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Speech Enhancement Based on Full-Sentence
Correlation and Clean Speech Recognition

Ji Ming, Member, IEEE, Danny Crookes, Senior Member, IEEE

Abstract—Conventional speech enhancement methods, based
on frame, multi-frame or segment estimation, require knowledge
about the noise. This paper presents a new method which
aims to reduce or effectively remove this requirement. It is
shown that, by using the Zero-mean Normalized Correlation
Coefficient (ZNCC) as the comparison measure, and by extending
the effective length of speech segment matching to sentence-
long speech utterances, it is possible to obtain an accurate
speech estimate from noise without requiring specific knowledge
about the noise. The new method, thus, could be used to deal
with unpredictable noise or noise without proper training data.
This paper is focused on realizing and evaluating this potential.
We propose a novel realization that integrates full-sentence
speech correlation with clean speech recognition, formulated
as a constrained maximization problem, to overcome the data
sparsity problem. Then we propose an efficient implementation
algorithm to solve this constrained maximization problem, to
produce speech sentence estimates. For evaluation, we build
the new system on one training data set and test it on two
different test data sets across two databases, for a range of
different noises including highly nonstationary ones. It is shown
that the new approach, without any estimation of the noise, is
able to significantly outperform conventional methods which use
optimized noise tracking, in terms of various objective measures
including automatic speech recognition.

Index Terms—Full-sentence correlation, recognizability con-
straint, wide matching, noise robustness, speech enhancement,
speech recognition

I. INTRODUCTION

In this research, we focus on the challenging problem of
single-channel speech enhancement. We consider one of the
worst-case scenarios: there is no specific knowledge about the
noise, except its being additive and independent of the speech.
To set our new approach in context, we group current tech-
niques for single-channel speech enhancement into two main
categories: frame-based methods and segment-based methods.
Frame-based methods tend to treat each single speech frame,
about 10-30 ms in length, one at a time. Examples include non-
parametric spectral subtraction [1] and Wiener filtering [2],
[3], parametric or statistical model based minimum mean-
square error (MMSE) or maximum a posteriori (MAP) estima-
tors (e.g., [4]–[6]), and data-driven (non-parametric or model-
based) vector-quantization (VQ) codebook, Gaussian mixture
model (GMM) and hidden Markov model (HMM) based esti-
mators (e.g., [7]–[14]). However, because frames are so short,
it can be difficult to distinguish speech from noise in them.
Therefore, to recover speech, one must have knowledge about
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the noise, e.g., its power spectrum, probability distribution,
or signal-to-noise ratio (SNR). When these noise statistics are
not available, they are predicted by using neighbouring frames
without significant speech event, based on voice activity de-
tection, minimum statistics, time-recursive averaging, MMSE,
or their combination (see, for example, [15]–[19]). Thus, these
methods work for stationary or slowly-varying noise, but less
well for fast-varying noise, because of its weak predictability.

Segment-based methods, on the other hand, aim to estimate
a sequence of consecutive speech frames (called a segment),
one segment at a time. Examples include inventory (or dic-
tionary) based methods (e.g., [20]–[25]), longest matching
segment (LMS) methods (e.g., [26]–[28] and some application
examples [29]–[31]), and more recently, deep neural network
(DNN) based methods (e.g., [32]–[40]). The inventory-based
methods try to directly estimate some fixed-length speech
segments or speech segments corresponding to phonemes. The
LMS methods have gone one step further, by trying to identify
the longest speech segments with matching training segments.
These longest matching speech segments have variable lengths
depending on the given training and test data, and were found,
for example, to have an average length of 11-15 frames
based on a number of speech databases (TIMIT, WSJ, Aurora
4) [26]–[28]. Most feedforward DNN systems (e.g., [32]–
[38]) are trained to map fixed-length noisy speech segments,
typically 9-15 frames long, to corresponding clean speech
estimates. A system is described in [39] that combines several
DNNs to model variable-length speech segments. Recurrent
DNN systems (e.g., [41], [42]) may capture some longer
speech context, depending on the available training data. Seg-
ments usually contain richer temporal dynamics than frames,
exhibit greater distinction, and hence can better distinguish
speech in noise.

It is no surprise that segment-based methods exhibit greater
noise robustness than frame-based methods (see, for exam-
ple, [21], [26], [37]). However, knowledge of noise remains
essential for segment-based methods (an explanation will
be provided below). For example, the state-of-the-art DNN
systems, feedforward or recurrent structured, for speech en-
hancement [32]–[40], speech recognition [42]–[47] as well
as for image denoising [48] all require proper training for
noise, and a DNN system trained for one type of noise or
distortion may not be applicable to significantly different types
of noise or distortion. The ability to generalize to untrained
noise conditions is one of the greatest challenges facing DNN
studies. There are also other methods, for example, multi-
frame methods [49], [50], which lie between the frame-based
and the segment-based methods and try to capture the inter-
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frame speech correlation for speech enhancement. It was
reported that the multi-frame based Wiener or MVDR (min-
imum variance distortionless response) filtering improves the
SNR or reduces the speech distortion over the corresponding
independent-frame based filtering [49], [50].

In this paper, we present our work to extend the segment
approach. We aim to identify much longer speech segments
than can be modeled in current segment-based methods, ef-
fectively towards full-length speech sentence matching. We
show that this could help further reduce or effectively remove
the requirement for noise estimation or training. The new
method, thus, could be used to deal with fast-varying or
unpredictable noise for which we may not have a proper
noise estimate or training data. Our studies are based on two
novel approaches. First, we use a new measure for speech
segment matching and thus extend the effective length of
the matching to sentence-long speech utterances. This has
the potential to maximize noise immunity without requiring
specific information about the noise. Second, to realize this
potential, we propose to integrate clean speech recognition
into the enhancement process to regularize the formation of
the potential matching estimates. To some degree, our new
method emulates how humans sometimes separate speech in
very noisy conditions - by trying to make semantic sense of
the speech. Further, we propose an efficient implementation
to put the new method into practical use. This paper is
a substantial expansion of our preliminary study described
in [51]. The expansions include an expanded theoretical study,
an efficient implementation algorithm for speech enhancement,
and extensive experimental investigations across two different
databases. For convenience, we call the new method wide
matching. This name particularly emphasizes our effort to try
to directly match sentence-wide speech segments to improve
noise robustness.

The remainder of the paper is organized as follows. Sec-
tion II presents the new measure for speech segment matching
and our hypothetical studies on the potential to maximize noise
robustness without requiring noise information. Section III
focuses on realizing this potential and details the wide match-
ing approach. Section IV presents an efficient algorithm to
implement the wide matching approach for speech enhance-
ment. Experimental studies are described in Section V. Finally,
conclusions are presented in Section VI.

