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Abstract 27	  
 28	  
The antiquity of the practice of grazing on and/or foddering with seaweed is of interest in 29	  
terms of understanding animal management practices in northwest Europe, where 30	  
provision had to be made for overwintering. Orkney holds a special place in this 31	  
discussion, since the sheep of North Ronaldsay have been confined to the seashores 32	  
since the early nineteenth century, and are entirely adapted to a diet consisting mainly 33	  
of seaweeds. Here, we report the results of stable carbon and nitrogen isotope analysis 34	  
of twenty-five faunal specimens from the Neolithic chambered tomb of Quanterness, 35	  
Orkney. Three of the 12 sheep analysed show elevated δ13C values that can only be 36	  
explained by the consumption of seaweed. Radiocarbon dates place two of the three 37	  
animals in the Neolithic, coeval with the use of the monument for burial, while the third 38	  
animal dates to the Chalcolithic/Early Bronze Age. The findings are placed into the 39	  
wider context of previous isotopic analyses of domestic fauna from prehistoric Orkney. 40	  
A disjoint is noted between the results for bone collagen – where seaweed consumption 41	  
seems to relate to the pre-natal period, since all the animals with high δ13C values are 42	  
less than ca. three months of age – and previous studies using high-resolution 43	  
sequential enamel measurements, which suggest a repeated pattern of winter 44	  
consumption of seaweed in older animals.   45	  
 46	  
Key words: stable carbon isotopes; Quanterness chambered tomb; palaeodietary 47	  
modelling; marine reservoir effect  48	  



	  
	  

2	  

1. Introduction 49	  

The extension of the Neolithic way of life to the fringes of northwest Europe posed new 50	  

challenges, taking domesticated plants and animals far from their original habitats in the 51	  

Near East. For the latter, the short growing season of browse and graze meant that 52	  

provision must have been made for the overwintering of domestic stock (Amorosi et al. 53	  

1998). One resource available year-round along the coasts of northwest Europe is 54	  

seaweed (e.g., Palmaria palmata, Fucus sp., Laminaria spp.). Historically, there is 55	  

abundant evidence for the use of this resource, usually in dried form, as feed for both 56	  

cattle and sheep (Chapman and Chapman 1980; Fenton 1978; Hallson 1964; 57	  

Indergaard and Minsaas 1992; Kelly 1997; Makkar et al. 2016; Martin 1703). Without 58	  

doubt the most dramatic evidence for this practice comes from North Ronaldsay in 59	  

Orkney, where a sea-wall was built around the entire island’s circumference in the early 60	  

19th century to confine sheep to the seashore for most of the year (Fenton 1978; 61	  

Hansen et al. 2003). Thus the question arises as to when this practice first emerged. 62	  

The fact that consumption of seaweed leaves a distinct signal in the animals’ stable 63	  

carbon (δ13C) and oxygen (δ18O) isotope signatures – effectively making them appear 64	  

isotopically similar to marine organisms (Ambers 1990) – provides the opportunity to 65	  

explore this question with zooarchaeological remains. A small number of cases of 66	  

sheep consuming seaweed in Orkney during the Neolithic have been previously 67	  

identified using this method (Balasse et al. 2005; 2006; 2009; Balasse and Tresset 68	  

2009; Schulting et al. 2004; Schulting and Richards 2009). Here, we provide new 69	  

evidence from the results of a programme of stable carbon (δ13C) and nitrogen (δ15N) 70	  

isotope analysis and accelerator mass spectrometry (AMS) radiocarbon dating of a 71	  

faunal assemblage from the Middle-Late Neolithic chambered tomb of Quanterness, 72	  

Mainland, Orkney.  73	  

 74	  

2. Overview of stable carbon and nitrogen isotope analysis 75	  

Measurements of bone collagen stable carbon (δ13C) and nitrogen (δ15N) values are 76	  

frequently used in archaeology to investigate the major sources of dietary protein 77	  

(Ambrose and Norr 1993; Lee-Thorp 2008). The values obtained via isotope ratio mass 78	  

spectrometry (IRMS) provide a relatively long-term average of primarily protein intake, 79	  

though the exact length of time represented will depend on the rate of remodeling of the 80	  
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sampled bone, but will always be more rapid in young, growing animals. The ratios of 81	  

stable C and N isotopes incorporated into animal tissues are driven by the isotopic 82	  

composition of major dietary sources. Marine organisms, including seaweed, shellfish, 83	  

fish and sea mammals, are enriched in 13C relative to 12C due to the fact that the ocean 84	  

serves as a sink for the heavier isotope (Boutton 1991; Sharp 2007). As a result, 85	  

organisms obtaining a significant proportion of their dietary protein from marine foods 86	  

will exhibit higher δ13C values (ca. -12 ± 1‰) than those subsisting solely on C3 87	  

terrestrial foods, which provide lower values (ca. -21 ± 1‰) for bone collagen (Richards 88	  

and Hedges 1999). The consumption of C4 plants such as maize and millet would result 89	  

in even higher bone collagen values than the consumption of marine foods, but as no 90	  

such plants were found in northwest Europe during the study period, they need not be 91	  

considered here.  92	  

 93	  

Stable nitrogen isotope ratios are used to investigate trophic levels. There is a variable 94	  

but broadly predictable increase of ca. 3–5‰ between dietary item and consumer tissue 95	  

for each step in the food chain (Ambrose 2000; Caut et al. 2009; Hedges and Reynard 96	  

