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Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (∼1010) laser pulses 

with thin  foil targets at 30 angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are 

measured along the target normal rear and front sides, respectively, showing intensity scaling as . For the target 

front 	0.50.6 and for the target rear 	0.70.8, for the intensity range 10201021W/cm2. The fast 

scaling from the target rear 	 .  can be attributed to the enhancement of laser energy absorption as already 

observed at relatively low intensities. The backwards acceleration of the front side protons with intensity scaling as 

	 .  can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive 

displacement of the target electrons  at the interaction of relativistic intense laser pulses with solid target. The 

experimental results are in a good agreement with theoretical predictions. 

 

The acceleration of ions to multi-MeV energies from foil targets has been investigated extensively, over the last 

decade using intense laser pulses (1018–1020 W/cm2). The mechanisms of ion acceleration have been reviewed in 

Ref. [1] and the perspectives of this research have been inferred. Understanding and controlling the acceleration 

mechanisms, determining the relevant energy scaling laws and efficiency of the acceleration processes are key steps 

in view of source development for potential applications. The fast developing laser technology enables access to 

unprecedented intensities (above 1021 W/cm2) with remarkably improved pulse temporal contrast by employing 

several techniques such as cross-polarized wave [2], plasma mirrors [3] and saturable absorbers [4]. In this new 

intensity regime the laser plasma interaction conditions are changing significantly and experiments aiming not only 

to obtain/confirm the scaling laws, but also to test the different acceleration mechanisms active under these new 

conditions are essential. 

The generally accepted scenario of ion acceleration employing ultrashort laser pulses is that the ions gain their 

energy in a strong quasistatic electric field arising from spatial charge separation due to the displacement of the fast 

electrons created by the laser field. In particular for targets much thicker than the laser penetration length, this 

scenario leads to the so-called target normal sheath acceleration (TNSA) mechanism [5]. The energy scaling of 

forward accelerated protons with ~50 fs lasers at intensities ranging from 1018 to 1019 W/cm2 and modest intensity 

contrast ratios has been reviewed in [6, 7]. At much higher laser intensities (1021 W/cm2) and improved pulse 
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contrast, the generation of high-energy protons is likely to follow different acceleration scenarios and energy scaling 

laws due to the formation of a relativistic skin depth at the target front, arising from relativistic self-induced 

transparency, which may have influence also on the acceleration of ions at the target rear.  

Experiments, where proton emission was measured along both rear surface and front surface target normal 

directions, employing ultra-high laser pulse contrast (1010) at intensity 1018 W/cm2, have shown almost identical 

proton energies for target thicknesses from 0.1 µm to 100 µm [8] with maximum proton energies up to 5 MeV. It 

was confirmed in these experiments that the maximum proton energies are proportional to the  component of the 

laser electric field only and not to the ponderomotive force. More recently, similar experiments irradiating 0.015 – 

90 m foil targets at an intensity  1020 W/cm2 have also demonstrated an almost symmetric behavior for protons 

accelerated from rear and front target surfaces [9] with maximum proton energies of ~ 10-12 MeV. Those 

experiments covering the intensity range 1018 W/cm2 - 1020 W/cm2 [8, 9] were interpreted on the basis that the same 

TNSA concept of ion acceleration applied to both target surfaces. However, in Ref. [10], at laser intensity 21020 

W/cm2 and ultra-high pulse contrast, a strong imbalance between forward and backward proton acceleration was 

observed for targets thicknesses from 0.05 up to 10 µm.  A maximum proton energy of about 12 MeV was measured 

along the rear surface target normal direction, while from the front surface the energies hardly reached 1 MeV.  Such 

a strong asymmetry in proton energies from target rear and front surfaces may be connected to particular conditions 

created at the target front during the laser intensity increase affecting significantly acceleration at the target front 

while at the target rear the “standard” TNSA is virtually unaffected.    

Here, we discuss ion acceleration resulting from the interaction of even higher intensities (above 1021 W/cm2) 

and ultra-high contrast (1010) laser pulses with a foil target,  paying particular attention to the accelerated ions’ 

energy scaling with laser intensity. Under this unexplored intensity regime, the Coulomb field of the charged 

nonlinear relativistic skin layer is likely to play an important role in the acceleration of ions from the target front. 

The TNSA scenario [11, 12], which might be applicable to the backward front side proton acceleration occurs in an 

adiabatic plasma expansion regime [13] when the laser pulse terminates. In this regime the electrons are cooled 

down rapidly and therefore the transformed energy to protons is not as effective as it can be in an isothermal regime 

at the target rear [14]. This is why it is unlikely that the front side TNSA proton energy can be comparable to the 

energy of protons from rear side TNSA at the intensities discussed here.  