II. SEGMENT CORRELATION AND NOISE ROBUSTNESS

Given a noisy speech signal, we aim to extract the underly-
ing clean speech signal. We achieve this through identifying
a matching clean speech signal from a clean speech corpus.
We aim for high noise immunity. Thus, we need a method to
compare noisy speech and clean speech that is immune to any
background noise. Such a method may not exist for comparing
frames or short segments of speech but fortunately, exist for
comparing long segments of speech. At the heart of our studies
is such a measure, Zero-mean Normalized Correlation Coeffi-
cient (ZNCC), which has a simple expression for comparing

Fig. 1. An oracle experiment showing accuracy of finding best matching
segments as a function of segment length L (in number of frames) without
noise estimation, based on maximum ZNCC (solid lines) and minimum
Euclidean distance (dashed lines), for six types of noise with SNR = −5 dB,
for 57,919 noisy test speech segments for each type of noise and 1,124,863
clean training speech segments involving 486 speakers based on the TIMIT
database.

noisy and clean speech segments:

R(xt±L, sτ±L)

=

∑L
l=−L[xt+l − µ(xt±L)]

T[sτ+l − µ(sτ±L)]

|x̃t±L||s̃τ±L|
(1)

where xt±L represents a noisy speech segment centered at
frame xt and consisting of 2L + 1 consecutive frames from
xt−L to xt+L; sτ±L represents a clean speech segment taken
from a corpus speech sentence centered at some frame sτ
with 2L + 1 consecutive frames from sτ−L to sτ+L. In our
studies, we assume that the individual speech frames are
represented by their corresponding short-time power spectra,
and so xt and sτ are vectors of short-time power spectral
coefficients, and T means vector transpose. In (1), µ(xt±L)
stands for the mean frame vector of segment xt±L, i.e.,
µ(xt±L) =

∑L
l=−L xt+l/(2L+ 1), and |x̃t±L| stands for the

zero-mean Euclidean norm of segment xt±L, i.e., |x̃t±L|2 =∑L
l=−L[xt+l − µ(xt±L)]

T[xt+l − µ(xt±L)]. The same def-
initions apply to the clean corpus speech segment sτ±L,
with mean frame vector µ(sτ±L) and zero-mean Euclidean
norm |s̃τ±L|. When xt±L and sτ±L are short (L is small),
R(xt±L, sτ±L) may or may not offer much advantage over
other types of distances or likelihoods that have been used
for speech comparison. However, when xt±L and sτ±L are
very long (L is very large), its advantage should become
overwhelming – it should in theory become immune to any
independent additive noise. In the following, we first use an
oracle experiment to show the significance. Then we provide
a theoretical explanation of the experimental results. The
experiment was conducted on the TIMIT database with 3696
clean training sentences and 192 clean core test sentences.
We took the core test sentences and added different types
of noise for testing. Given a noisy speech segment of length
2L + 1, we seek to find a matching (clean) speech segment
estimate from the corpus, which includes the training data and
the clean version of the test segment as the best candidate
(hence the ‘oracle’). With different noises (airport, babble,
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car, restaurant, street, and train station) with SNR = −5dB,
we measured the retrieval accuracy using standard minimum
Euclidean distance (equivalent to maximum Gaussian-based
likelihood without noise information) and then using the new
maximum ZNCC, for segment lengths (2L + 1) up to 141
frames (∼1.4 s of speech). The results in Fig. 1 indicate that,
as the segment length increases, the best matching estimates
using maximum ZNCC were found with a rapidly increasing
probability, approaching 100%, regardless of the noise. How-
ever, the same experiment using minimum distances failed to
show this property.

The above oracle experimental results may be accounted
for by a theory, described below. Consider additive noise and
frames being represented in short-time power spectra. So each
noisy speech frame can be approximately expressed as xt =
s′t+nt, where s′t represents the underlying clean speech frame
and nt represents the noise frame. Thus, we can decompose
the ZNCC R(xt±L, sτ±L), defined in (1), into two terms

R(xt±L, sτ±L) = R(s′t±L + nt±L, sτ±L)

=

∑L
l=−L[s

′
t+l − µ(s′t±L)]

T[sτ+l − µ(sτ±L)]

|x̃t±L||s̃τ±L|

+

∑L
l=−L[nt+l − µ(nt±L)]

T[sτ+l − µ(sτ±L)]

|x̃t±L||s̃τ±L|

=
|s̃′t±L|
|x̃t±L|

R(s′t±L, sτ±L) +
|ñt±L|
|x̃t±L|

R(nt±L, sτ±L) (2)

where s′t±L represents the underlying clean speech segment
in the noisy segment xt±L from frame s′t−L to s′t+L, and
nt±L represents the corresponding noise segment from frame
nt−L to nt+L, with µ(s′t±L), µ(nt±L) and |s̃′t±L|, |ñt±L|
representing the mean frame vector and zero-mean Euclidean
norm of segment s′t±L and nt±L, respectively. In (2), the first
term is the ZNCC between the underlying speech segment
s′t±L and the corpus speech segment sτ±L, weighted by
|s̃′t±L|/|x̃t±L| which is a constant for all the corpus segments,
subject only to the SNR in the observation. The second term
is the ZNCC between the noise segment and the corpus
speech segment, weighted by |ñt±L|/|x̃t±L|, which is again
independent of the corpus segment, subject only to the SNR
in the observation. For large L and noise independent of the
corpus speech, it follows that the second term in (2) tends to
zero:

R(nt±L, sτ±L)

=

∑L
l=−L[nt+l − µ(nt±L)]

T[sτ+l − µ(sτ±L)]

|ñt±L||s̃τ±L|
∝ E{[nt − µ(nt)]

T[sτ − µ(sτ )]} (3)

= E[nt − µ(nt)]
TE[sτ − µ(sτ )] = 0 (4)

where µ(nt) and µ(sτ ) represent the mean frame vector of the
noise and speech processes, respectively. Eq. (3) is based on
the assumption that as the observation times (i.e., L) become
large, the time average converges to the ensemble average
(here we assume ergodicity for both the speech and noise
processes [52]), and (4) [from (3)] is based on the assumption
that the corpus speech and noise are statistically independent.

Thus, with (2)–(4), for large L and independent noise we may
have

R(xt±L, sτ±L) ∝ R(s′t±L, sτ±L) (5)

That is, the maximum ZNCC (i.e., the matching accuracy)
could become independent of the noise but depends only
on the two speech segments being compared, one being
underlying speech and the other a potential matching clean
speech estimate. This hypothesis is in good agreement with
the experimental results shown in Fig. 1.

However, if Euclidean distance is used for comparison,
then lengthening the speech segments for comparison may not
necessarily lead to comparable noise robustness. To link these
two methods, consider the Euclidean distance between two
zero-mean speech segments (i.e., the mean frame vector is
subtracted from all frames in the segment): the noisy speech
segment x̃t±L (where˜indicates mean removed), and the cor-
pus speech segment s̃τ±L, with the underlying speech segment
represented by s̃′t±L. The Euclidean distance |x̃t±L − s̃τ±L|
can be written as

|x̃t±L − s̃τ±L|2

= |x̃t±L|2 + |s̃τ±L|2 − 2x̃T
t±Ls̃τ±L

= |x̃t±L|2 + |s̃τ±L|2 − 2|x̃t±L||s̃τ±L|
x̃T
t±Ls̃τ±L

|x̃t±L||s̃τ±L|
= |x̃t±L|2 + |s̃τ±L|2 − 2|x̃t±L||s̃τ±L|R(xt±L, sτ±L) (6)

Assume large L and independent speech and noise [so
R(xt±L, sτ±L) ≈ |s̃′t±L|/|x̃t±L|R(s′t±L, sτ±L) based on (2)
and (4)], and further assume perfectly correlated corpus
speech segment sτ±L and underlying speech segment s′t±L

[so R(s′t±L, sτ±L) ≈ 1]. We will have

|x̃t±L − s̃τ±L|2

≈ |x̃t±L|2 + |s̃τ±L|2 − 2|s̃′t±L||s̃τ±L|
= (|s̃τ±L| − |s̃′t±L|)2 + |x̃t±L|2 − |s̃′t±L|2 (7)

As indicated in (7), even having all the assumptions made
for ZNCC, and having the presumable noise robustness of
ZNCC, there still remains uncertainty in the Euclidean distance
for identifying the best matching corpus estimate. In (7),
the first difference, |s̃τ±L| − |s̃′t±L|, exists due to different
gains between the corpus and underlying speech; the second
difference, |x̃t±L|2 − |s̃′t±L|2, is proportional to the noise
power in the observation. In the oracle experiment (Fig. 1),
the first difference is zero because of the perfectly matching
estimate. But the second difference caused by noise will
not necessarily decrease by extending the length of speech
segment matching. This can explain why using minimum
Euclidean distance was much less robust than using maximum
ZNCC in the oracle experiment, for finding perfectly matching
long speech segments in noise.