2007; Schoeninger and DeNiro 1984). This range is generally cited for human 97	  

consumers, and may be towards its lower end for most herbivores. The comparable 98	  

effect in δ13C is considerably smaller, about 1‰ (Bocherens and Drucker 2003; Lee-99	  

Thorp et al. 1989). The ocean is also enriched in 15N relative to atmospheric N2
 (defined 100	  

as 0‰), the latter serving as the ultimate source of nitrogen for terrestrial plants 101	  

(Peterson and Fry 1987). Thus marine plants will generally have higher δ15N values 102	  

than most temperate terrestrial plants under natural conditions (i.e., in the absence of 103	  

anthropogenic input). Furthermore, because marine food webs are considerably more 104	  

complex (i.e., involve more steps) than terrestrial mammalian food webs, there is scope 105	  

for much greater trophic level enrichment, such that high-level marine carnivores can 106	  

exhibit collagen δ15N values of +16‰ or more (Schoeninger and DeNiro 1984). Other 107	  

factors can also result in 15N enrichment, most notably aridity, but this can safely be 108	  

excluded from discussions pertaining to Orkney.  109	  

 110	  

3. Materials and Methods 111	  
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The Quanterness chambered tomb is located near the east-central coast of Mainland 112	  

Orkney, northern Scotland (Figure 1). It serves as one of the two type-sites for the 113	  

Quanterness-Quoyness type of passage tomb (also known as the Maes-Howe type). 114	  

Excavated by Colin Renfrew in the 1970s (Renfrew 1979), the site yielded a large 115	  

human skeletal assemblage (Crozier 2012), as well as ceramic, lithic and faunal 116	  

remains. A recent dating programme focusing on the human remains placed the use of 117	  

the monument for burial in the second half of the fourth millennium BC, continuing into 118	  

the first quarter of the third millennium (Schulting et al. 2010). The original dating 119	  

programme also identified one example (Pit C) of deposition of human remains in the 120	  

third quarter of the third millennium BC (Renfrew 1979).  121	  

 122	  

For this study, twenty-five faunal bone samples from the Quanterness assemblage were 123	  

selected for δ13C and δ15N analysis. The samples included domestic sheep (Ovis aries, 124	  

n=14, all left humeri; 1 foetal, 8 juveniles, 1 adolescent, 4 adults), domestic cattle (Bos 125	  

Taurus, n=6, pelvae and ribs; 3 perinatal, 3 adults), domestic pig (Sus scrofa, n=3, 126	  

ulnae; 1 infant, 1 juvenile, 1 adult), dog (Canis domesticus, n=1, right femur; adult) and 127	  

red deer (Cervus elaphus, n=1, left humerus; adolescent). The identification of the 128	  

sampled humeri as sheep rather than goat is not based on their morphology (though 129	  

this is possible – see Zeder and Lapham 2010), but rather on the scarcity of identified 130	  

goat remains in Neolithic and Bronze Age Orkney overall. They will be referred to here 131	  

as ‘sheep’; while there is a possibility that some are goat, this does not impact on the 132	  

larger discussion.  133	  

 134	  

Figure 1. Map of Orkney showing locations mentioned in the text.  135	  

 136	  

The sheep/goats (henceforth ‘sheep’) were aged using standards in Moran and 137	  

O’Connor (1994) and Popkin et al. (2012). One complete but very small humerus 138	  

(greatest length = 35.2mm) is from a foetal lamb far from full term (McDonald et al. 139	  

1977). Six animals are aged between birth and ca. 3 months based on the lengths of 140	  

(66-70mm) for three complete humeri, and a comparison of maximum breadth of these 141	  

specimens against the three incomplete elements. Three further humeri were in the 142	  

process of fusing distally, placing them at ≥6 months. Finally, four animals are classed 143	  



	  
	  

5	  

as adults based primarily on their size, confirmed by the fully fused proximal humerus in 144	  

the single complete specimen (>36 months).  145	  

 146	  

Collagen was extracted from the samples following a modified Longin procedure 147	  

(Longin 1971; Richards and Hedges 1999). Measurements were made in duplicate on a 148	  

SerCon 'Callisto’ continuous flow IRMS coupled to an elemental analyser at the 149	  

Research Laboratory for Archaeology and the History of Art, University of Oxford. An 150	  

alanine standard was used to correct for machine drift and calculate the measurement 151	  

precision (1σ) at 0.2‰ for δ13C and ±0.3‰ for δ15N. δ13C and δ15N are reported as per 152	  

mil (‰) relative to the international standards VPDB and AIR, respectively. C:N values 153	  

are reported as atomic ratios and serve as a check on collagen preservation (cf DeNiro 154	  

1985). 155	  

 156	  

AMS radiocarbon dating was undertaken at the 14CHRONO laboratory at Queen’s 157	  

University Belfast. The sample 14C/12C ratio was background corrected and normalised 158	  

to the HOXII standard (SRM 4990C; National Institute of Standards and Technology) 159	  

and corrected for isotopic fractionation using the AMS-measured δ13C to account for 160	  

both natural and machine fractionation. The 14C age and associated error were 161	  

calculated using the Libby half-life (5568 years) following the conventions of Stuiver and 162	  

