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Gabions: evaluation of potential as low cost roadside barriers 

Giuseppina Amato1, Fionn O’Brien2, Bidisha Ghosh3, Ciaran Simms4 

This paper evaluates the potential of gabions as roadside safety barriers. Gabions 

have the capacity to blend into natural landscape, suggesting that they could be 

used as a safety barrier for low-volume road in scenic environments. In fact, 

gabions have already been used for this purpose in Nepal, but the impact 

response was not evaluated. This paper reports on numerical and experimental 

investigations performed on a new gabion barrier prototype. To assess the 

potential use as a roadside barrier, the optimal gabion unit size and mass were 

investigated using multibody analysis and four sets of 1:4 scaled crash tests were 

carried out to study the local vehicle-barrier interaction. The barrier prototype 

was then finalized and subjected to a TB31 crash test according to the European 

EN1317 standard for N1 safety barriers. The test resulted in a failure due to the 

rollover of the vehicle and tearing of the gabion mesh yielding a large working 

width. It was found that although the system potentially has the necessary mass to 

contain a vehicle, the barrier front face does not have the necessary stiffness and 

strength to contain the gabion stone filling and hence redirect the vehicle. In the 

EN 1317 test, the gabion barrier acted as a ramp for the impacting vehicle, 

causing rollover.  

Keywords: crash test; safety barriers; gabions. 

Introduction 

Existing roadside safety barrier systems are often not aesthetically pleasing and 

expensive to install and maintain, providing scope for developing alternatives with 
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improved life-cycle costs and low environmental impact.  

The only barrier design with good aesthetics which is used in Europe is the 

mixed timber and steel guardrail but this is far more expensive than regular steel or 

concrete barriers. An alternative full timber guardrail for highways has been designed at 

TU Delft in the Netherlands and tested according to EN1317 for H2 Containment level 

[25] but it is not currently used. This guardrail meets environmental and engineering 

criteria but has a high installation and maintenance cost. In the US various Federal 

Agencies have funded the “New TL-2 Rough Stone Masonry Guardwall” project, a 

stone covered concrete barrier which has been successfully tested to meet the TL-2 

safety performance criteria of Report 350 [21]. This barrier is a variation of the widely 

used concrete barriers [20] especially designed to meet aesthetic criteria. 

This paper reports 1) the modelling and 2) crash testing according to the 

European Standard EN1317 [8, 9] of a novel Normal Containment (N1) low-cost barrier 

made using natural materials, a project funded in 2011in Ireland by the National Roads 

Authority (NRA).  

Following initial evaluation, gabions were envisaged as a possible alternative 

safety barrier design. The capacity of blending with the natural landscape and the cost 

which is comparable with low-cost barriers already in use (steel cable and steel w-

beam) made them a potential choice for a novel low cost barrier for scenic National 

Secondary Roads (Design speed 85 km/h). 

Gabions are modular structures made of steel wire mesh laced together and 

filled with locally sourced stones. To date gabions have been extensively used as 

retaining wall structures to provide soil reinforcement and embankment protection. 

Analytical, experimental and numerical analyses of gabions in these applications have 

been performed. Hearn et al. [11] was the first to propose a  multibody model in the case 



of a dyke-type structure subjected to impact. However, very few dynamic tests are 

available, among these Lambert et al. [15], Betrand et al. [6] and Nicot et al. [19] on 

rockfall embankments and Soudé  et al. [23] on geocell-reinforced walls subjected to 

localised impacts.  

In Nepal, gabion units have been used as roadside crash barriers since at least 

the 1990s to avoid median crossings and provide protection from cut slopes [13, 24]. 

However, there is no evidence that this gabion barrier  is effective in reducing occupant 

injuries and it  has not been crash tested according to either the European Standard 

EN1317 [9] or the U.S. standard [17]. The gabion barrier reported in this paper is a 

modular chain of gabions laced end-to-end together by selvage wire, see Figure 1. The 

gabion unit dimension is 1.0x0.75x0.75 m (L x W x H). The height of the gabion 

barriers is limited in order to avoid restricting the driver’s view. Commercially available 

gabion units were used to reduce costs. 

The barrier working mechanism is mixed: similar to concrete barriers, the 

impacting vehicle is slowed down because of the momentum exchange with the barrier. 

On the other hand, the gabion units connected on the front face only should behave as a 

chain and redirect the vehicle into the road lane as a steel w-beam or cable guardrails 

would do.  

