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ABSTRACT:  

Natural spider silk fibers have impressive mechanical properties (outperforming many man-made 

fibers) and are moreover biocompatible, biodegradable and produced under benign conditions 

(using water as a solvent at ambient temperature). The problems associated with harvesting natural 

spider silks inspired us to devise a method to produce spider silk-like proteins biotechnologically (the 

first subject tackled in this highlight); we subsequently discuss their processing into various materials 

morphologies, and some potential technical and biomedical applications. 
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INTRODUCTION 

Spiders have evolved to be able to produce a variety of task-specific silks for catching prey (via 

trapdoors and webs), protection and preservation of their offspring and prey (in cocoon-like 

structures) and as lifelines to escape from predators.1,2 More than 40,000 different species of spiders 

have been identified, of which approximately half catch their prey in webs. Orb webs3-5 are a 

particularly interesting example of web design and they are constructed from five different types of 

task-specific silks, of which major ampullate and flagelliform silks are the most important (see figure 

1).6,7 In contrast to silkworms, it is impossible to farm most spiders in large scale due to their 

cannibalistic nature, therefore spider silks are typically obtained via harvesting of the silk at its point 

of application (in the case of spider webs great attention to detail is required to obtain 

uncontaminated samples); anaesthetization of single spiders followed by reeling of the silk fibers 

from its source gland (in the case of major and minor ampullate and cylindriform silks), or extraction 

of the spidroin directly from the gland in which it is produced (after killing the spider). In order to 

circumvent such complicated procedures, identification of the protein sequences has allowed the 
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recombinant production of genetically engineered analogues in sufficient yield and purity for 

application as high performance biopolymers.8-16 

 

Major ampullate silk 

Silk fibers made of proteins produced in the major ampullate silk gland (MA silk, molecular weight 

(MW) >300 kDa) have a very high-tensile strength (comparable to Kevlar) and moderate elasticity, 

and are used as a scaffold upon which to attach other silks during the construction of a web and as a 

lifeline when it is necessary to escape from a predator. MA silks have diameters between 1 and 20 

µm (depending upon spider species) and have a core–shell type structure (depicted in figure 2).17-20 

The core contains two major proteins (Major Ampullate Spidroins 1 and 2) that are composed 

predominantly of glycine, alanine and proline (although the quantity of the latter varies significantly 

between species). Major ampullate spidroins of Araneus diadematus and Nephila clavipes spiders 

are reminiscent of block copolymers containing blocks of polyalanine and either (GGX)n (where X is 

typically tyrosine, leucine or glutamine) or GPGXX. The alanine-rich blocks are known to form β-

sheet stacks that are responsible for the high-tensile strength of MA silks; whereas the blocks of 

(GGX)n form 310-helices , and the blocks of GPGXX form β-turn spirals imparting elasticity/flexibility 

to the proteins (see figure 3). 

In nature, Araneus diadematus spiders store ADF-3 and ADF-4 proteins (MWs > 200 kDa) as highly 

concentrated (up to 50 wt%) solutions in a sac, known as the lumen, without the onset of 

undesirable aggregation21 inside the spider. When necessary, the spider exposes the proteins to 

certain chemical and mechanical stimuli that trigger protein assembly into fibres in which the two 

proteins comprising the core filament are inhomogeneously distributed (see figure 2) (the origin of 

this inhomogeneous distribution is due to the difference in primary amino acid sequence of the two 

proteins).19,20 The more ‘crystalline’ protein is distributed throughout the core of the lifeline fiber 
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forming β-sheet  rich crystals, with the more ‘elastic’ protein in the core of the fiber forming a 

matrix. The core is coated in a layer of silk proteins produced in the minor ampullate gland, a 

glycoprotein coat, and finally a lipid coat (see figure 2). 