Experiments in the intensity regime of 1020-1021 W/cm² were performed on the Ti:Sa Petawatt laser system at 

the Center for Relativistic Laser Science (CoReLS), IBS, Gwangju [15] where particular attention was devoted to 

establishing energy scaling laws for the accelerated ions emitted along the normal direction to both front and rear 

surfaces. Ion acceleration was monitored in both directions by varying laser intensity. The accelerated protons were 

measured from an optimised target position relative to laser focus, chosen in order to achieve the maximum possible 

proton energy for every target thickness. 

A schematic of the experimental set up is shown in Fig 1. A p-polarized, 30 fs laser pulse, having central 

wavelength of 800 nm was focused using an f/3 gold-coated off-axis parabolic mirror on 6 m thick Al foil targets 

at an angle of incidence 30º. The focal spot, measured with attenuated laser energy, had nearly 30 % of energy 

confined in the 4 µm FWHM. The temporal contrast of the laser pulse was characterized by a scanning third order 
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cross correlator with a dynamic range of 1010. Employing technique of “saturable absorber” laser pulse temporal 

contrast 510-10 was achieved in a few ps before main pulse. Additionally, the laser pulse contrast was confirmed 

to be high by measuring the proton energies from the thin foil targets: 0.4, 0.2 and 0.1 μm. While changing laser 

intensity from 2 × 1020 W/cm2 up to 1.2 × 1021 W/cm2 the observed continuous proton energy increase from the 

targets front and rear sides suggests that there is no disruption in the interaction conditions in this large intensity 

range, which may occur if the pre-pulse level at higher intensities will become significantly high to generate pre-

plasma. The latter is expected to make a noticeable change in the interaction condition, which will result in an 

observable change in the proton energy scaling when laser intensity is increased. 

To position the thin foil in the laser focal plane a target position monitoring system was used with accuracy of 

few micrometers, as described in [16]. Two Thomson parabola spectrometers coupled to absolutely calibrated 

microchannel plate (MCP) detectors [17] were employed to record the energy spectra of accelerated ions along the 

rear surface and front surface target normal directions. The solid angle for ion collection was 4.7×10-9 sr in both the 

spectrometers. The recorded, parabolic ion traces were analyzed using a MATLAB code.  Fig. 2 show the raw MCP 

images obtained following the interaction of 8.01020 W/cm2 (Fig. 2(a) and 2(d)) and 2.51020 W/cm2 (Fig. 2(b) and 

2(e)) intense laser pulse (1021W/cm2, maximum intensity achieved in the experiment) with the 6 m Al foils, by 

employing Thomson spectrometers along the rear and front target normal directions respectively. The raw images 

highlight the acceleration of multi-species ions in both directions. The proton energy distributions corresponding to 

the ion traces presented in the Fig.2 (a), (b) and (d), (e) are shown in the Fig. 2 (c) and (f), correspondingly. Cut-off 

energies of 30 MeV and 18 MeV for protons from the target rear and front surfaces were measured respectively. 

The intensity on target was varied throughout the experiment by changing the laser energy. The variation of the 

maximum proton energies observed, with respect to laser intensity, in the forward and backwards directions, is 

shown in Fig. 3. As expected, the proton energy increases with incident laser intensity, reaching a maximum of ~30 

MeV (from target rear surface), at an intensity of (0.8×1021W/cm2). The proton energy scales with laser intensity as 

∝ , where at the target front 	0.55±0.05 and at the target rear  0.75±0.05 in the 1020 - 1021 

W/cm2 intensity range. The difference in the scaling for the protons observed along the two directions suggests that 

different mechanisms might be involved in the acceleration of ion beams from the two surfaces.   

The fast scaling from the target rear 	 .  (i.e. faster than the standard TNSA 	 .  dependence associated with 

the ponderomotive scaling [1]) is similar to that what was observed in the [7] at lower laser intensities and predicted 

by the numerical simulations in [18], where this effect can be attributed to the enhancement of laser absorption with 

the intensity increase. Forward acceleration of the protons follows a fast-scaling TNSA scenario, as already 

observed in experiments at relatively low intensities. 

The measured maximum proton energies at short laser pulse ( 60	 ) interaction with thin foils (

0.1	 ), where TNSA-like acceleration scheme is applicable, as a function of laser intensity  along the target 

forward and backward direction is shown in Fig. 4(a) and 4(b), respectively. The tendency of proton energy increase 

with increasing laser intensity is apparent and it increases much faster at high intensities than the widely accepted 

TNSA dependence √  for both from front and rear side of the target. As a whole the presented results confirm the 

possibility of achieving even high energies employing TNSA scheme. The data for forward accelerated protons 

http://dx.doi.org/10.1063/1.4975082


4 
 

taken from the literature (Fig. 4(a)) seems to be showing a trend consistent with the measurements in present study. 