Polach (1977). Nine samples were selected, targeting all the domestic species 163	  

represented at Quanterness, as well as one of the small number of red deer elements. 164	  

The main focus, however, was on sheep, since firstly, this taxon dominates the faunal 165	  

assemblage (Clutton-Brock 1979), and secondly, the δ13C results highlighted 166	  

considerable variability, and the sources of this variation were of particular interest. All 167	  

calibrated dates are reported at 95.4% confidence.  168	  

 169	  

3. Results 170	  

The faunal stable isotope results from Quanterness are provided in Table 1 and plotted 171	  

in Figure 2. All samples passed collagen quality criteria including collagen yields and 172	  

C:N ratios (Ambrose 1990; DeNiro 1985; van Klinken 1999).  173	  

 174	  
Cat. No. Species, Latin name Species Element Age δ13C δ15N C:N 
3074.22 Ovis aries sheep L humerus foetal -20.8 8.3 3.3 
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2491.04 Ovis aries sheep L humerus 0-3 mon -17.8 8.3 3.3 
4084.48 Ovis aries sheep L humerus 0-3 mon -19.8 7.5 3.3 
146.07 Ovis aries sheep L humerus 0-3 mon -18.6 8.7 3.3 
4084.2 Ovis aries sheep L humerus 0-3 mon -16.9 9.6 3.3 

3072.03 Ovis aries sheep L humerus 0-3 mon -19.9 8.7 3.2 
4029.07 Ovis aries sheep L humerus 0-3 mon -22.2 9.6 3.3 
4081.80 Ovis aries sheep L humerus ca. 6 mon -22.3 9.6 3.2 
2416.03 Ovis aries sheep L humerus > 6 mon -21.2 5.9 3.3 
4570.02 Ovis aries sheep L humerus > 6 mon -21.2 5.6 3.3 
1328.02 Ovis aries sheep L humerus adult -20.4 5.8 3.3 
249.11 Ovis aries sheep L humerus adult -20.7 6.9 3.3 

2584.02 Ovis aries sheep L humerus adult -21.0 5.5 3.3 
2361 Ovis aries sheep L humerus adult -22.0 8.5 3.2 
803.2 Bos taurus cattle innominate perinatal -21.7 6.6 3.4 

1258.03 Bos taurus cattle innominate perinatal -21.7 5.2 3.3 
284 Bos taurus cattle innominate perinatal -21.0 6.4 3.3 

4610 Bos taurus cattle rib adult -21.4 5.4 3.2 
90.01 Bos taurus cattle rib adult -21.5 5.1 3.3 
1050 Bos taurus cattle rib adult -21.6 5.4 3.3 

4500.04? Sus domesticus pig ulna juvenile -22.1 6.7 3.3 
5004.11 Sus domesticus pig ulna adult -20.4 8.2 3.2 
4580.16 Sus domesticus pig ulna infant -21.8 8.3 3.3 
4526.01 Canis domesticus dog R femur adult -20.6 9.1 3.2 
1345.04 Cervus elaphus red deer L humerus adol -20.9 5.3 3.3 
 175	  
Table 1. Quanterness fauna sample details and results of δ13C and δ15N analysis. 176	  
 177	  

The six cattle values cluster tightly at -21.5 ± 0.3‰ and 5.7 ± 0.6‰ for δ13C and δ15N 178	  

values, respectively. The single red deer value is comparable (-20.9‰, 5.3‰). The 179	  

three pigs analysed exhibit similar δ13C values (-21.4 ± 0.9‰) but are significantly 180	  

elevated above cattle and deer in δ15N (7.7 ± 0.9‰), reflecting their more omnivorous 181	  

diets. The single domestic dog in the study yielded values of -20.6‰ and 9.1‰ for δ13C 182	  

and δ15N, respectively.  183	  

 184	  

The range of δ13C values for sheep (-22.3 to -16.9‰) is considerably wider than that 185	  

seen in the other species. However, as noted below, the lowest values may date to the 186	  

medieval period. More interesting are three of the juvenile sheep aged 0-3 months 187	  

occupying the higher end of the range: including the other two animals in this age class 188	  

(excluding the lowest value), this group averages -18.6 ± 1.3‰ for δ13C and 8.6 ± 0.8‰ 189	  

for δ15N values, compared to -20.9 ± 0.35‰ and 5.9 ± 0.6‰ for the five animals older 190	  

than ca. six months (i.e., with fused distal epiphyses). The foetal sample is 191	  

indistinguishable from the adults in its δ13C value (-20.8‰), as would be expected, but 192	  

has a high δ15N value (8.3‰), considerably higher than seen in the adult animals. While 193	  
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this would be unexpected in humans, it has been previously observed in sheep, and 194	  

may relate to differing placental systems (Balasse 1999: Appendix II, and pers. comm.). 195	  