The potential of the gabion barrier was assessed through three stages: 

1. A MADYMO multibody (MB) model of the TB31 crash test of the gabion barrier 

was built to investigate the optimal gabion unit length and vehicle-barrier 

interaction. Published [2, 4]  and new experimental input data were used to input the 

model. 

2. Several sets of 1:4 scaled crash tests were carried out to investigate the gabion-

vehicle interaction.  



3. A full scale TB31 crash test of the gabion prototype was performed at the UK 

Transport Research Laboratory (TRL). 

The paper is structured as follows: a description of the “EN1317 requirements” for a 

new safety barrier design is first given. Then the assessment of the gabion barrier 

prototype is reported in the “Multibody modelling of TB31 crash test”, “Scaled TB31 

crash test” and “Full scale TB31 crash test” sections followed by “Discussion” and 

“Conclusions”. 

EN1317 requirements  

For a N1 containment level barrier, which is generally the minimum containment level 

for barriers in Europe, the EN1317 Standard prescribes a TB31 crash test, which 

involves a 1500 kg vehicle impacting the barrier at 80 km/h at an angle of 20 degrees.  

The barrier Working Width is used to measure the required deadspace for the 

barrier and the Exit Box criterion dictates the trajectory of the vehicle after it leaves the 

barrier; vehicle roll-over is not allowed. The Acceleration Severity Index (ASI) 

measures the acceleration at the Centre of Gravity (CG) of the vehicle. The Theoretical 

Head Impact Velocity (THIV) is used for to evaluate the possibility that the occupant’s 

head strikes the vehicle interior.  

Multibody modelling of TB31 crash test  

The multibody software MADYMO was used to model the TB31crash of the gabion 

barrier. Multibody simulations have already been proved reliable in simulating vehicle-

barrier impact scenarios [5, 10, 14, 22] and are particularly suitable for mass based systems 

such as concrete barriers which have a working mechanism based on momentum 

exchange between the impacting vehicle and the barrier. The vehicle-gabion interaction 

and the optimal gabion unit length were the focus of the multibody analysis. The MB 



model is composed of a vehicle system, a barrier system and a ground system. The 

vehicle model was previously validated using the results of experimental data of two 

concrete barrier crash tests [2].  

Gabion unit 

Compression, shear and bending tests of gabion units were carried out at the University 

of Bologna [1] and mesh tensile tests were carried out by Bertrand et al. [7]. Static FE 

modelling of a single gabion unit by Lin et al. [16] has also shown that it is appropriate to 

use the apparent total moduli G and E of a gabion to capture the compound deformation 

behaviour of wire mesh and filling stones. Based on these published results a 

Timoshenko beam representation of a gabion beam was previously built and validated 

[4].  

The multibody model of the gabion was thus built on the assumption that a 

gabion unit behaves as a Timoshenko beam. To reproduce this mechanical, each unit 

was modelled by assembling a variable number of rigid body gabion sub-units using 

shear and tensile springs, see Figure 2a.  

A sub-unit length of 0.4 m was chosen and four different gabion lengths were 

modelled: 0.8 m, 1.2 m, 2.0 m and 2.8 m; each composed of 2, 3, 5 and 7 sub-units 

respectively. Sub-units were assigned mass and inertia based on a gabion section of 

0.75x0.75 m, packing ratio of 65% and gabion unit mass per unit of volume of 1755 

kg/m3. Three contact surfaces were assigned to each sub-unit: one hyper-ellipsoid for 

modelling the contact between two neighbouring barrier units or sub-units and two 

planes for modelling the barrier-vehicle interaction: one parallel to the gabion front face 

and one parallel to the gabion side face (see Figure 2b). This side plane surface was 

used to model the possible impact of the vehicle on the gabion corner due to relative 



displacement of the units, and the frictional forces acting along the barrier front face. A 

friction coefficient was also set on the surfaces parallel to the barrier front face.  

All the force-penetration curves characterizing the contact between the gabion 

sub-units were obtained by multiplying the experimental stress-strain results [1, 4] by the 

contact area (for the force) and by the element length (for the penetration). The gabion-

vehicle contact curves were obtained in a similar way based on estimated area of 

contact. The contact curves are reported in Figure 3. 

