</td>
<td>PH (.49 to .60); PsyWB (.46 to .63); M (.48 to .61); P&A (.44 to .53); F (.67 to .78); SS (.56 to .74); SC (.61 to .67)</td>
<td></td>
</tr>
<tr>
<td>Path models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>1</td>
<td>.744, p=.33</td>
<td>1.00</td>
<td>1.00</td>
<td>.999</td>
<td>1.01</td>
<td>0.0 (90% CI=.00 to .17)</td>
<td>Factor loading ranges PsyN > PA (-.14 to .19); PsyN >PA > WB (-.01 to .01); PA > WB (.09)</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>1</td>
<td>.948, p=.39</td>
<td>1.00</td>
<td>1.00</td>
<td>.999</td>
<td>.999</td>
<td>0.0 (90% CI=.00 to .18)</td>
<td>PsyN > MVPA (.02 to .07); PsyN > MVPA > WB (.00 to .00); MVPA > WB (.07)</td>
<td></td>
</tr>
</tbody>
</table>

*=subsequently deleted; PH = Physical well-being; PsyWB = Psychological well-being; M=Moods; P&A = Parent relations and autonomy; F= Finance; SS = Social support and peers; SC = School environment; PsyN = Psychological needs; PA = Physical activity; MVPA = moderate-to-vigorous physical activity; WB = Well-being
Children’s physical activity and well-being