 

Flagelliform silk 

Silk fibers made of proteins produced in the flagelliform silk gland (Flag silk, MW ca. 500 kDa) are 

highly elastic and are used to produce the capture spiral. In comparison to MA silk, Flag silk is 

composed of only one major protein that contains greater amounts of proline and valine, and 

reduced amounts of alanine. Flag silk protein from N. clavipes is comprosed of blocks of (GGX)n that 

form 310-helices, blocks of GPGXX that form β-turn spirals (imparting elasticity/flexibility to the 

fibers), and a highly conserved non silk-like spacer sequence the function of which is uncertain, 

however, its polar hydrophilic nature suggest that it may be important for both cross-linking and 

hydration of the fiber.8 

 

BIOTECHNOLOGICAL PRODUCTION OF SPIDER SILK PROTEINS  

Inspired by the fantastic properties of spider silk proteins22-25 we began research into their 

production in 2002.22,26,27 Initially, we concentrated on developing a method for recombinantly 

producing proteins with primary structures identical to those of naturally occurring Araneus 

diadematus major ampullate silk proteins (ADF-3 and ADF-4) and Nephila clavipes flagelliform silk 

proteins. We used baculoviruses to transfer partial cDNAs coding for ADF-3, ADF-4 and flagelliform 

silk proteins (containing genetic information corresponding to the repetitive backbone and non-

repetitive Ccarboxy-terminus of the proteins) into an insect cell line (Sf9 cells derived from the fall 

armyworm Spodoptera frugiperda) which we used as expression hosts for the silk proteins. Using 

this methodology we can successfully produce proteins (MWs of up to ca. 120 kDa) with accurate 
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primary structures, which has enabled us to carry out initial studies of the self-assembly properties 

of the proteins. However, we were deterred from scaling up the fermentations by the relatively low 

yield of ca. 30 mg per liter.28,29 

Motivated by a desire to produce spider silk proteins at low cost on an industrial scale we decided to 

utilize Escherichia coli (E. coli) BLR(DE3) bacteria as host cells for the production of recombinant silk-

like proteins, and have successfully designed and produced a variety of silk-like proteins based upon 

the major ampullate silks of Araneus diadematus spiders (ADF-3 and ADF-4) and Nephila clavipes 

flagelliform silk proteins. Our proteins (with molecular weights that are precisely controllable 

between 40 and 120 kDa) are obtained in high yield (> 500 mg per liter) by high density fermentation 

in E. coli and can be purified without the need for chromatographic separation which can be 

expensive and time consuming.30 Whilst optimizing the fermentation process, we observed that 

although the BLR strain produces silk proteins during fermentations carried out in full media, it does 

not do so in cheaper minimal media due to an isoleucine auxotrophy (unless the media is 

supplemented with the respective amino acid); by use of an alternative strain of E. coli 

(HMS174(DE3) K-12 derivatives) we are now able to produce silk proteins by fermentation using 

minimal media which we regard as a significant step towards the industrial production of our 

proteins.31 

 

SILK PROTEIN PROCESSING 

 

Silk protein solubility 

Naturally occurring spider silk fibers are highly insoluble in water (partially due to their relatively 

high β-sheet content physically cross-linking the proteins) and consequently require strongly 

denaturing conditions (such as 6M guanidinium thiocyanate which disrupts intra/inter-molecular 
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hydrogen bonds) to dissolve them.19,20,28 Interestingly our recombinantly produced proteins with 

primary amino acid sequences identical to the natural proteins (produced by fermentation of Sf9 

cells)28 displayed remarkably different solubilities in water, with ADF-3 (the ‘elastic’ protein) being 

highly soluble (> 30 mg/mL) whereas ADF-4 (the ‘crystalline’ protein) was markedly less soluble (ca. 1 

mg/mL). Our genetically engineered silk-like proteins (eADF-3 and eADF-4) produced by 

fermentation in E. coli have moderately improved solubilities as there are slightly fewer hydrophobic 

amino acids in the proteins.30 Although water is a fantastic solvent for materials processing as it is 

readily available, cheap and biocompatible, for maximum versatility it is beneficial to be able to 

additionally  use alternative solvents, and our silk-like proteins are luckily also highly soluble in non-

aqueous solvents such as: formic acid; hexafluoroisopropanol and certain ionic liquids.32 This 

versatility of solvent choice has facilitated their processing into various morphologies (including 

fibers, films, foams, hydrogels, spheres and capsules depicted in figure 4)33, and the following 

sections of this highlight are devoted to their preparation. 