As expected, the young lambs (0-3 months) are also enriched in 15N compared to the 196	  

older lambs and adult sheep (Table 2).  197	  

 198	  

Figure 2. Plot of faunal and human δ13C and δ15N results from Quanterness (human 199	  
data from Schulting et al. 2010).  200	  
 201	  
Species δ13C ± δ15N ± n 
sheep      
 all -20.3 1.6 7.8 1.5 14 
 foetal -20.8 - 8.3 - 1 
 0-3 mon -18.6 1.3 8.6 0.8 5 
 > 6 mon -20.9 0.3 5.9 0.6 5 
 medieval? -22.2 0.2 9.2 0.6 3 
cattle -21.5 0.3 5.7 0.6 6 
 all -21.5 0.4 5.7 0.6 6 
 perinatal -21.5 0.4 6.1 0.8 3 
 adult -21.5 0.1 5.3 0.2 3 
pig -21.4 0.9 7.7 0.9 3 
dog -20.6 - 9.1 - 1 
red deer -20.9 - 5.3 - 1 
 202	  
Table 2. Summary statistics for Quanterness faunal δ13C and δ15N measurements. The 203	  
sheep identified as likely of medieval date (see Table 3) are included in the total but 204	  
treated separately in the age categories.  205	  
 206	  
 207	  
Cat no. Species Age Lab code 14C yrs ± cal BC (95.4%) δ13C  δ15N C:N %mar 
4084.2 

 

Ovis Aries 0-3 mon UBA-18429 4499 32 3084 2866 -16.9 9.6 3.3 46 
146.07 Ovis Aries 0-3 mon UBA-18428 4197 34 2864 2495 -18.6 8.7 3.3 27 

2491.04 Ovis Aries 0-3 mon UBA-18426 3855 29 2286 1981 -17.8 8.3 3.3 36 
249.11 Ovis Aries adult UBA-18425 3367 31 1632 1427 -20.7 6.9 3.3 3 

4029.07 Ovis Aries 0-3 mon UBA-18427 908 25 AD  1168-1300 -22.2 9.6 3.3 0 
4580.16 Sus domesticus infant UBA-18432 4302 37 3014 2880 -21.8 8.3 3.3 0 
1345.04 Cervus elaphus adol. UBA-18431 3785 28 2196 1939 -20.9 5.3 3.3 1 
1258.03 Bos taurus perinatal UBA-18433 3649 24 2009 1755 -21.7 5.2 3.3 0 

4526.01 
Canis 
domesticus adult UBA-18430 3466 24 1743 1535 -20.6 9.1 3.2 4 

 208	  

Table 3. Results of 14C dating. Mixed marine-terrestrial curves are used for the three 209	  
young sheep with significantly elevated δ13C values (Reimer et al. 2013).  210	  
 211	  

The radiocarbon dating results range widely, from 4499 ± 32 BP (UBA-18429) to 908 ± 212	  

25 BP (UBA-18427) (Table 3). Calibration of the dates for three young lambs – including 213	  

the earliest result in the series – is complicated by their elevated δ13C values suggesting 214	  
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that they consumed significant amounts of marine foods. The use of a mixed 215	  

marine/terrestrial curve is therefore required, with ‘%marine’ being calculated using a 216	  

simple linear extrapolation between marine and terrestrial bone collagen endmembers 217	  

of -12‰ and -21‰, respectively (Barrett and Richards 2004; Richards and Hedges 218	  

1999; Schulting and Richards 2009) (Table 2). The validity of these endmembers has 219	  

been repeatedly confirmed on studies of archaeological marine and terrestrial fauna 220	  

from western and northern Scotland (Charlton et al. 2016; Montgomery et al. 2013; 221	  

Mulville et al. 2009; 2013; Richards et al. 2006). The estimate is assumed to have an 222	  

uncertainty of ±10%, included in the model (OxCal 4.2). A local ΔR of 48 ± 47 years has 223	  

been used, based on the four nearest datapoints in Calib’s Marine Reservoir 224	  

Corrections Database (http://calib.qub.ac.uk/marine/). No correction has been applied 225	  

for cases in which the estimated ‘%marine’ is less than 5%, since the contribution of any 226	  

marine protein is uncertain at best.  227	  

 228	  

Once calibrated, three results fall within the early to mid-third millennium cal BC, 229	  

conventionally designated as Late Neolithic in a British context, although the first 230	  

century or so of the third millennium is probably better understood as culturally ‘Middle 231	  

Neolithic’ in the sense that passage tombs still featured prominently on the mortuary 232	  

landscape (Schulting et al. 2010). Three results fall within the late third to early second 233	  

millennium, towards the end of the Chalcolithic in one case and within the Early Bronze 234	  

Age in the other two. Two results lie within the mid- to late second millennium, on the 235	  

border between the Early and Middle Bronze Age. Finally, the latest determination 236	  

within the group is clearly an outlier, falling within the medieval or late Norse period, cal 237	  

AD 1168–1300. This particular sample, a young lamb, was selected as one of three 238	  

showing unusually low δ13C values, of -22.0‰ or less (Table 1). On this basis we 239	  

suspect, though cannot demonstrate, that all three samples may be medieval in date.  240	  

 241	  

Figure 3. OxCal 4.2 (Bronk Ramsey 2013) plot of calibrated faunal dates from 242	  
Quanterness (excluding UBA-18427, 908 ± 25 BP). 243	  
 244	  