Gabion lacing connection 

Three tensile tests using an Instron 5589 were carried out to assess the force 

deformation characteristics of the lacing system connecting the front faces of the gabion 

units. The tests consisted in pulling of two adjoining laced panels apart. Woven mesh 

PVC coated panels 500 mm wide, having mesh opening of size 80 x 100 mm and 

2.7 mm wire diameter were used. The edges of the panels, ending with a selvage wire, 

were laced using 2.7 mm PVC coated wire. Each of the two panels was connected to a 

clamp designed to restrain the mesh and stop the side edges from contracting (see 

Figure 4a). An Instron 5589 machine was used for applying the loading. 

The force-displacement curves are shown in Figure 4b and in Table 1the 

maximum load per meter and corresponding displacement are reported. A consistent 

pattern in terms of slope, peak and maximum elongation was observed; failure was 

always preceded by a high elongation and the connections were not sensitive to 

individual wire failure. The experimental curves obtained were used to calibrate the MB 

gabion spring connections working in tension only. The force-displacement law used 

for the springs is plotted in Figure 4b. 



Experimental gabion/ground friction coefficient  

In order to evaluate the friction behaviour between gabions and different ground 

surfaces a set of tests were performed, see Appendix A. Coulomb friction coefficients 

between 0.31 and 0.7 were measured. In the MB model the value obtained for the 

tarmac (µ=0.46) was used. 

Simulations 

To investigate the vehicle-gabion interaction and in particular the possibility that the 

vehicle would penetrate into the gabion and spin out, a range of gabion-vehicle friction 

coefficient (from 0 up to 1.6) were used. Three sets of numerical simulations were run. 

Each simulation set differed by the number of the transversal barrier surfaces interacting 

with the multibody vehicle, see Figure 5. The following simulation sets were run:  

(1) Transversal surfaces included for each gabion sub-unit (YES model);  

(2) Transversal surfaces not included for each gabion sub-unit (NO model);  

(3) Transversal surfaces only included for the first sub-unit of each gabion 

(CORNER model). 

Each model was run for the four gabion lengths and for five vehicle-barrier 

friction coefficient values: µ = 0, µ = 0.4, µ = 0.8, µ = 1.2, µ = 1.6. 

Multibody model results  

In Figure 6, the ASI, THIV, Exit Box and barrier deflection values obtained for the YES, 

CORNER and NO models of gabions with different unit lengths and coefficients of 

friction are presented. Necessary conditions for passing the crash test are ASI ≤ 1 (score 

A) or ASI ≤ 1.4 (score B); THIV ≤ 33 km/h and barrier displacement inside the 2.1 m 

wide stripe (working width class 7).The solid bars in Figure 6 indicate appropriate 



vehicle redirection during simulation (Exit Box successful) while hollow bars indicate 

that the vehicle did not stay inside the Exit Box (Exit Box not successful) due to the 

vehicle spinning out (the car rotated around the contact point with the rear of the vehicle 

moving away from the gabion wall) or rolling over. The following comments can be 

made: 

• The YES model (with orthogonal barrier surfaces per each gabion sub-unit) 

generally gives the highest ASI and THIV. The CORNER model (with 

orthogonal barrier surfaces at the start of each gabion) gives the second highest 

values and the NO model the lowest. Departure from this trend (for example for 

gabion size 2.8 m and friction equal to 0.0, Figure 6a) results because the peak 

ASI score could correspond to the primary impact (front corner of the vehicle) 

or to the secondary impact (vehicle back). 

• ASI and THIV increase with increasing vehicle-barrier friction force coefficient. 

• The relationship between barrier maximum displacement and friction coefficient 

has for the NO and CORNER models a minimum for µ = 1 and µ = 0.4-0.8 

respectively, while the YES model is increases with the coefficient of friction. 

However, the three models differ only for the intensity of the total vehicle-

barrier force in the direction parallel to the barrier, that is the sum of the 

longitudinal force due to friction and the normal contact force due to the planes 

perpendicular to the barrier face (absent in the NO model).  

For this reason it is reasonable to assume that all the three models show a same 

pattern and that the YES model, having the highest total longitudinal contact 

force is minimised for a coefficient of friction lower than zero. 

• Vehicle spin-out occurs for friction coefficient higher than 0.8 in the YES 

model, 1.0 for the CORNER model and 1.2 for the NO model. The vehicle also 



spun out in the CORNER model for a gabion length of 0.8 m and friction 

coefficient of 0.8. 

• When the vehicle spins out, very high values of barrier deflection occur. 