The above oracle experiment, and theory, have motivated
this research. If we can calculate the correlation between two
very long speech segments (one being noisy speech and the
other a potential matching clean speech estimate), then we
should be able to obtain an accurate speech estimate without
requiring specific knowledge about the noise. This method can
thus be used to deal with untrained noise, or noise difficult
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to train or estimate. Of course, the oracle experiment has one
major obstacle to its practical implementation – it is almost im-
possible to collect enough training data to include the matching
estimates for all possible very long speech segments, e.g., full
speech sentences, which are typically hundreds to thousands
of frames long. Current segment-based speech enhancement
methods (e.g., inventory, LMS and feedforward DNN) can
only model speech segment estimates typically below 20
frames – the size of a large phoneme or syllable. As shown in
Fig 1, this just is not long enough to identify the best matching
speech segments, which explains why these methods require
noise estimation or noise training.1 Significantly lengthening
the speech segments for these methods does not seem to
be feasible due to the sparsity of training data. In the next
section, we describe our approach to try to break the segment
length barrier. With limited training/corpus data, the new
approach, namely wide matching, tries to implement full-
sentence correlation for speech estimation, i.e., to go as far
to the right in Fig. 1 as possible, to maximize immunity to
noise.

III. WIDE MATCHING FOR SPEECH ENHANCEMENT

As described above, we face the problem of generating
matching estimates for full speech sentences. These estimates
must be generated from limited training data, and must ideally
cover all speech sentences, and only speech sentences. We
formulate this as a constrained optimization problem. Given a
noisy, unseen speech sentence, we seek the best full-sentence
chain of clean corpus segments as an estimate. The optimal
estimate has maximum sentence-level ZNCC with the noisy
speech, subject to maximum recognizability to be valid speech.

A. Full Sentence Correlation

Our approach is essentially to replace a very long speech
segment of contiguous frames with a chain of short speech
segments. Let X = (x1, x2, ..., xT ) be a noisy speech sentence
with T frames in short-time power spectral vectors, and with
an underlying speech sentence which is unseen in the corpus.
To derive the enhancement algorithm, we use a segment-chain
expression for X , and for the underlying speech sentence.
Suppose we can divide X into some K consecutive segments,
denoted by a segment chain X = (xt1 ,xt2 , ...,xtK ), where
each element segment xtk is centered at some frame time
tk with frames from xtk−γ to xtk+γ , and the length of the
element segment is 2γ + 1. For simplicity, we assume a
common γ being used for all the element segments and so
γ can be implied in the expression. For example, a possible
segmentation is X = X , i.e., X is evenly divided into K
consecutive segments and there is no overlap between adjacent
segments [assuming (2γ + 1)K = T ]. But in practice, to im-
prove the segment smoothness, adjacent segments xtk are nor-
mally partially overlapped. In the following, unless otherwise
indicated, we will use X to represent a noisy sentence and use
a corresponding chain of clean speech segments to represent

1It is noted that in neural networks similar correlation operations are per-
formed for the input data (i.e., segments), for example, zero-mean normaliza-
tion, and inner products between the normalized input data and weights [53].

the underlying speech sentence to be estimated. Assume that
the element segments are short (γ is small), such that we can
find from the corpus a corresponding full-sentence chain of
clean corpus segments as an estimate of the underlying speech
sentence in X. Denote by S = (gτ1sτ1 , gτ2sτ2 , ..., gτKsτK )
such a chain of K clean corpus segments, where each element
corpus segment sτk consists of consecutive frames from sτk−γ

to sτk+γ , and gτk is the gain of the element corpus segment in
forming the sentence estimate. In S, different corpus segments
sτk can come from different corpus sentences/contexts to
simulate arbitrary unseen test speech. Given the noisy sentence
X, we obtain the optimal clean speech sentence estimate S
based on the full-sentence ZNCC R(X,S). This can be written
as

R(X,S) = R(xt1xt2 ...xtK , gτ1sτ1gτ2sτ2 ...gτKsτK )

=

∑K
k=1[xtk − µ(X)]T[gτksτk − µ(S)]

|X̃||S̃|

=

∑K
k=1

∑γ
l=−γ [xtk+l − µ(X)]T[gτksτk+l − µ(S)]

|X̃||S̃|

=

∑K
k=1 gτk

∑γ
l=−γ x

T
tk+lsτk+l − Lµ(X)Tµ(S)

|X̃||S̃|
(8)

where L = (2γ+1)K is the length (number of frames) of the
two full sentences X and S being correlated; µ(S) and |S̃| are
the global mean frame vector and zero-mean Euclidean norm
of the corpus segment chain based speech sentence estimate
S, respectively, i.e.,

µ(S) =
1

L

K∑
k=1

gτk

γ∑
l=−γ

sτk+l (9)

|S̃|2 =
K∑

k=1

g2τk

γ∑
l=−γ

sTτk+lsτk+l − Lµ(S)Tµ(S) (10)

The above expressions (9) and (10) apply to µ(X) and |X̃|,
the global mean frame vector and zero-mean Euclidean norm
of the noisy sentence X (without the gain terms). It should be
noted that the above representation of unseen speech sentences
in chains or sequences of short training speech segments is
common in the segment-based speech enhancement methods
(e.g., inventory, LMS and DNN). One major difference be-
tween these previous methods and the proposed new method
is that the previous methods tend to estimate each (short)
speech segment independently of the other segments in the
sentence. Because of this, they have lacked the ability to
capture the longer, cross-segment correlation of speech for
speech separation. But in the full-sentence ZNCC R(X,S)
defined above, there is no assumption about the temporal or
spectral independence of speech within the segments, across
the segments or anywhere in the sentence.

B. Incorporating Clean Speech Recognition

Because we have no knowledge about the underlying
speech, in theory we may have to consider all possible chains
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of corpus segments S to search for the potential matching
estimate. However, not all of the possible chains constitute
realistic speech; some chains may well be semantically mean-
ingless sequences of segments, even if they have a larger
ZNCC. For example, there could be chains that match the
noise better [i.e., they maximize the second term in (2),
thinking of the appropriate segments as segment chains]. When
noise dominates the observed data, this could lead to an esti-
mation error. So to constrain the estimate to valid speech, we
propose to use the estimate’s recognizability, by using a clean
speech recognizer, to regularize the formation of the potential
matching estimate. Thus, we can formulate the problem of
obtaining an optimal speech sentence estimate as constrained
maximization of the full-sentence ZNCC subject to maximum
recognizability of the estimate. We use the expression