4. Discussion 245	  

4.1 Implications for animal management 246	  
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Significantly elevated δ13C values for three of the 14 sheep analysed from Quanterness 247	  

indicate the consumption of seaweed (for a summary of δ13C measurements made on 248	  

seaweeds from across the UK, see Balasse et al. 2005: table 1). There are no other 249	  

possibilities for enriched 13C resources on the archipelago at this time, nor is there any 250	  

issue with the identification of the skeletal elements (left humeri) selected for analysis: 251	  

they are definitely ovicaprids. Based on the linear extrapolation used to correct their 252	  

radiocarbon dates for the marine reservoir effect, it is estimated that these three lambs 253	  

obtained between ca. 27% and 46% of their dietary protein from seaweeds, albeit 254	  

indirectly since they would be too young to be grazing. The results join previous 255	  

research that has identified a small number of sheep from prehistoric sites on Orkney 256	  

with elevated δ13C values similarly indicating the consumption of seaweeds. Two 257	  

neonatal lambs from Holm of Papa Westray North (HPWN) are represented by 258	  

measurements on bone collagen, initially identified through radiocarbon dating (Bronk 259	  

Ramsey et al. 2002; Schulting et al. 2004), with one sample re-analysed specifically for 260	  

palaeodietary reconstruction (Schulting and Richards 2009). One of these neonates 261	  

yielded extremely elevated δ13C and δ15N values of -12.8‰ and 12.6‰, respectively. 262	  

Essentially, this can be considered a 100% marine diet. However, given that this animal 263	  

did not survive past infancy, this diet may have been in extremis on the part of its 264	  

mother rather than the result of an intentional management strategy. One previously 265	  

suggested possibility is that this sheep was part of a feral flock – or even just a few 266	  

animals – abandoned on the islet, though this in itself may be seen as part of a 267	  

management strategy (Balasse and Tresset 2009; Schulting and Richards 2009: 72).  268	  

 269	  

The animals showing high δ13C values also tend to be elevated in δ15N. While this may 270	  

partly reflect the predictable enrichment caused by the nursing effect (Jenkins et al. 271	  

2001), such high values must be related to the considerably 15N-enriched content of 272	  

seaweeds compared to grasses (Caumette et al. 2007). This is supported by the strong 273	  

positive correlation between δ13C and δ15N values (r2 = 0.767, p < 0.001) seen in the 274	  

Quanterness sheep (excluding the three cases thought to be medieval). Extending this 275	  

analysis to include the sheep from HPWN and other Neolithic and Bronze Age sites on 276	  

Orkney (Jones and Mulville 2016) reduces the strength of correlation (r2 = 0.609, p < 277	  

0.001) but only because of the greater scatter at the low end of the scale for both 278	  
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elements (Figure 4). It is worth noting that, while the sheep/goat data presented by 279	  

Jones and Mulville (2016: table 2) do not include any definite examples of seaweed 280	  

consumption (average -20.8 ± 0.6‰, maximum -19.7‰, n = 26), three animals do have 281	  

values above -20‰. Moreover, there is a slight but significant positive correlation 282	  

between δ13C and δ15N values (r2 = 0.127, p = 0.045), which may plausibly reflect some 283	  

marine influence (cf. Richards and Hedges 1999). As Jones and Mulville (2012: 670; 284	  

see also Jones et al. 2012) note, it is possible that this is the result of foreshore grazing 285	  

on terrestrial plants enriched in 13C and 15N due to salinity effects (Heaton 1987; Britton 286	  

et al. 2008), rather than the consumption of seaweed. However, this cannot account for 287	  

the more elevated values seen in the young animals from Quanterness and HPWN. The 288	  

absence of comparably elevated δ13C values in the larger number of samples analysed 289	  

by Jones and Mulville can be explained by their decision to focus only on mature 290	  

animals, to avoid complications introduced by nursing effects (2012: 668). While entirely 291	  

understandable, this creates ambiguity in the interpretation of the adult values, and 292	  

could mask periods of significant consumption of marine resources.  293	  

 294	  

Figure 4. Plot of bone collagen δ13C and δ15N measurements on sheep/goat from 295	  
Neolithic and Bronze Age Orkney (data: this paper; Jones and Mulville 2016; Schulting 296	  
and Richards 2009). The three squares identify low values thought to be medieval 297	  
intrusions, and are not included in the regression.  298	  
 299	  

Orcadian Neolithic and Bronze Age cattle, by contrast, show no correlation between 300	  

δ13C and δ15N values (r2 = 0.059, p = 0.158) (Figure 5). This is consistent with results 301	  

from tooth enamel carbonate studies on cattle that have found no evidence for seaweed 302	  

consumption (Balasse et al. 2006; Towers et al. 2016), despite their social and 303	  

economic importance on Orkney from the Neolithic onwards. This may reflect the more 304	  

adaptable gut physiology of sheep, in particular their tolerance of the high levels of 305	  

arsenic found in seaweeds (Caumette et al. 2007; Feldman et al. 2000). However, this 306	  

cannot be the entire explanation, since supplementing cattle fodder with seaweed is 307	  

well attested historically (Hallson 1964; Makkar et al. 2016; Martin 1703). Perhaps the 308	  

greater value of cattle – and hence greater investment in them – meant that the bulk of 309	  

the winter hay and chaff from C3 plants was reserved for them.  310	  

 311	  
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Figure 5. Plot of bone collagen δ13C and δ15N measurements of humans and fauna 312	  
from Neolithic and Bronze Age Orkney (data: this paper; Jones and Mulville 2016; 313	  
Schulting et al. 2010; Schulting and Richards 2009).  314	  
 315	  