In Figure 7 the ASI values results of Figure 6 are grouped in terms of gabion 

unit length. Surprisingly the comparison shows that the predicted response of the gabion 

barrier is not strongly dependent on the gabion unit size. The same can be stated for 

THIV, barrier deflection and vehicle Exit box. These results indicate that the barrier 

behaves as a chain and that, for the sizes investigated, the mass activated does not 

significantly depend on the unit length. The CORNER model, having orthogonal barrier 

surfaces only at the beginning of each gabion, brings out the interaction between the 

relative size of vehicle and gabion units but no clear conclusions can be obtained.  

Overall, the many simulations showed a consistent range of results with the 

probability of passing the TB31 crash test depending mainly on the intensity of the 

longitudinal contact forces between the barrier and the vehicle: the multibody model 

results indicate that for a friction coefficient between 0.4 and 0.8 the test could be 

successful. However, the local interaction between the vehicle and the barrier 

determines the effective friction behaviour and this remains a significant uncertainty in 

the modelling.  

Scaled TB31 crash tests 

Test set up 

To study the dynamic deformation of the gabion chain under the impact of the vehicle 

and, in particular, the risk of vehicle spin out or roll over, a number of scaled impact 

tests were carried out.  



A length scale factor �� in the range of 1:5 and 1:4 was used. Scaled gabion units made 

with component materials similar to the full scale ones were used to investigate the 

interaction between the vehicle and the mesh and between the mesh and the filling. 

Geometry, mass and inertia of vehicle and barrier are reported and in Table 2  the 

corresponding length scale factor values are summarised. A total of 7 scaled gabions 

(3.5 m) connected on the front face only, as in the full scale test, were used for making 

the barrier. The gabion barrier was free to slide on the floor. 

Since the investigation was mainly aimed at understanding the gabion 

deformation, a rigid scaled vehicle was used (see Figure 8). The scaled vehicle was 

obtained by modifying a steel framed piano-skate with four steel-rubber wheels. The 

frame was modified using a timber profile to obtain the desired size and mass and to 

avoid the presence of sharp corners, see Figure 8a-b. An impact speed of 50 km/h was 

decided for practical and safety reasons. A HYGETM Dynatest 500 Crash Simulation 

System was used to accelerate the vehicle. The tests were recorded using a high speed 

camera (Fastec Imaging - Hi Spec 5). 

Four kinds of scaled gabion specimens, see Figure 9, were manufactured using 

both a full scale woven gabion mesh and a thin mesh. Different stone sizes were used as 

well in an attempt to find a compromise between using full size materials and avoiding 

scaling issues. For test specimens B, cobblestone bricks (200x200x50 mm) were used as 

filling material. However, the mass of each gabion unit was unmodified (between 19 

and 21 kg) due to a lower density of the material. In Table 3 the mesh and stone size 

and the void ratio (volume of void divided by volume of gabion cage) of each set of 

tests are reported. 

Scaled Test results  

The results of the scaled tests are reported in Table 3. Each test was considered 



successful if the barrier redirected the vehicle and unsuccessful if the vehicle spun out 

or rolled over. 

Specimens A were manufactured with full size stone and mesh. For four out of 

six specimens A the vehicle spun out because of the vehicle front corner being caught 

by the gabion mesh or a stone sticking out of it. The high speed videos showed the stone 

filling being pushed longitudinally along the gabion unit until constrained by the mesh. 

This effect was particularly enhanced by the high void ratio and by the stone and the 

mesh size which were large in relation to the vehicle. None of the tests failed due to 

snagging at the laced joints. 

Specimens B were manufactured with cobblestone bricks, had a low void ratio 

and a more regular barrier surface. The vehicle was successfully redirected in five out of 

seven tests. For the two tests in which the vehicle spun out, the vehicle was trapped by 

the mesh due to an indent on the timber profile caused by a previous test. The high 

speed videos of the successful tests showed an almost pure shear deformation of the 

gabions with the bricks sliding one over the other in direction perpendicular to the 

barrier during the impact, see Figure 10. 

For both Specimens C and D small stones were used to decrease the void ratio 

and avoid a single stone stopping the vehicle as in tests A. In spite of this these gabion 

specimens were too deformable and unable to redirect the vehicle. In all the C and D 

tests, see Figure 11, the vehicle spun out and in some cases the deformed gabion worked 

as a ramp for the vehicle. The mesh was torn during the impact in tests D. 