Ŝ = argmax
S

[RH(X,S) = logR(X,S) + λ logH(S)] (11)

where Ŝ represents the optimal corpus segment chain based
speech sentence estimate, H(S) is a clean speech recognizer’s
likelihood of the corpus segment chain S to be valid speech,
λ is a Lagrange multiplier, and RH(X,S) is an abbreviation
for the recognizability-constrained full-sentence ZNCC. As an
example, in this paper we implemented a simple HMM-based
clean speech recognizer which produces a log likelihood score
for a given S as follows:

logH(S) = [log h(S) +

I∑
i=1

log pi(di) +

U∑
u=1

log pu(du)]/T

(12)
where h(S) denotes the likelihood score of S given by the
Viterbi search, I and U are the numbers of HMM states
and phones through which the best path traversed, pi and
pu are the duration probability distributions of those states
and phones, and di and du are the durations spent in each
state and phone, respectively (see Sections IV and V for more
details about how to implement this recognizer). Because the
recognizer is trained with clean speech, we can assume that
among all the possible corpus segment chains, the chains
resembling clean, valid speech are most recognizable to the
recognizer in terms of achieving large likelihoods H(S) (this
is because clean, valid speech is most likely to simultaneously
fulfill the acoustic, language, state duration and phone duration
constraints of clean speech learned by the recognizer). If a
sentence-long chain with a large noise-independent likelihood
of being clean, valid speech simultaneously has a large ZNCC
with the noisy sentence, or vice versa, then we can assume that
it is an optimal estimate of the underlying speech sentence. We
assume that (11) partially emulates what humans sometimes
do in trying to pick out speech in strong noise – humans try
to make sense of the speech, by recognizing parts or even the
whole of the sentence, as part of our method of noise removal.
Specifically, we call (11) the wide matching approach.

C. An Iterative Solution

We propose a computationally efficient iterative algorithm
to solve the constrained maximization problem (11).
Given a noisy sentence X = (xt1 ,xt2 , ...,xtK ), we

seek an optimal full-sentence chain of corpus speech
segments Ŝ = (ĝτ1 ŝτ1 , ĝτ2 ŝτ2 , ..., ĝτK ŝτK ) that maximizes the
recognizability-constrained full-sentence ZNCC RH(X, Ŝ).
We start with an initial estimate Ŝ by separately estimating
each element corpus segment ŝτk through maximizing the
segment-level ZNCC R(xtk , sτk) based on (1), assuming
a unit gain ĝτk . Then we update this initial estimate by
alternately re-estimating each element corpus segment with
gain to maximize the appropriate RH(X, Ŝ); in re-estimating
a specific element corpus segment, the other element corpus
segments are fixed to their latest estimates. This alternate re-
estimation process is iterated until convergence is achieved.
For example, consider re-estimating the element corpus
segments ĝτk ŝτk in the order from k = 1 to K. In the
jth iteration, to obtain a new estimate of the optimal kth
element corpus segment, denoted by ĝjτk ŝ

j
τk

, we maximize the
recognizability-constrained full-sentence ZNCC with respect
to gτksτk , with the succeeding element corpus segments
ĝτm ŝτm (m > k) taken from the (j − 1)th iteration, and the
preceding element corpus segments ĝτm ŝτm (m < k) taken
from the jth iteration. Therefore in the jth iteration with the
kth element corpus segment to be re-estimated, the optimal
speech sentence estimate can be written as Ŝj(gτksτk) =
(ĝjτ1 ŝ

j
τ1 , ..., ĝ

j
τk−1

ŝjτk−1
, gτksτk , ĝ

j−1
τk+1

ŝj−1
τk+1

, ..., ĝj−1
τK ŝj−1

τK ),
which is only a function of gτksτk , with the rest of the
element corpus segments fixed to their latest optimal
estimates from the appropriate iterations. A new estimate of
ĝτk ŝτk , and a corresponding new speech sentence estimate,
are obtained by maximizing RH[X, Ŝj(gτksτk)] with respect
to gτksτk , i.e.,

Ŝj(ĝjτk ŝ
j
τk
)

= arg max
gτk sτk

{RH[X, Ŝj(gτksτk)] = logR[X, Ŝj(gτksτk)]

+ λ logH[Ŝj(gτksτk)]} (13)
k = 1, 2, ...,K; j = 1, 2, ...

with ĝ0τk ŝ
0
τk

corresponding to the initial estimates. Eq. (13)
represents an iterative algorithm to solve the constrained
maximization problem (11). It manages to estimate the optimal
element corpus segments one segment at a time, subject to
the constraints of all the other segments in the sentence,
and hence can be calculated efficiently. Let Ŝj denote the
speech sentence estimate at the end of the jth iteration after
all the element corpus segments have been updated. In our
experiments, we have seen that this algorithm converges in
terms of generating speech sentence estimates that always
increase RH(X, Ŝj) with each iteration. A more detailed step-
by-step implementation of the algorithm is presented in the
next section along with an algorithm for integrating the clean
speech recognizer.

IV. AN EXAMPLE IMPLEMENTATION

A. Integrating Clean Speech Recognition

Eq. (11) shows that, with full-sentence correlation, we
may effectively reduce the problem of noisy speech enhance-
ment to a problem of clean speech recognition, and thus
remove the requirement for noise estimation or noise training.
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We could integrate, for example, DNN-based clean speech
recognition (e.g., [41]) into the system to provide advanced
speech recognition accuracy, and hence achieve both robust
and accurate speech estimation from noise. In this paper,
however, we describe an alternative method of embedding
clean speech recognition into the system. This method may
not necessarily provide optimal clean speech recognition but
it should require less computation, and hence is important in
terms of implementation and applications. We use the clean
speech recognizer that is used in our experiments to describe
this method.

The recognizer is effectively an HMM-based phone recog-
nizer, in which three states, each associated with a frame-
emitting GMM, are used to model the acoustics [e.g., the
mel-frequency cepstral coefficients (MFCCs) and derivatives
sequences] of a phone. We train the recognizer using the cor-
pus data. After training, we force align each corpus sentence
to the corresponding phonetic HMMs. Thus, for each corpus
segment sτk = (sτk−γ , ..., sτk , ..., sτk+γ) we can obtain a
corresponding sequence of triplets

vτk = {[Q(sτk−γ), log bQ(sτk−γ), uQ(sτk−γ)],

...,

[Q(sτk), log bQ(sτk), uQ(sτk)],

...,

[Q(sτk+γ), log bQ(sτk+γ), uQ(sτk+γ)]} (14)

in which each triplet [Q(sτ ), log bQ(sτ ), uQ(sτ )] records the
most-likely state Q, the state-based log likelihood log bQ
and the state-based phonetic label uQ of a corresponding
corpus frame sτ , based on the maximum-likelihood frame-
to-state alignment. In the following, we show that we can use
the pre-recorded triplet sequences of the corpus segments to
approximately express the result of the Viterbi search of a
given speech sentence estimate, and thus to accomplish the
required clean speech recognition of the estimate with minimal
calculation.

Given a corpus segment chain based speech sentence esti-
mate S = (gτ1sτ1 , gτ2sτ2 , ..., gτKsτK ), we will calculate the
log likelihood logH(S) to decide if S is valid speech. As
shown in (12), this includes calculating the log likelihood
log h(S) associated with the clean speech acoustic and lan-
guage models, and measuring the durations of all the states and
phones in S to obtain the probabilities based on clean speech
statistics. We assume that the latter should be straightforward.
Without loss of generality, assuming that a speech sentence
always begins with silence, we can write log h(S) as

log h(S)