 

Fibers 

As outlined above, natural spider silk fibers have been used by mankind for applications as diverse as 

hunting (bow strings, cross-hairs, fishing lines or nets)34 and wound healing (sutures/tissue scaffolds) 

due to their mechanical properties and biocompatibility. The preparation of artificial spider silk 

fibers with mechanical properties similar to natural spider silk fibers (from recombinantly produced 

spidroins) would allow the mass production of very tough fibers with clear application in textiles or 

wound healing.27,35 

Spiders have evolved a highly efficient system utilising processes such as ion exchange (changing the 

relatively chaotropic sodium chloride for the strongly kosmotropic potassium phosphate), extraction 

of water, acidification and mechanical forces (elongational flow, shear and stretching),36 for the 
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production of very tough β-sheet rich fibers (with μm scale diameters).25 Inspired by this natural 

process, we added potassium phosphate to concentrated aqueous solutions (ca. 150 mg/mL) of our 

proteins and then applied mechanical shear (by pulling a fine metal rod from the viscous solution, a 

process known as hand-drawing) allowing us to produce smooth β-sheet rich fibers (with μm scale 

diameters – see figure 4).37 More recently we have designed and manufactured a microfluidic device 

capable of producing β-sheet rich fibers by applying the principles outlined above,38 and are 

currently investigating a variety of other methods of biomimetic fiber production (such as that 

depicted in figure 5) that will enable us to produce fibers (with μm and nm scale diameters) on an 

industrial scale.39-41  

 

Hydrogels 

Hydrogels are the subject of intense current research interest due to their potential application 

within cosmetics, drug delivery devices, food additives (rheology modification) and tissue scaffolds in 

tissue engineering. We have demonstrated that addition of potassium phosphate (< 300 mM) or 

methanol (ca. 10% v/v) to aqueous solutions of engineered spidroins (at concentrations of ca. 2 wt%) 

induces their self-assembly into β-sheet rich nanofibrils42 that hierarchically assemble into a sample 

spanning network that ultimately immobilizes the solvating water, yielding a hydrogel. Such self-

assembled hydrogels can be disrupted by agitation or shearing; consequently, chemical cross-linking 

of the hydrogels with ammonium peroxodisulfate and tris(2,2’-bipyridyl)dichlororuthenium was 

employed to produce robust and highly elastic hydrogels (see figure 4).42,43 We are currently in the 

process of investigating spider silk-like protein based hydrogels for a number of different biomedical 

applications.  
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Spheres 

The encapsulation and delivery of active ingredients (such as drugs, dyes, flavors or perfumes) is 

commonly achieved by formulation within polymer spheres. With this in mind we prepared solid 

protein spheres (with diameters tunable between nanometer and micrometer scale - see figure 4) by 

the addition of high concentrations of potassium phosphate (> 400 mM)42,44,45 to solutions of our 

engineered spidroins. The β-sheet rich spheres form due to the liquid–liquid phase separation of a 

protein-rich phase in a protein-poor supernatant, owing to the potassium phosphate induced salting 

out of the protein-rich phase (inspired by the natural fiber spinning process). Sphere size can be 

controlled with two simple parameters, protein concentration and mechanical shear (in this case the 

mixing intensity of the protein solution with the potassium phosphate solution); increasing the 

protein concentration resulted in larger spheres, whereas increasing the mixing intensity resulted in 

smaller spheres.45 Moreover, we have encapsulated hydrophobic compounds (e.g. β-carotene) 

within such β-sheet rich spheres, and clearly demonstrated that the spheres were undigested in 

artificial gastric fluid and completely digested in artificial intestinal fluid at 37 oC. This sort of 

controlled release highlights the potential of the protein spheres for use as drug delivery vehicles 

that remain intact in the stomach and release the encapsulated drug in the small intestine.46 