Full scale TB31 crash test 

Test set up 

A gabion barrier was constructed and crash-tested in the UK Transport Research 



Laboratory (TRL) according to EN1317 procedure for N1 barriers. The gabion barrier 

prototype was constructed by a professional gabion producer (PhiIreland) using 60 

gabions each having nominal dimensions 1x0.75x0.75 m. Woven mesh PVC coated 

with 80x100 mm opening made using 2.7 mm wire was used for manufacturing the 

gabions. Stone infill was 15 cm in size.  Internal connecting wires limited lateral 

deformation. Consecutive units were tied together on the front face only using the 

standard lacing system. The front face was architectural finished to obtain a flat and 

regular impact surface.  

A 2003 Rover 75 Saloon car, with mass 1500 kg, was used for the test and a 

velocity of 83.9 km/h and a 20 degree impact angle were recorded during the test see 

Figure 13a. 

Test results  

The crash test resulted in a failure due to rollover of the vehicle and excess of 

working width. Gabions 18 to 20, see Figure 13a, were completely opened by the 

impact. Gabions 21-23 were displaced rearwards. Maximum displacement of gabions 

was 3.4 m from the rear face of the system, see Figure 13b.  

In Figure 14 and Figure 15 time histories of the acceleration and angular velocity of the 

CG of the vehicle are reported. ASI and THIV were equal to 1.3 and 43 km/h 

respectively. In Figure 12 a sequence of high-speed video still shots with the impact and 

roll over of the vehicle is shown. 

The vehicle-barrier impact mechanism can be described as follows: 

• The vehicle impacted the gabion and partially pocketed into it. 

• The crushed front of the vehicle tore the mesh on the front face of the barrier. 



• The pocketing and the following breaking of the mesh and deformation of the 

gabions caused the front of the vehicle to lift up and ramp on the barrier. 

The mesh on the back of the gabions and the connections between the units did 

not fail and were able to contain the vehicle inside the exit box. However, the 

containment occurred with a mechanism of rollover for the vehicle. 

Discussion 

A gabion barrier is a mixed design, partly mass based and partly tension based. The 

interaction of mass and stiffness in this barrier design is complex and the gabion impact 

behaviour could not be predicted directly based on the comparison with either concrete 

or steel beam barriers respectively. However, the combined results from both the scaled 

and the full scale TB31 crash test showed that a chain/beam made of gabion units is not 

a suitable safety barrier solution.  

The preliminary modelling and scaled tests showed the potential for successful 

redirection of the vehicle. However, the vehicle-barrier interaction is strongly 

influenced by local deformation occurring on the gabions or on the vehicle, and the 

preliminary analysis therefore also showed a significant risk for the vehicle to penetrate 

into the barrier and spin out. Overall, among the four different scaled specimens only 

the gabions with low void ratio were able to redirect the vehicle (test B). The test set D, 

which was the most similar to the full scale crash test in terms of scaled mesh stiffness 

and strength, showed the same kind of vehicle-barrier interaction as the full scale crash 

test with the vehicle ramping over the barrier and the mesh being torn apart.  

The two main issues shown by the full scale test are a low strength of the mesh 

which was torn by the crushed front of the vehicle and a low barrier stiffness which did 

not redirect the vehicle. Connections on the gabion back face would have probably 



increased the barrier stiffness but would not have prevented the tearing of the mesh on 

the front face. 

A high barrier contact stiffness, a low gabion void ratio (between 30% and 35%) 

and a stronger mesh could reduce the probability of this failure occurring. However, 

these are not trivial changes and it is unlikely that minor design changes would 

significantly alter the overall barrier behaviour. A comparison between a standard w-

beam barrier manufactured with AASHTO M180 steel and cross-sectional area of about 

1270 mm2 shows an axial strength about 20 times higher than that of the mesh used for 

the gabion design (mesh section: length 0.75 m, opening dimension 80x100, wire 

diameter of 2.7 mm). Although this axial strength is only partially used during an 

impact, the comparison shows that enhancing the gabion front face strength and 

stiffness would require significant changes which would increase costs and appearance 

considerably.  