A number of other examples interpreted as indicative of seaweed consumption in 316	  

Neolithic Orkney derive from sequential δ13C measurements of tooth enamel from Point 317	  

of Cott and HPWN, dating to ca. 3000 cal BC (Barber 1997; Ritchie 2009) and hence 318	  

being contemporary with the earliest results from Quanterness. This method has the 319	  

distinct advantage of providing resolution on an intra-annual seasonal level through 320	  

comparison with accompanying δ18O measurements (Balasse et al. 2005; 2006; 2009; 321	  

Balasse and Tresset 2009). At Point of Cott, one of three sheep second molars 322	  

analysed presented a peak indicating a significantly 13C-enriched diet for part of the 323	  

tooth mineralization period (Balasse et al. 2009). By contrast, all 12 sheep molars (M2s 324	  

and M3s, representing the first and second years of life, respectively – Milhaud and 325	  

Nezit 1991) analysed from HPWN recorded peaks in δ13C values during the colder 326	  

season as represented by lower δ18O values, though not as low as would be expected 327	  

for animals drinking from terrestrial water sources in the winter (Figure 6a) (Balasse et 328	  

al. 2006; Balasse and Tresset 2009). Balasse and colleagues reasonably inferred from 329	  

this that the HPWN sheep consumed fresh seaweed on the seashore (and ingested the 330	  

oceanic water contained therein), rather than being foddered in the winter with dried 331	  

seaweed collected specifically for this purpose (a practice for which there are historical 332	  

references). The high enamel δ13C values suggest that the winter diet consisted of 333	  

approximately 45-70% seaweed (Balasse et al. 2006: 173), so that the animals must 334	  

still have had access to terrestrial vegetation. By contrast, none of the 11 sheep molars 335	  

analysed from the nearby settlement of Knap of Howar, dating to a few centuries earlier 336	  

– to ca. 3600 cal BC – show enriched δ13C values (Figure 6b). As Balasse et al. (2006) 337	  

note, this could place the origins of the practice of seaweed foddering on Orkney 338	  

towards the end of the fourth millennium BC. The Quanterness data support the 339	  

consumption of seaweed by sheep dating to the same time period, but in the absence of 340	  

earlier animals from the site cannot shed further light on this issue.   341	  

 342	  

Figure 6. Plot of sequential enamel δ13C and δ18O measurements on sheep third molars 343	  
from a) Holm of Papa Westray North, and b) Knap of Howar (Balasse and Tresset 344	  
2009). 345	  
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 346	  

The modern and historically attested lambing season on Orkney takes place relatively 347	  

late, from late April to May/June (Balasse et al. 2006). Given a five month gestation 348	  

period, the foetus would be developing in utero from November to birth from late April. 349	  

The scarcity of grass over the winter months would make this period suited to the use of 350	  

seaweed as alternative fodder. Assuming that this pattern is broadly comparable to that 351	  

in the mid-Holocene (and there is no reason to think otherwise, given the absence of 352	  

significant climate change in the intervening period), then lambing would most likely 353	  

take place on the newly revitalised spring pastures. This also seems more probable 354	  

from the point of view of the safety of the newborn lambs, which might be susceptible to 355	  

being swept out to sea in the intertidal zone. Indeed, this is the current and historically 356	  

documented practice on North Ronaldsay, with females being moved from the shore 357	  

onto inland pastures for lambing (Fenton 1978; Hansen et al. 2003).  358	  

 359	  

The proportion of seaweed in the diet of the animals at HPWN suggested by the enamel 360	  

δ13C values (45-70%) would be expected to result in bone collagen values for the 361	  

newborn lambs of ca. -14.7‰ to -17.0‰. While we cannot assume similar animal 362	  

management practices between the two sites, it can be noted that, while the observed 363	  

values for lambs in the 0-3 month age class at Quanterness do retain a ‘marine 364	  

influence’, they are lower than this, ranging from -16.9‰ to -19.9‰. But, following on 365	  

from the above discussion, newborn lambs would be nursing on milk produced by ewes 366	  

feeding on new grass. Because of the rapid growth seen in the skeletons at this age, 367	  

their bone collagen δ13C values would change relatively rapidly, so that after three 368	  

months they might very well fall within the observed range. The few older lambs that 369	  

have been measured show no influence of seaweed. It is surprising that both they and 370	  

the adult animals show so little input into their bone collagen of the winters spent, by at 371	  

least some animals, during the first and second years of life consuming significant 372	  

amounts of seaweed, as indicated by the sequential enamel measurements on second 373	  

and third molars from Point of Cott and HPWN. While we cannot guarantee that any of 374	  

the same animals were measured in the enamel and the bone collagen studies, given 375	  

that all 12 molars analysed at HPWN showed seasonal consumption of seaweed, we 376	  

would expect to find more evidence of this in the collagen of older animals, though 377	  
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admittedly there are only two measurements on adult sheep currently available from the 378	  

site (Schulting and Richards 2009). That it was not detected at Knap of Howar is not 379	  

surprising, since the enamel results did not find any evidence for the practice there.  380	  