= max
q

K∑
k=1

τk+γ′∑
τ=τk−γ′

{log a[q(sτ−1), q(sτ )] + log bq(sτ )(sτ )}

≈
K∑

k=1

τk+γ′∑
τ=τk−γ′

{log a[Q(sτ−1), Q(sτ )] + log bQ(sτ )(sτ )}

(15)

where γ′ ≤ γ represents the net length of each corpus
segment sτk in forming the (non-overlapping) frame se-

quence of the speech sentence corresponding to S, q =
[q(sτ1−γ′), q(sτ1−γ′+1), ..., q(sτK+γ′)] represents a possible
state sequence of the frame sequence of the speech sen-
tence, a(i, j) are the state transition probabilities, and, by
definition, q(sτk−γ′−1) = q(sτk−1+γ′) for k > 1 and
q(sτ1−γ′−1) = q0, where q0 represents the initial state of the
initial (silence) acoustic model. As shown in (15), for any
given corpus segment chain S = (gτ1sτ1 , gτ2sτ2 , ..., gτKsτK ),
we use its corresponding chain of pre-stored triplet sequences
(vτ1 ,vτ2 , ...,vτK ) to obtain an approximate most-likely state
sequence [Q(sτ1−γ′), Q(sτ1−γ′+1), ..., Q(sτK+γ′)] and further
to compose the corresponding likelihood, as an approxima-
tion of the Viterbi search. This approximation reduces the
calculation for the recognition of S to just O(T ) look-up
table operations and additions, where T is the number of
frames in the sentence. In (15), the state transition probabilities
a(i, j) typically encode both acoustic constraints (e.g., left-to-
right topology) and language constraints (e.g., bigram phonetic
language model) on the state transition of valid speech within
and across phonetic units. In other words, only the chains S
with a state sequence that fulfills the appropriate acoustic and
language constraints of speech can score highly.

B. The Step-by-Step Algorithm

The following summarizes the overall wide matching algo-
rithm used in our experiments, for searching for the optimal
corpus segment chains for speech sentence estimation.

1) Initialization. Given a noisy sentence X =
(xt1 ,xt2 , ...,xtK ), find an initial corpus segment chain
Ŝ0 = (ĝ0τ1 ŝ

0
τ1 , ĝ

0
τ2 ŝ

0
τ2 , ..., ĝ

0
τK ŝ0τK ) in which each corpus

segment ŝ0τk is obtained by maximizing the segment-
level ZNCC R(xtk , sτk) over all possible corpus segment
candidates sτk , assuming ĝ0τk = 1.

2) Iterative re-estimation. For each iteration j (j >= 1), for
each initial optimal corpus segment ĝj−1

τk
ŝj−1
τk

(k = 1, 2, ...,K)
to be re-estimated, for each possible corpus segment candidate
sτk do:

– Search for an optimal segment gain ĝτk for
sτk to maximize the full-sentence ZNCC
R[X, Ŝj(ĝτksτk)] based on (8), where Ŝj(ĝτksτk) =
(ĝjτ1 ŝ

j
τ1 , ..., ĝ

j
τk−1

ŝjτk−1
, ĝτksτk , ĝ

j−1
τk+1

ŝj−1
τk+1

, ..., ĝj−1
τK ŝj−1

τK ).
– Calculate the likelihood logH[Ŝj(ĝτksτk)] based on (12)

and (15).
– Combine R[X, Ŝj(ĝτksτk)] and logH[Ŝj(ĝτksτk)] to ob-

tain the recognizability-constrained full-sentence ZNCC
score RH[X, Ŝj(ĝτksτk)], and take the ĝτksτk that has
the maximum score among all the candidates as the new
optimal corpus segment ĝjτk ŝ

j
τk

, as indicated in (13).
In our experiments, we stop iterating when there is no change
in the estimate Ŝj between successive iterations. The above
Step 2), iterative re-estimation, takes most of the computa-
tional time. In our experiments, we accelerate the computation
by only considering in Step 2) the most-likely corpus segment
candidates sτk for each noisy element segment xtk . The most-
likely corpus segment candidates for each noisy segment are
selected in Step 1) which satisfy R(xtk , sτk) >= Rmin,
where Rmin is a threshold used to prune unlikely matching
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corpus segments because of their extremely low correlation
values. In our experiments, we choose Rmin = 0.1. The
algorithm is found to be faster than our previous iterative LMS
algorithm [28].

C. Reconstructing Speech Based on Corpus Segment Esti-
mates

Since the corpus speech and test speech may differ in
speaker characteristics, and since there may be phone or word
recognition errors, we do not directly output the matching
corpus segment chain, but use it to reconstruct the underlying
speech through optimal noise filtering. This approach is similar
to what was used previously in our LMS-based methods for
speech enhancement and speech separation (e.g., [26], [27]),
with the aim of better retaining the speech’s intelligibility and
the speakers’ characteristics while reducing the noise. Let X =
(x1, x2, ..., xT ) be the frame sequence of a noisy sentence, let
S′ = (s′1, s

′
2, ..., s

′
T ) be the frame sequence of the underlying

speech sentence, and let Ŝ = (ĝτ1 ŝτ1 , ĝτ2 ŝτ2 , ..., ĝτK ŝτK ) be a
matching corpus segment chain. Due to the overlap between
adjacent speech segments, each underlying speech frame can
be included in a number of matching corpus segments, or in
other words, multiple overlapping matching corpus segments
can each contain an estimate of the same speech frame. We
can take an average between these individual segment-based
estimates to form an overall estimate of the corresponding
underlying speech frame. We use the underlying speech frame
s′t as an example. Let P (s′t) denote the short-time DFT
(discrete Fourier transform) power spectrum of s′t to be sought
(while it is assumed that s′t is in a power-spectrum form, it may
be in a different format – e.g., Mef-frequency format – which
is not directly suitable for speech waveform reconstruction).
We use the following expression to obtain an estimate P̂ (s′t)

P̂ (s′t) =

∑
ŝτk

ĝτkP [ŝτk(t)]

Ns′t

(16)

where ŝτk(t) denotes the corpus frame corresponding to s′t
taken from the matching corpus segment ŝτk , P [ŝτk(t)] is the
short-time DFT power spectrum associated with ŝτk(t), and the
sum is over all the matching corpus segments that contain the
estimate for s′t, assuming that there are Ns′t

such segments.
Taking P̂ (s′t) as a clean speech power spectrum estimate,
we can obtain a corresponding noise DFT power spectrum
estimate, denoted by P̂ (nt), using a smoothed recursion

P̂ (nt) = αP̂ (nt−1) + (1− α)max[P (xt)− P̂ (s′t), 0] (17)

where P (xt) represents the noisy speech periodogram at
time t, and α is a smoothing constant (α = 0.95 in our
experiments). Thus, we can form a Wiener filter with a time-
varying transfer function Ft as follows

Ft =
P̂ (s′t)

P̂ (s′t) + P̂ (nt)
(18)

This filter takes the noisy frame DFT magnitude spectra as
input and produces the corresponding speech frame DFT
magnitude spectral estimates as output. Given the estimates, in
our experiments, we use the corresponding noisy frame DFT

Fig. 2. Noises used in the WSJ0 test data, showing the noise spectra over a
period of about three seconds. (a) Polyphonic musical ring. (b) Pop song.

phase spectra to build the speech frame waveform estimates. It
is noted that phase estimation or phase-aware processing has
become increasingly important in recent speech enhancement
studies (e.g., [54], [55]). A cleaner phase should lead to
improved speech quality.

V. EXPERIMENTAL STUDIES

A. Experimental Data, Models and Parameters

We have conducted speech enhancement experiments to
evaluate the wide matching approach, which was implemented
using the algorithm described in Section IV-B. The evaluation
was focused on its performance without any noise estimation.
Two databases, TIMIT and WSJ0, were used in the experi-
ments. TIMIT contains a standard training set consisting of
3696 speech sentences from 462 speakers (326 male, 136
female). This training set was used as our corpus to provide el-
ement corpus speech segments to model free-text, free-speaker
speech. TIMIT contains a standard core test set consisting of
192 speech sentences from 24 speakers (16 male, 8 female),
all unseen to the training set. WSJ0 contains a 5K-vocabulary
speaker-independent test set (SI ET 05) consisting of 330
test sentences from eight speakers (four male, four female).
These two test sets were used for enhancement experiments
based on the same TIMIT training set. The additional WSJ0
test set was used to further evaluate the ability of the wide
matching system to generalize to unseen speech, speakers and
acoustic environments. The two test sets were added with
variable noises to form the noisy test sentences. The TIMIT
test sentences have an average duration about 2.8 s (or 280
frames), and the WSJ0 test sentences have an average duration
about 7.3 s (or 730 frames).