The multibody model was used to optimise the gabion unit mass and size 

through a range of possible vehicle-barrier scenarios represented by the three contact 

models (YES, NO, CORNER, see the Multibody modelling section). The experimental 

ASI=1.3 and THIV=43 km/h values recorded were matched only in simulations with 

very high barrier-vehicle contact and friction forces. The YES model simulations of 

gabion units of 0.8 and 1.2 m and barrier-vehicle friction coefficient 1.6 gave ASI and 

THIV scores respectively of  1.25/1.29 and 43/44 km/h. The barrier maximum 

displacements of these simulations (3.5 m and 3.0 m respectively) also matched the 

experimental value of 3.4 m. However, the vehicle rollover, partially due to the low 

vertical stiffness of the barrier, did not occur in any simulations.  

In Figure 14 and Figure 15 the accelerations and yaw rate from simulation YES, 

gabion length 0.8 m and friction coefficient 1.6 are superimposed on the experimental 



time histories; In Figure 16 the vehicle MB positions at time steps of 0.1 s are plotted on 

top of the high-speed video camera still shots. From the comparison of the vertical 

vehicle acceleration it can be seen that the model was not able to capture the vertical 

motion of the car while the longitudinal trajectory was correctly captured. 

Conclusion 

This paper describes the modelling and crash testing of a novel gabion based roadside 

safety barrier design according to the EN1317 European standard. Tensile tests on 

gabion lacing methods showed that the lacing failure is always preceded by a high 

elongation and that this connection system is not sensitive to individual strand failure. 

Moreover a method for scaling a mass-based barrier crash tests has been presented and 

four different sets of scaled crash tests have been carried out. A good match between the 

scaled and the full scale crash in terms of vehicle-barrier interaction and barrier 

deformation patterns was obtained. Gabion barriers are already used in some regions as 

roadside barriers but this study, which resulted in the vehicle rollover in a full-scale 

EN1317 TB31 crash test, showed that they do not provide good occupant protection. 

Given that the low gabion stiffness and strength are the main issues it is unlikely that a 

minor design change would significantly improve the barrier behaviour. 

Appendix A: gabion drag tests  

A set of drag tests was carried out to determine the coefficient of friction of gabions on 

different surfaces. The surfaces tested were gravel, rough concrete, painted concrete, 

dry soil lab, soil site, grass site, tarmac site and wet soil site. A 300 mm cubed stone 

filled welded mesh gabion of 48 kg mass was used for the testing. The Gabion was 

tested by wrapping a harness around the gabion and attaching it to a winch. A load cell 

was interposed between the gabion and the winch. The friction coefficient for each 



surface was obtained as the average value of the ratio between the horizontal drag force 

and the weight of the gabion. The results are reported in Table 4. 

Acknowledgment  

This research is part of the “Experimental and Numerical Characterisation of Low-Cost 

Roadside Barrier Solutions” project funded by the Irish National Road Authority.  



Figures 

 

Figure 1. Gabion barrier: a) photo and b) working mechanism. 

 

 

Figure 2. MB gabion composed of four sub-units: a) scheme of the spring and contact 

connection between the hyper-ellipsoids; b) Barrier-barrier and barrier-vehicle contact 

surfaces. 
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Figure 3. Force – Penetration curves for the contact surfaces modelling the barrier-

barrier and barrier-vehicle interaction. 

 

 

Figure 4. Lacing connection test:  

a) Test photos up to failure for test 1; b) Experimental force – displacement. 

 

Figure 5. Top view of a MB gabion composed of four sub-units:  

contact surfaces for modelling the barrier-barrier and barrier-vehicle interaction. 
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Figure 6. a) ASI; b) THIV and; c) Barrier displacement results of YES, CORNER and 

NO models for different values of gabion length and vehicle-barrier friction coefficient 

(results grouped by MB model). 
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Figure 7. ASI results of YES, CORNER and NO models for different values  

of gabion length (L) and vehicle-barrier friction coefficient. Results are grouped by unit 

length. 

 

 

 

Figure 8. a) Steel frame; b) Steel frame with timber profile. 
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Figure 9. Gabion specimen types A-B-C-D. 

 

Figure 10. (a) Gabion specimen type B. (b) Interaction with the scaled vehicle. 
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Figure 11. Gabion specimen type D at 60 ms from the impact start. 

   

   

   

Figure 12 TB31 crash test: Sequence showing the impact and roll over of the vehicle. 
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Figure 13. TB31 crash test:  

a) Snapshots of the barrier; b) Vehicle before and after the impact. 

 

Figure 14. TB31 gabion barrier crash test: Time histories of the acceleration of the 

vehicle and corresponding accelerations from MB simulation of YES model, gabion 

length 0.8 m, friction coefficient 1.6. 