 381	  

By contrast, bone collagen of modern adult sheep on North Ronaldsay, confined to the 382	  

seashore for most of the year, have the expected high δ13C values averaging ca. -13‰ 383	  

(Ambers 1990). While the adolescent and adult sheep from Quanterness do have 384	  

significantly higher average δ13C values than the cattle from the site (-20.9‰ vs. -385	  

21.5‰, Student’s t-test, t = 3.18, p = 0.011), the difference is only 0.6‰. This is hard to 386	  

reconcile, though of course the same animals are not being measured in the enamel 387	  

and collagen studies, nor indeed are they from the same site, though they are 388	  

approximately contemporary and in relatively close proximity to one another. (That 389	  

measurements on enamel reflect whole diet while collagen measurements are biased 390	  

towards dietary protein (Ambrose and Norr 1993) should not be an issue here, since 391	  

seaweeds and grasses appear to have similar protein content and digestibility (Hansen 392	  

et al. 1991)). Statistically significant differences of a similar order were identified 393	  

between sheep/goat and cattle δ13C values by Jones and Mulville (2016: 668-669) for 394	  

Neolithic, Bronze Age and Iron Age Orkney, as well as for the Bronze Age of the 395	  

Western Isles (though not the Neolithic or the Iron Age). However, as noted above, this 396	  

could relate in part to coastal grazing rather than episodic high seaweed consumption. 397	  

Sequential enamel δ13C analyses of sheep and cattle from the Iron Age and Norse 398	  

periods in Orkney have found no evidence for seaweed foddering (Mainland et al. 399	  

2016). Ambers (1990) also found no evidence for the practice in prehistoric Orkney, in a 400	  

study using δ13C measurements on bone collagen.  401	  

 402	  

Given that only very young animals show a distinct ‘marine’ δ13C signal, it is possible 403	  

that foddering pregnant ewes with seaweed was in fact a last resort when terrestrial 404	  

resources failed, so that young animals born when their mothers had been on this diet 405	  

were more likely to die, and hence retain elevated δ13C values in their bone collagen. 406	  

This is reminiscent of a recent study of sequential human dentine isotope 407	  

measurements from a Neolithic site on the small island of West Voe, Shetland, showing 408	  

that those individuals with periodic high use of marine resources were more likely to die 409	  
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young (Montgomery et al. 2013). In both cases the burial assemblage is intrinsically 410	  

biased by differential survivorship – the classic ‘osteological paradox’ (Wood et al. 411	  

1992).  412	  

 413	  

4.2 Implications for Neolithic human diet 414	  

The evidence for seaweed consumption by pregnant ewes, seen most clearly in 415	  

newborn lambs, raises questions regarding their impact on human diets. Essentially, a 416	  

‘marine’ isotopic signal could be introduced through the consumption of a terrestrial 417	  

mammal. As discussed in Schulting and Richards (2009), this is an alternative 418	  

explanation to the direct exploitation of marine resources for the slight elevation in the 419	  

δ13C values observed in human bone collagen from the chambered tomb of HPWN. 420	  

However, this slight elevation was being considered in comparison with the human 421	  

results from Quanterness, where there seems to be no clearly detectable impact on 422	  

δ13C values of the use of marine resources (-20.6 ± 0.3‰), whether direct or indirect 423	  

(Figure 2). Following the discussion above, this is perhaps not surprising. Only a small 424	  

number of very young lambs show significantly enriched carbon and nitrogen isotope 425	  

values. Once on grass, which likely was the case from birth, their flesh values would 426	  

very quickly become depleted in 13C, reflecting this dietary change. The bone collagen 427	  

of adult sheep appears to show surprisingly little impact of seaweed consumption, 428	  

though interpretation is complicated by the bone and tooth enamel analyses being 429	  

conducted on different animals.  430	  

 431	  

Another finding to emerge from this study is that the use of direct radiocarbon dating of 432	  

at least a sample of faunal remains is essential in those cases where the 433	  

contemporaneity of the faunal assemblage cannot be securely assigned to a phase on 434	  

archaeological/stratigraphic grounds. This is highlighted here by the fact that only three 435	  

of the nine determinations returned results coeval with the use of the chambered tomb 436	  

for burial in the Late Neolithic. Despite the presence of intrusive fauna, it is interesting to 437	  

note that the early dates include one of the three pigs represented in the study. Pigs are 438	  

relatively rare in Orcadian Neolithic faunal assemblages, and this can be explained by 439	  

the limited availability of natural habitat suited to their foraging preferences (i.e., 440	  

woodland). Hence, they would likely need to be supplied with food at least some of 441	  
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which would be suitable for humans, and would thus be in competition (McCormick and 442	  