For the TIMIT test data, we used six different types of noise
from Aurora 4 [56]: airport, babble, car, restaurant, street and
train station. These were each added to each test sentence
at four different SNRs: 10, 5, 0 and −5 dB, respectively.
The SNR was measured on each sentence basis. For the
WSJ0 test data, we used two new types of noise showing
some greater non-stationarity than the Aurora 4 noises: a
polyphonic musical ring and a pop song with mixed music
and voice of a female singer. The spectra of these two new
noises are shown in Fig. 2. The speech signals were sampled
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TABLE I
STATISTICS OF THE TEST SENTENCES, SHOWING THE MINIMUM,
MAXIMUM AND AVERAGE LENGTH L = (2γ + 1)K OF THE TEST

SENTENCE SEGMENT CHAINS BEING CORRELATED (UNIT: FRAME).

Test set Min Max Average
TIMIT 440 2233 1023
WSJ0 718 5166 2642

at 16 kHz and divided into frames of 25 ms with a frame
period of 10 ms. In our experiments, for identifying matching
segments, we represented each frame using its short-time
Mel-frequency power spectral vector. This was obtained by
first obtaining each frame’s short-time DFT power spectrum,
and then obtaining the corresponding Mel-frequency power
spectrum by passing the DFT power spectrum through a Mel-
frequency filterbank. We have tested filterbanks of variable
numbers of channels within the range from 30 to some
higher resolutions up to 128. In general, a higher-resolution
power spectrum representation gave improved results, but also
resulted in higher computational load. For the experiments
in this paper, we used a 40-channel filterbank representation,
which appeared to provide a good balance. As described in
Section IV-C, when matching corpus segments were found,
to reconstruct the clean speech waveform, we switched back
to the highest-resolution DFT representation to perform the
appropriate noise filtering and waveform reconstruction.

In our experiments, each clean corpus sentence was divided
into short, consecutive, partially overlapped segments, to be
used to form full-sentence speech estimates for arbitrary noisy
sentences through segment chaining. More specifically, we
formed the element corpus segments by taking each corpus
frame in each corpus sentence and forming a segment around
the frame with a fixed length of 11 frames [i.e., γ = 5
in (8), a figure borrowed from the previous DNN-based
speech recognition studies on the TIMIT database [53]]. This
ended up with about 1.1 million element corpus segments.
As the TIMIT training set is small, we did not try to further
compress the corpus data. With larger speech corpora, one
may consider using the method described in [26], [28] to
compactly represent the corpus data to improve the scalability.
The noisy test sentences were each divided into a chain of
consecutive segments each with the same length of 11 frames
and with 8-frame overlap between adjacent segments. As
indicated in (11) or (13), the underlying speech is estimated
based on full-sentence segment chain correlation with a length
of L = (2γ + 1)K frames, where K is the number of
segments in the chain. Table I shows the statistics of L of the
noisy sentence chains X that have been correlated to derive
the underlying speech estimates Ŝ, for the 192 TIMIT test
sentences and 330 WSJ0 test sentences, respectively. We have
found that some overlap between successive noisy segments
helps to improve the estimation accuracy or smoothness, as
found in DNN-based speech recognition studies. The large
L of correlation, along with the constraint on the estimate’s
recognizability, contributed importantly to improving noise
robustness without having noise estimation, to be seen later.

To form the recognizability score (12) for a speech sentence

estimate, we trained a simple HMM-based phone recognizer
using the TIMIT 3696 training sentences. The recognizer con-
tains 61 three-state HMMs for the 61 TIMIT monophones, and
a bigram phonetic language model trained with the phonetic
transcripts of the 3696 training sentences. This recognizer
was used to generate the triplets (14) for each training sen-
tence/segment through forced frame-state alignment. As shown
in (15), we used these triplets of the corpus data to form
an approximate, but highly efficient, acoustic and language
(bigram phonetic) constraint for the underlying speech esti-
mate. Additionally, based on the state sequences of the training
sentences, we created a state-duration probability distribution
for each of the 183 states and a phone-duration probability
distribution for each of the 61 monophones, expressed as
appropriate histograms.

We used the iterative algorithm (13), with the step-by-step
details given in Section IV-B, to derive the optimal estimate
for each element corpus segment and hence for the whole sen-
tence. In determining an optimal corpus segment estimate, we
assumed that the gain for the corpus segment (i.e., gτk ) could
vary within the range [0.5, 2]. We have tested some larger
ranges, for example, [0.33, 3] and [0.25, 4], and found some
small improvement. For each possible corpus segment candi-
date, we used a fast algorithm (the golden section method)
to search for its optimal gain within the range to maximize
the full-sentence ZNCC. The extra computation was found
to be minimal. Unless otherwise indicated, throughout the
experiments we assumed λ = 0.1, which is the constraining
Lagrange multiplier in (13).

B. Experimental Results on TIMIT Test Data

In this section we present the experimental results on
the TIMIT test set with six types of Aurora 4 noise, and
comparison with existing speech enhancement methods. We
used three standard objective measures for the evaluation,
which were Segmental SNR (SSNR), PESQ (perceptual eval-
uation of speech quality) and STOI (short-time objective
intelligibility) [57]. We compare wide matching with some
popular and important frame-based speech enhancement meth-
ods, which include LogMMSE [4], LogMMSE [5], [17],
Wiener filtering [58] and KLT [59]. The two different versions
of LogLMMSE mainly differ in their methods of tracking
the background noise. For convenience, we note them as
LogMMSE-1 and LogMMSE-2, respectively. Additionally, we
also include a reduced form of the wide matching method in
the comparison. This reduced method performs full-sentence
correlation alone without constraint of the recognizability
[i.e., (11) or (13) with λ = 0]. For convenience, we call it
the full-sentence correlation (FSC) method. This method is
included to show the significance of the recognizability con-
straint in terms of improving the speech estimation accuracy.

For clarity, we compare these methods by using their
average scores across the different types of noise, as a function
of the input noisy sentence SNR. Thus, each score for each
SNR condition is obtained by averaging over 1152 noisy test
sentences (192 test sentences per noise type × 6 noise types).
The wide matching method did not use any noise estimation



9

TABLE II
RESULTS ON THE TIMIT TEST SET, COMPARING BETWEEN WIDE

MATCHING AND SOME EXISTING FRAME-BASED AND SEGMENT-BASED
ENHANCEMENT METHODS, AND FULL-SENTENCE CORRELATION (FSC)
WHICH IS WIDE MATCHING WITH λ = 0, ON SCORES OF THE ENHANCED
SPEECH AVERAGED OVER SIX TYPES OF NOISE, AS A FUNCTION OF THE

INPUT NOISY SENTENCE SNR.