 

18 19 20 21 22 23 

(a) (b) 



 

 

Figure 15. TB31 gabion barrier crash test. Time histories of the angular velocity of the 

vehicle: Along the longitudinal axis (roll) and along the vertical axis (yaw) with 

corresponding yaw rate from MB simulation of YES model, gabion length 0.8 m, 

friction coefficient 1.6. 

 

 

Figure 16. TB31 crash test: Sequence showing the impact with superimposed vehicle 

position from MB simulation. 

 

0.0 s 0.1 s 0.2 s 0.3 s 

0.4 s 0.5 s 0.6 s 0.7 s 



Tables 

Test Displacement at max force 
(m) 

Max force per meter of lacing 
(kN/m) 

1 0.158 35.6 

2 0.150 38.6 

3 0.152 40.2 

Average 0.153 38.1 

Standard Deviation 0.004 2.4 

Table 1. Lacing test: Maximum load and elongation. 

 

Element Full size Scaled  Length scale factor 
 Length �� Length ���  �� 	= 	 ��/��� 

Gabion unit length 2.0 0.45-0.50 m 4.4-4.0 
Vehicle length 4.0 0.87 m 4.6 
Vehicle Width 1.7 0.386 m 4.4 
Vehicle CG height 0.49 0.114 m 4.3 
Vehicle Bumper height 0.5 0.159 m 3.1 
Vehicle Bumper width 0.1 0.09 m 1.1 
Vehicle Wheelbase 2.8 0.434 m 6.5 
Vehicle Track 1.51 0.18 m 8.4 

 Mass 
� Mass 	
��  �� = ��� = �
�/
��
 

vehicle 1500  19 kg 4.3 
gabion unit 2000 20-34 kg 4.6-3.8 

 Inertia	�� Inertia	���  �� = ���� = ���/����
 

Vehicle Inertia Ix 2700 0.31 kg m2 6.1 
Vehicle Inertia Iy 540 1.23 kg m2 3.4 
Vehicle Inertia Iz 2760 1.46 kg m2 4.5 
Impact speed 80 50 km/h / 
Impact angle 20 20 deg / 
Scaled vehicle wood class / D40 - D50 / / 

Table 2. Geometry and length scale factor of the scaled vehicle and gabion barrier. 

 



Test 
set 

Mesh opening 
size (mm) 

Stone 
sizes 
(mm) 

Void 
ratio 

Mass  
(kg) 

Total 
number 
of tests 

Vehicle 
redirected 
(number of tests) 

SpinningSpin-
out or  
Roll over 
(number of tests) 

Mesh 
torn 

A 80x100x2.7 120 45% 27 6 2 4 No 

B 80x100x2.7 bricks 3010% 20 7 5 2 No 

C 80x100x2.7 50 30-35% 32-34 2 0 2 No 

D 25x35x0.5 50 30-35% 32-34 4 0 4 Yes 

Table 3. Scaled crash test specimen details and results. 

 

Ground/gabion friction coefficient 

Surface 
Average 

Standard 
Deviation  

   
Tarmac site 0.46 0.07 
Dry soil Lab 0.69 0.05 
Rough 
Concrete 

0.61 0.02 

Wet soil site 0.69 0.05 
Gravel  0.69 0.13 
Soil Site 0.73 0.06 
Grass Site 0.65 0.05 

Table 4. Gabion/ground experimental friction coefficients for different ground surfaces 



References 

[1] R. Agostini, L. Cesario, A. Conte, M. Maset, and A. Papetti, Flexible Gabion 
Structures in Earth Retaining Works, ed, Officine Maccaferri S.p.A., Bologna, 
Italy, 1987. 

[2] G. Amato, F. O’Brien, B. Ghosh, and C. Simms, Multibody modelling of a TB31 
and a TB32 crash test with vertical portable concrete barriers: Model 
verification and sensitivity analysis, Proceedings of the Institution of 
Mechanical Engineers, Part K: Journal of Multi-body Dynamics (2013). 

[3] G. Amato, F. O’Brien, B. Ghosh, and C.K. Simms, Multibody modelling of a 
TB31 and a TB32 crash test with vertical portable concrete barriers: model 
verification and sensitivity analysis, Proceedings of the Institution of 
Mechanical Engineers, Part K: Journal of Multi-body Dynamics 227 (2013). 