Buckland 2003: 91; Schulting 2013). A small number of pigs may have been fed on 443	  

domestic refuse and crop waste. Pigs can also be fed marine foods (seaweed, shellfish, 444	  

fish), but, surprisingly, there is no isotopic evidence for this in Orcadian prehistory. It is 445	  

not until the Iron Age that we see convincing evidence for this practice, not in Orkney, 446	  

but in the Western Isles (Jones and Mulville 2016: figure 13).  447	  

 448	  

Three faunal samples can be placed within the Chalcolithic/Early Bronze Age, while 449	  

another two lie at the Early-Middle Bronze Age border. This chronology is considerably 450	  

more extended than that for the human remains (Schulting et al. 2010). What is less 451	  

clear is the nature of the deposition of the faunal remains post-dating the use of the 452	  

tomb for burial. The lack of other finds (e.g., pottery) dating to the Bronze Age suggests 453	  

that the deposition may not have been intentional, or at least not ritual, but rather that 454	  

animals sought shelter in the monument and died there naturally, or were disposed of 455	  

there by Bronze Age farmers. A re-examination of the fauna for butchery marks might 456	  

help in choosing between these alternatives, although the mixed nature of the deposits 457	  

means that an extensive programme of radiocabron dating would be required to identify 458	  

the Bronze Age component. Finally, one juvenile sheep dates to the medieval period, 459	  

known as the late Norse period on Orkney. The latter is particularly significant, since it is 460	  

one of a group of three animals with notably lower than average δ13C values at the site. 461	  

Assuming that the other two animals are also later intrusions, it is clear that using these 462	  

results for formal palaeodietary modelling of the human isotopic results could be highly 463	  

misleading. If it is confirmed that all three are late, a question is raised over why they 464	  

should be depleted in 13C during this period.  465	  

 466	  

5. Conclusions 467	  

The faunal δ13C and δ15N data from Quanterness provide further evidence for the 468	  

consumption of seaweeds, probably by pregnant ewes, on Orkney from the late fourth 469	  

millennium BC, with additional cases in both the early and late third millennium, 470	  

extending the temporal range of this practice into the Chalcolithic. However, the extent 471	  

to which this was part of an ongoing, intentional management strategy remains unclear. 472	  

An alternative scenario is that the use of seaweed was a fallback strategy in years 473	  
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where insufficient terrestrial grasses were available to last the winter. Only a very 474	  

minimal increase in δ13C values can be found in the bone collagen of older lambs and 475	  

adult animals, so that little impact on human diets would be expected, consistent with 476	  

what has been observed in the previously published human results from Quanterness 477	  

(Schulting et al. 2010).  478	  

 479	  

It is clear that further research is required to better understand the origins and 480	  

implications of the practice of seaweed foddering in northern Europe. Enamel studies 481	  

have indicated recurrent substantial consumption of seaweed in the winter by 482	  

adolescent and adult sheep, yet the impact on bone collagen is minimal. However, 483	  

these studies have rarely been joined up, and have been carried out on different 484	  

individuals often from different sites. Clearly there is scope for a more coordinated 485	  

effort, which could also include dental microwear analysis (e.g., Mainland et al. 2016), 486	  

which has been shown to be capable of distinguishing between seaweed and grass 487	  

grazing sheep (Mainland 2000). There is currently an impression that the practice did 488	  

not continue into later prehistory, suggesting that perhaps it was not particularly 489	  

successful as a management strategy, at least until revived in the nineteenth century on 490	  

North Ronaldsay. It should not be assumed that once a new farming practice appears, it 491	  

will continue to be used thereafter. Future research will need to focus on immature 492	  

animals and sequential sampling of both enamel and dentine.  493	  

 494	  
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Figures and Tables 739	  
 740	  
Figure 1. Map of Orkney showing locations mentioned in the text.  741	  
 742	  
Figure 2. Plot of δ13C and δ15N results from Quanterness 743	  
 744	  
Figure 3. OxCal 4.2 (Bronk Ramsey 2013) plot of calibrated faunal dates from 745	  
Quanterness (excluding UBA-18427, 908 ± 25 BP). 746	  
 747	  
Figure 4. Plot of bone collagen δ13C and δ15N measurements on sheep/goat from 748	  
Neolithic and Bronze Age Orkney (data: this paper; Jones and Mulville 2016; Schulting 749	  
and Richards 2009). The three squares identify low values thought to be medieval 750	  
intrusions, and are not included in the regression.   751	  
 752	  
Figure 5. Plot of bone collagen δ13C and δ15N measurements on humans and fauna 753	  
from Neolithic and Bronze Age Orkney (data: this paper; Jones and Mulville 2016; 754	  
Schulting et al. 2010; Schulting and Richards 2009).  755	  
 756	  
Figure 6. Plot of sequential enamel δ13C and δ18O measurements on sheep third molars 757	  
from a) Holm of Papa Westray North, and b) Knap of Howar (Balasse and Tresset 758	  
2009). 759	  
 760	  
 761	  
Table 1. Quanterness fauna sample details and results of δ13C and δ15N analysis. 762	  
 763	  
Table 2. Summary statistics for Quanterness fauna δ13C and δ15N results. 764	  
 765	  
Table 3. Results of 14C dating. Mixed marine-terrestrial curves are used for the three 766	  
juvenile sheep with significantly enriched 13C (Reimer et al. 2013).  767	  
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Figure	  6a	  

	  
Figure	  6b	  
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