Method\SNR (dB) -5 0 5 10 Clean
Unprocessed -6.79 -4.26 -1.11 2.48

S LMMSE-1 -2.59 -0.31 2.23 4.96 19.28
S LMMSE-2 -4.37 -2.21 0.13 3.01 12.02
N Wiener filter -3.94 -1.42 1.40 4.38 19.69
R KLT -1.62 0.36 2.64 5.05 15.28

LMS 0.61 1.90 2.93 3.62 17.74
FSC -0.35 1.47 3.17 4.48 18.16
Wide matching 0.51 2.33 3.96 5.16 18.11
Unprocessed 1.39 1.74 2.09 2.44

P LMMSE-1 1.60 2.01 2.38 2.72 4.39
E LMMSE-2 1.56 2.01 2.42 2.78 4.35
S Wiener filter 1.53 1.93 2.31 2.67 4.41
Q KLT 1.25 1.75 2.21 2.63 4.32

LMS 1.71 2.09 2.48 2.76 4.26
FSC 1.51 1.94 2.30 2.58 4.05
Wide matching 1.76 2.19 2.54 2.79 4.22
Unprocessed 0.58 0.69 0.79 0.88

S LMMSE-1 0.54 0.67 0.78 0.86 0.99
T LMMSE-2 0.54 0.67 0.78 0.87 0.99
O Wiener filter 0.56 0.68 0.79 0.88 0.99
I KLT 0.56 0.70 0.81 0.89 0.99

LMS 0.68 0.76 0.81 0.85 0.97
FSC 0.59 0.73 0.81 0.84 0.94
Wide matching 0.68 0.79 0.86 0.90 0.98

while the conventional methods each used an algorithm to
estimate the noise. Table II presents the comparison results
for each of the three quality measures. The new method
outperformed all these frame-based enhancement methods
on all the three measures for each noise type in all the
noisy conditions, and the improvement appeared to be more
significant for the low SNR conditions. The wide matching
method also outperformed the FSC method in all the noisy
conditions (see more discussions on this later). In comparison
to some of the conventional methods, we experienced a slight
drop in performance when taking clean speech as input for
enhancement. We observed the similar phenomenon in our
earlier corpus-based LMS method (e.g., [28]). This is because
in the corpus-based approaches, alien (i.e., corpus) data are
used as part of the method to reconstruct the underlying
speech, while in the conventional frame-based methods only
the original (high-SNR) data are used in the reconstruction.

Further, we compared wide matching with our latest,
segment-based LMS method [28], which uses an iteration
algorithm to alternately estimate the noise and the longest
underlying speech segments with matching clean training
segments until convergence. The longest matching training
segments found are used to form the clean speech estimates.
The scores for the enhanced speech by the LMS method are
included in Table II. The wide matching method, without
using any noise estimation, outperformed the LMS method
in all the noisy conditions except in one case, SNR = -5
dB, in which LMS scored slightly higher in SSNR than wide
matching. As indicated in Table II, LMS performed better

TABLE III
RESULTS ON THE TIMIT TEST SET, SHOWING SCORES OF THE ENHANCED
SPEECH BY WIDE MATCHING WITH OR WITHOUT INCLUDING THE DELTA
POWER SPECTRA, AVERAGED OVER SIX TYPES OF NOISE AS A FUNCTION

OF THE INPUT NOISY SENTENCE SNR.

Measure With delta\SNR (dB) -5 0 5 10
SSNR No 0.51 2.33 3.96 5.16

Yes 0.40 2.30 3.95 5.18
PESQ No 1.76 2.19 2.54 2.79

Yes 1.81 2.23 2.57 2.83
STOI No 0.68 0.79 0.86 0.90

Yes 0.69 0.80 0.86 0.91

than the frame-based enhancement methods in the low SNR
conditions, in terms of LMS achieving higher scores in all the
three measures. LMS also outperformed FSC in many noisy
cases, especially in terms of the PESQ and STOI scores.

Finally, we conducted experiments to test if we could further
improve wide matching’s performance by adding the short-
term dynamic power spectra into the speech representation for
correlation based matching. The short-term dynamic spectra,
often called derivative or delta spectra in speech recognition,
are typically calculated as linear regression coefficients of
the static spectra over a short segment of a time trajectory.
They are suitable to be added in the new method because
the assumption that environmental noise is approximately
additive in the power spectra is also applicable to the delta
power spectra. Therefore our hypothesis in Section II for the
convergence of the long-segment ZNCC to noise immunity
should also hold for the augmented speech representation, in
which each frame is represented by a combination of static
and dynamic power spectra. We further added the so-called
delta-delta power spectra. So in the revised representation
each frame contained 120 coefficients (the original 40 plus the
corresponding first-order and second-order delta coefficients).
Table III shows the results and comparison. The addition of
the dynamic power spectra did bring some small improvement,
mainly in the PESQ and STOI scores. Later we will show its
significance in improving the phone matching rate.

C. Experimental Results on WSJ0 Test Data

The WSJ0 test data were used to provide greater uncertainty
of speech, speaker and acoustic conditions with respect to
the TIMIT training set. As mentioned earlier, we also used
two new types of noise (Fig. 2), which generally exhibit
greater time variation than the Aurora 4 noises, to generate
the noisy WSJ0 sentences. For the clarity of presentation, we
show the average scores across these two types of noise as a
function of the input noisy sentence SNR. Thus, each score
for each SNR condition is obtained by averaging over 660
noisy test sentences (330 test sentences per noise type × 2
noise types). For this experiment, the wide matching system
used the delta and delta-delta power spectra. We chose the
conventional frame-based LMMSE-1 (LMMSE-2 performed
poorer than LMMSE-1 for this case) and the segment-based
LMS for comparison.

Table IV presents the comparison results for each of the
three speech quality measures. The wide matching method



10

TABLE IV
RESULTS ON THE WSJ0 TEST SET, COMPARING BETWEEN WIDE

MATCHING, FRAME-BASED LMMSE-1 AND SEGMENT-BASED LMS ON
SCORES OF THE ENHANCED SPEECH AVERAGED OVER TWO NEW TYPES OF
NONSTATIONARY NOISE, AS A FUNCTION OF THE INPUT NOISY SENTENCE

SNR.

Method\SNR (dB) 0 5 10
S Unprocessed -4.24 -1.40 1.74
S LMMSE-1 -3.39 -0.82 1.92
N LMS 0.67 1.60 2.26
R Wide matching 2.00 3.17 3.74
P Unprocessed 1.90 2.23 2.56
E LMMSE-1 1.88 2.24 2.60
S LMS 2.35 2.56 2.74
Q Wide matching 2.38 2.61 2.75
S Unprocessed 0.83 0.89 0.94
T LMMSE-1 0.78 0.87 0.91
O LMS 0.83 0.88 0.89
I Wide matching 0.85 0.89 0.90

TABLE V
RESULTS ON THE WSJ0 TEST SET, AUTOMATIC SPEECH RECOGNITION

WORD ACCURACY (%) FOR THE NOISY SPEECH AND ENHANCED SPEECH,
AS A FUNCTION OF THE INPUT NOISY SENTENCE SNR.

Method\SNR (dB) 0 5 10
Unprocessed 9.65 25.7 52.8
LMMSE-1 7.35 19.7 41.7
LMS 36.0 52.9 65.1
Wide matching 45.3 59.7 68.9

scored higher than all the other methods, except in the high
SNR (10 dB) case, in which the unprocessed noisy speech
scored highest in STOI over all the enhanced speech. Due
to the highly nonstationary characteristics of the noise, the
LMMSE method based on noise tracking failed to effectively
remove much of the noise, indicated by its lower SSNR. While
SSNR may not be a reliable indicator of speech quality, but in
this case, low SSNR did lead to poor accuracy of automatic
speech recognition, as shown below.