 

Capsules 

The encapsulation and delivery of active ingredients (such as drugs, dyes, flavors or perfumes) may 

also be achieved by formulation within polymer capsules. The inherently surfactant-like nature of 

our spider silk-like proteins causes them to spontaneously assemble at interfaces, such as those 

found between air/water or organic solvents/water.47-50 We have utilized this property to prepare 

capsules (with tunable diameters) using water-in-oil (toluene) emulsions as templates, yielding β-

sheet-rich capsules that are thin yet mechanically and chemically stable (see figure 4). The 
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microcapsules can be transferred into aqueous solution either via centrifugation into an aqueous 

sub-layer, or dilution of the toluene by the addition of an excess of ethanol and water.51,52 The 

capsules are porous (with an average MW cutoff of ca. 27 kDa) therefore allowing small molecules 

(such as fluorescein – a simple model for a low molecular weight drug) to diffuse freely (resulting in 

a burst release), whereas macromolecules (such as FITC labeled dextran – a simple model for a 

macromolecular drug) are retained within the capsules (provided they are larger than the cutoff).51 

The capsules can be degraded upon exposure to Proteinase K in a matter of minutes. Interestingly 

this degradation can be prevented by chemically cross-linking the proteinaceous membrane of the 

capsules via photo-initiated oxidation with ammonium peroxodisulfate and tris(2,20-

bipyridyl)dichlororuthenium(II).52 

 

Films 

Coatings are commonly applied to the surface of materials to modify their surface properties. The 

biocompatibility of our spider silk-like proteins should allow their application as coatings for 

biomedical implants. As noted above, our spider silk-like proteins are soluble in non-aqueous 

solvents such as hexafluoroisopropanol in which they tend to adopt an α-helical conformation, 

consequently films (such as those shown in figure 4) cast from solutions of recombinant spidroins in 

hexafluoroisopropanol tend to be α-helix rich and water soluble.33 The as-cast films are smooth, and 

exposure to potassium phosphate or methanol induces β-sheet formation (rendering the films 

insoluble in water) and increases the surface roughness.53,54 We have prepared multilayer films32 and 

chemically modified the surface of such films via carbodiimide-mediated coupling of active enzymes 

(e.g. β-galactosidase) through the carboxylic acid groups displayed on the backbone of the spidroins. 

The retention of enzymatic activity of films displaying β-galactosidase on their surface was shown 

using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside as a substrate.55 
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CONCLUSIONS 

We have established a simple and effective method of producing and purifying spider silk-like 

proteins. Our spider silk-like proteins are soluble in both aqueous and non-aqueous solvents, which 

allows the preparation of a variety of materials morphologies (e.g. fibers, films, foams, hydrogels, 

spheres and capsules). We believe that in the future materials derived from our recombinantly 

produced spider silk-like proteins will be utilized for applications requiring large quantities of our 

proteins (e.g. textiles) and in high-tech biomedical applications (such as tissue scaffolds and drug 

delivery devices); and furthermore, that de novo designed spider silk-like proteins currently under 

development in our laboratories will be of great interest due to their highly tunable structures. 
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LEGENDS FOR PROFILES AND FIGURES 
 
Cover illustration. The production and processing of spider silk proteins: we produce Spider silk-like 

proteins using biotechnology, and subsequently utilise biomimetic processes to prepare 
useful materials morphologies that have a variety of technical and biomedical applications. 
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Figure 1. The two most important silks (major ampullate and flagelliform silk fibers) in orb webs 

spun by Araneus diadematus spiders. 
 
 
 
 
 
 
 

 
Figure 2. Schematic representation of a cross section of major ampullate silk fibers. 
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Figure 3. The repetitive blocks of amino acids that give rise to the common secondary structural 

motifs in spider silk proteins. 
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Figure 4. The various morphologies that we have prepared with our bioengineered silk proteins. 
 
 
 
 
 
 
 
 

 
Figure 5. Biomimetic silk fiber spinning process. 
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