However for the backward  accelerated protons (Fig. 4(b)) not many data points are available, indicating the 

requirements from the laser conditions of high contrast and intensity to accelerate backward protons to 10’s MeV 

energy.  

 Experimentally measured backward accelerated protons energy scaling can be understood in the scenario where 

interaction of high contrast and relativistic laser pulse with solid density plasma creates a charged cavity by the laser 

ponderomotive force at the target front which pushes the electrons inside the target. On the basis of this idea, we 

propose a qualitative theoretical model of backward proton acceleration during the interaction of high contrast PW 

pulses with solid targets. The measurements of the backwards accelerated ions are broadly consistent with the 

proposed scenario.  

A simple model for the penetration of a highly relativistic (  > 1) laser pulse into an overdense plasma is based 

on the formation of a relativistic skin depth ~ / , where  is the electron plasma frequency,  is the 

normalized laser field amplitude, and c is the speed of light. In such concept the effect of plasma Coulomb field in 

self-induced transparency is ignored, which instead became recently a topic of intense research [19-23]. The 

ponderomotive force pushes the electrons deep into the target in the form of a moving electron density spike and 

produces a charge separation layer (a cavity in a realistic 3D geometry) extending from the target’s edge to the laser 

pulse front. The transverse ponderomotive force of the laser pulse isolates the charged cavity from the surrounding 

plasma similar to what happens in a hole-boring scenario [5]. The electron spike experiences a strong restoring 

electrostatic field due to the charged layer left behind, unless a balance between the Coulomb force and the 

ponderomotive force is achieved. Such balance gives a rough estimate of the nonlinear relativistic skin depth [24], 

, as  

	~	 ,																																																																																																 1  

which is roughly the optimum foil thickness to produce ions with maximum energy [18]. In Eq. (1)  is the electron 

plasma density and  is the electron critical density.  

In a steady-state model for a circularly polarized laser pulse in the relativistic cold-fluid approximation [19, 22] 

the total charge of the electron spike  is equal to the total ion charge in the cavity of depth . As a result, the 

electrostatic field near the plasma front side, shown schematically in Fig. 5(a), prevents backward ion acceleration 

and only forward acceleration occurs. This process was proposed as a mechanism of front side forward ion 

acceleration [22]. Obviously, this idealized scheme of total charge compensation  does not apply to the 

case of linearly polarized light pulse which intensively heats the electrons so that they can partly leave the 

interaction area, leading to . The electrostatic field resulting in this situation is schematically shown in Fig. 

5(b), and may now accelerate ions in the backward direction. Note, that even for circularly polarized pulses an 

electric field profile as shown in Fig. 5(b) is typical for a wide range of laser-plasma parameters (e.g. Fig. 9 in Ref. 

[23]) and clearly differs from the predictions of cold fluid theory.  

Let us consider the Coulomb expansion of a positively charged layer of length  with light ions (protons) 

distributed as an impurity near the plasma-vacuum boundary. The impurity will be accelerated from the target 
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surface by the electrostatic field	 4  , where  is the charge density of the nonlinear skin layer. If the 

inner side of the charged layer within the target coincides with the electron spike with total charge , this field 

will be reduced by (1 /	  ) times and therefore:  

	 	4 1 																																																																								 2  

A proton in the field of Eq. (2) gains an energy, , at a distance equal to the radius, , of the laser focal spot, given 

by  

	 	4 1 																																																																						 3  

The charge density  within the charged cavity is also partly neutralized by electrons diffusing from the electron 

spike or entering the cavity from the transverse directions. Correspondingly, 1 /	 	 , or 

1 /	 	  where  is the ion charge,  is the electron (ion) target density, and  is the residual 

total electron charge in the cavity.  

By using Eq. (1), we rewrite Eq. (3) for the proton cut off energy in the following form:  

≃ 1 1 ∝ √ 																																																	 4  

where 0.85 10 / ,  =2πc/ is the laser wavelength, and  is the laser  intensity. The estimate 

of Eq. (4) shows that maximum proton energy does not depend on the laser wavelength and has a square root scaling 

with laser intensity. Standard TNSA results in ∝ ,  where  is the typical hot electron energy (“temperature”). 

For the ponderomotive scaling [5]: ∝	 , where the absorbed laser intensity may itself nonlinearly depend on 

I through the absorption coefficient, A(I), i.e. 	 	  (e.g. [18] ). Since for TNSA protons ∝ , the 

intensity dependence of cavity accelerated protons is expected to be weaker than for TNSA if the absorption 

coefficient increases with intensity (I).   

The estimate in Eq.  (4) does not account for a possible electron cloud near the target front side due to the effect 

of vacuum heating, i.e., so called [ ] [25] or/and Brunel [26] electrons. This is why Eq. (4) may somewhat 

overestimate the maximum proton energy. However, if the vacuum electron density is not large, 	 1

/ 1 / , the estimate (4) should hold.  