Next, we passed the enhanced speech, produced by the
various methods, to an automatic speech recognizer trained
using clean speech data for the WSJ0 database. The recog-
nition accuracy, thus, can be used as an indicator of the
distortion of the enhanced speech as against the clean speech.
The recognizer took a GMM-HMM architecture, was built
following the HTK WSJ Training Recipe [60], and achieved
over 92% word accuracy on the clean WSJ0 test set used in
our enhancement experiment. In the recognition evaluation,
we used the same word insertion/deletion penalties for all
the methods. Table V shows the word accuracy results. The
LMMSE method failed to improve the word accuracy from the
unprocessed noisy speech, while the wide matching method
delivered significant improvement in all the noisy conditions.
Wide matching (based on sentences) also outperformed LMS
(based on segments), especially in the low SNR conditions.

D. Wide Matching Analysis

We try to understand how the wide matching method
improved noise robustness without having noise estimation,
based on the TIMIT test set. Table VI uses an example

TABLE VI
IMPORTANCE OF THE CORRELATION LENGTH AND RECOGNIZABILITY
CONSTRAINT (UNCONSTRAINED WHEN λ = 0), AVERAGED OVER SIX

TYPES OF NOISE WITH SNR=0 DB.

Method\Measure SSNR PESQ STOI
Segment correlation 1.01 1.82 0.69

Full-sentence correlation 1.47 1.94 0.73
(wide matching with λ = 0)

Wide matching, λ = 0.1 2.33 2.19 0.79
Wide matching, λ = 0.2 2.34 2.18 0.79
Wide matching, λ = 0.3 2.34 2.17 0.79

(SNR = 0 dB) to show the importance of the length of the
segments being correlated and the constraint on the estimate’s
recognizability. It shows a comparison between wide matching
with a sentence-long correlation length as shown in Table I,
and segment correlation with a fixed length of 11 frames,
averaged over all the test sentences from all the six noise types.
In between is the full-sentence correlation (FSC) based on
segment chains without constraint of their recognizability [i.e.,
wide matching with λ = 0 in (11) or (13)]. Segment correla-
tion assumes independence between element speech segments,
is prone to noise corruption, and was used to provide the initial
estimates for wide matching (see Section IV-B). With full-
sentence correlation one may obtain better-quality enhanced
speech, as shown in Table VI. However, when noise dominates
the observed data the matching segment chain can become
noisy (see the example below). Table VI shows that by forcing
the potential matching segment chain to be most recognizable
as speech, as implemented in wide matching with λ > 0, we
can relieve this problem, as demonstrated by the improved
quality scores. The maximum recognizability constraint helps
obtain noise-independent speech estimates, and this constraint
may only be effectively applied on long speech segments (e.g.,
phrases or sentences). In our experiments, we did not optimize
the λ value for the wide matching algorithm. Instead, we tested
a range of λ values and found that its performance is quite
stable across different noise types, SNR levels and speech
databases. Table VI shows an example.

Since the whole wide matching system effectively per-
formed noisy speech recognition based on clean speech train-
ing, we can use the phone matching rate between the under-
lying speech and the matching corpus speech as part of the
evaluation criteria. Specifically, based on the (rather simple)
clean phone recognizer we implemented for the system, we
chose the frame-level phone matching rate as the criterion, i.e.,
a matching corpus frame is considered to be correct if it has the
same phone label as the underlying speech frame (this criterion
was used previously in [61]). We folded the original 61 TIMIT
phone labels into the standard 39 phone classes to calculate
the matching rate. Fig. 3 shows the results, comparing full-
sentence correlation without constraint on recognizability and
wide matching with this constraint (λ = 0.1), and fur-
ther with dynamic spectral features. The results once again
demonstrate the importance of recognizability optimization
in improving noise robustness, especially in the low SNR
conditions, in terms of achieving higher frame-level phone
matching accuracy in the enhanced speech. The results also
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Fig. 3. Frame-level phone matching rate for full-sentence correlation without
constraint on recognizability, wide matching with constraint on recognizability
and wide matching also with delta power spectra.

Fig. 4. A speech enhancement example. (a) Clean speech sentence. (b) Noisy
speech sentence with nonstationary street noise at a sentence-level SNR = 0
dB. (c) Estimate based on full-sentence correlation (FSC) without constraint
on recognizability. (d) Estimate based on wide matching.

show the significance of including the dynamic power spectra
in improving the frame-level phone matching accuracy, though
this extra improvement did not appear to lead to further sizable
improvement in the other three quality measures as shown in
Table III.

Fig. 4 shows an example, for recovering a speech sentence
[Fig. 4(a)] from nonstationary street noise with a sentence-
level SNR = 0 dB. Fig. 4(b) shows the noisy sentence. In
this example, apparently, the first half of the noisy sentence
was dominated by speech and the second half of the noisy
sentence was dominated by noise. For nonstationary speech
and noise, it is typical to have varying local SNRs in a
sentence. Fig. 4(c) shows the estimate based on full-sentence
correlation (FSC) without constraint on recognizability, and
Fig. 4(d) shows the estimate based on wide matching. While

Fig. 5. Convergence of the iterative estimation algorithm in the experiments,
showing the average number of iterations used to reach convergent estimates,
and the increases in (a) the recognizability-constrained full-sentence ZNCC
(RH) value and (b) the corresponding full-sentence ZNCC (R) value after
convergence, averaged over the six types of noise as a function of the input
noisy sentence SNR.

both methods appear to be effective in reproducing the first
half of the speech sentence, only wide matching appears
to be effective in recovering the second half of the speech
sentence from the overwhelming noise. Without constraint on
the estimate’s recognizability, the correlation based on short
segment chaining apparently produced an estimate that tended
to follow the dominant signal (whether it is speech or noise)
as a result of maximum correlation.

Finally, we show the convergence of the iteration algorithm
used to implement wide matching, described in Section IV-B.
Fig. 5 summarizes the average number of iterations used in
our experiments to reach convergent estimates, and the initial
and convergent values of the iteration of the recognizability-
constrained full-sentence ZNCC (RH) and the corresponding
full-sentence ZNCC (R), respectively, as a function of the
input noisy sentence SNR averaged overall all the noise types.
These statistics are accumulated from the experimental results
with λ = 0.1 and without using dynamic power spectra. We
have not seen a single case in which the iteration decreased
the appropriate full-sentence ZNCC values.

VI. CONCLUDING REMARKS

Methods for single-channel speech enhancement are mainly
frame, multi-frame or segment based. All require knowledge
about the noise. The method described in this paper is a com-
plement to existing methods and may be viewed as sentence
based. This research aims to reduce or effectively remove the
requirement for knowledge of noise. This is significant as it
could lead to a technique that is capable of retrieving speech
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from noisy data without requiring vast amounts of noisy
training data or noise statistics. With an oracle experiment,
and with some hypothetical studies, we first showed that by
directly matching long speech segments based on ZNCC we
could potentially increase significantly noise immunity for
speech enhancement without requiring noise knowledge. This
paper described a realization of this approach, namely wide
matching, for practical use. The core part of this realization
is the integration of a clean speech recognizer to regularize
the formation of the potential matching estimate subject to
maximum recognizability. Our conjecture is that this could
correspond to one technique used by humans for picking
out speech in strong noise – to try to make sense of the
speech. For computational reasons, we chose to use a simple,
approximate clean speech recognizer in our experiments. But
as indicated by our experimental results, for moderate-length
speech sentences, and for a family of difficult real-world noise,
the new method could outperform a range of state-of-the-
art speech enhancement methods without any estimation of
the noise. Presently, we are studying the integration of more
advanced clean speech recognition into the system for further
improved performance, and the possible extension of the new
method for robust speech recognition.
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