The effects of electron spike charge loss and cavity charge neutralization ,  are very important. They 

depend on the laser pulse temporal and radial shape and should be studied in detail using multi-dimensional PIC 

simulations. As an example, if assume approximately the same ~70% neutralization for both spike and cavity by 

electrons, ~	 ~	0.7 , one obtains from Eq. (4) 	~	18 MeV for 	~1.4 	1021 W/cm2  and  = 2 m 

According to the model discussed above, a field distribution as shown in Fig. 5(b) is sustained at the target front 

surface as long as the laser pulse irradiates the target. Therefore, a “standard” TNSA expansion is constrained at the 

front surface within the pulse duration- while it applies to the ion acceleration from the target rear. Standard TNSA 

expansion from the front can only start after the end of the pulse – at this stage however ion acceleration will be 
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ineffective due to the rapid cooling of electrons in the adiabatic plasma expansion [13], with the electron energy 

decreasing rapidly as  [13]. 

An estimate of hot electron density from the balance of energy fluxes gives: /√2, that allows  to 

estimate  (ion Langmuir frequency) and the energy of TNSA protons from the target rear using 0.35  

from [27], which extends the TNSA model [14] for two electron temperatures plasma: laser generated hot electrons 

and cold target electrons [28]. For absorption 25	% and 	~	1.4 1021 W/cm2 the estimate gives about 30 MeV. 

If one assumes a weak absorption dependence, as in Ref. [18]: 	~	 . , the ion energy scaling from [14] becomes 

. . On the other end, the slower scaling observed at the target front, as compare to the target rear, is broadly 

consistent with the predictions of equation (4) and with the charged cavity acceleration model presented earlier.   

To summarize, ion acceleration experiments carried out at intensities 1020 - 1021 W/cm2 and very high temporal 

contrast, have shown a clear asymmetry in energy scaling for protons accelerated along the target normal in the 

forward and backwards direction. To explain this difference, we propose a new model of backward ion acceleration 

in the Coulomb field of the charged nonlinear relativistic skin layer created by the interaction of Petawatt laser 

pulses with solid target. During the interaction, at the front surface of the target, a charged cavity is produced by 

laser ponderomotive force pushing the electrons inside the target, resulting in a large electrostatic field at the laser-

target interface, which accelerates protons to high energy in the backward direction. While the scaling from protons 

emitted at the target rear (~ I0.75) is consistent with previously published TNSA models for this interaction regime 

[17], where an intensity–dependent absorption increase leads to a more effective scaling than the widely accepted 

TNSA dependence √  , the scaling of the ions from the front surface remains close to a √ , dependence. We argue 

that the observed asymmetry and the front-surface scaling can be explained on the basis of our model. We also show 

that the cut-off energies observed in the experiment are also broadly consistent with the model, although clearly this 

cannot describe in detail the whole processes which are obviously more complex than our assumptions. Multi-

dimensional simulations and a better characterization of laser-target parameters are needed to get a more refined 

estimate of the relevant plasma parameters and to elucidate the consequences (if any) of this scenario on proton 

energies accelerated from the rear surface of the target, e.g., if there is any correlation between rear and front surface 

acceleration.  

This work was supported by the Institute for Basic Science (IBS) under IBS-R012-D1. The authors acknowledge 

funding from EPSRC, through grants EP/J002550/1, EP/L002221/1, EP/K022415/1, EP/J500094/1 and from 

Russian Foundation for Basic Research through grants 15-02-03042 and 16-02-00088. 
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Figure capture 

Fig. 1. Sketch of the experimental set up. Laser pulse is focused onto a  target at 30º of incidence. The 
accelerated ions along the rear surface target normal and front surface target normal directions are measured by 
Thomson parabola spectrometers. 

 

Fig. 2. Raw parabolic traces of ions accelerated along a) and b) rear surface target normal and d) and e) front 
surface target normal directions at the intensities of 81020 W/cm2 for a) and d) and 2.51020 W/cm2 for b) and e). 
Scan of proton energy distribution in c) forward and f) backward directions. 

 

Fig. 3. Intensity dependent proton cut-off energies for  target with a thickness of 6 m along the target normal 
a) front and b) rear directions.  

 

Fig.4. The measured maximum proton energies at short laser pulse (τ<60 fs) interaction with thin foils (l>0.1 
μm), where TNSA-like acceleration scheme is applicable, as a function of laser intensity from the a) rear and b) 
front side of the target. The published results are taken from the reference shown in square brackets. 

 
Fig. 5. Schematic representation of the laser intensity (blue), electron and ion densities (brown and green, 

correspondingly) and the electric field (red) near the target front side for a) , and b)  
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