[4] G. Amato, F. O’Brien, C.K. Simms, and B. Ghosh, Multibody modelling of 
gabion beams for impact applications, International Journal of Crashworthiness 
18 (2013), pp. 237-250. Available at 
http://dx.doi.org/10.1080/13588265.2013.775739. 

[5] F.A. Berg, P. Rücker, J. König, R. Grzebieta, and R. Zou, Motorcycle impacts 
into roadside barriers – real-world Accident studies, crash tests and simulations 
carried out in Germany and Australia, in ESV, 2005. 

[6] D. Bertrand, F. Nicot, P. Gotteland, and S. Lambert, Modelling a geo-composite 
cell using discrete analysis, Computers and Geotechnics 32 (2005), pp. 564-577. 
Available at <Go to ISI>://000236322600002. 

[7] ---, Discrete element method (DEM) numerical modelling of double-twisted 
hexagonal mesh, Canadian Geotechnical Journal (2008), pp. 1104-1117. 

[8] E.C.f.S. CEN, BS EN 1317-1:2010 - Road restraint systems, in Terminology and 
general criteria for test methods,  BSI, 2010, pp. 40. 

[9] ---, BS EN 1317-2:2010 - Road restraint systems, in Performance classes, 
impact test acceptance criteria and test methods for safety barriers including 
vehicle parapets BSI, 2010, pp. 32. 

[10] B.R. Deshpande, T.J. Gunasekar, V. Gupta, S. Jayaraman, and S.M. Summers, 
Development of MADYMO Models of Passenger Vehicles for Simulating Side 
Impact Crashes, SAE TRANSACTIONS 108 (2000), pp. 3172-3175  

[11] G. Hearn, R.K. Barrett, and H.H. Henson, Development of effective rockfall 
barriers, Journal of transportation engineering 121 (1995), pp. 507-516. 

[12] K. Iles, and IDL_Group, Rural transport safety strategy - Case Study from 
Nepal, 2004. 

[13] A. Jones, An affordable safety barrier for Nepal, HIGHWAYS AND 
TRANSPORTATION 46 (1999), pp. 15-16. 

[14] C. Kammel, Safety barrier performance predicted by multi-body dynamics 
simulation, International Journal of Crashworthiness 12 (2007), pp. 115-125. 
Available at http://dx.doi.org/10.1080/13588260701433255. 

[15] S. Lambert, A. Heymann, P. Gotteland, and F. Nicot, Real-scale investigation of 
the kinematic response of a rockfall protection embankment, Natural Hazards 
and Earth System Sciences Discussions 2 (2014), pp. 491-533. 

[16] D.G. Lin, Y.H. Lin, and F.C. Yu, Deformation analyses of gabion structures, in 
INTERPRAEVENT 2010, Taipei, Taiwan, 2010, pp. 512-526. 

[17] National Cooperative Highway Research Program, NCHRP Report 350, 
NATIONAL ACADEMY PRESS, Washington, D.C., 1993. 



[18] National Crash Analysis Center, Finite Element Model Archive. 
[19] F. Nicot, P. Gotteland, D. Bertrand, and S. Lambert, Multiscale approach to 

geo-composite cellular structures subjected to rock impacts, International 
Journal for Numerical and Analytical Methods in Geomechanics 31 (2007), pp. 
1477-1515. Available at http://dx.doi.org/10.1002/nag.604. 

[20] J.D. Reid, and R.K. Faller, New Test Level 2 Rough Stone Masonry Guardwall,  
Transportation Research Board, 2010, pp. 85-94. 

[21] H.E. Ross, Sicking, D.L., Zimmer, R.A., and Michie, J.D.,, Recommended 
Procedures for the Safety Performance Evaluation of Highway Features, 
National Cooperative Research Program (NCHRP) Report No. 350,  
Transportation Research Board, Washington, D.C., 1993. 

[22] G. Sedlacek, and C. Kammel, Prediction of the performance of safety barriers 
subjected to vehicle impact, in EUROSTEEL 2005 – 4th European Conference 
on Steel and Composite Structures, Maastricht, 2005. 

[23] M. Soudé, B. Chevalier, M. Grédiac, A. Talon, and R. Gourvès, Experimental 
and numerical investigation of the response of geocell-reinforced walls to 
horizontal localized impact, Geotextiles and Geomembranes 39 (2013), pp. 39-
50. Available at 
http://www.sciencedirect.com/science/article/pii/S0266114413000629. 

[24] T.E.a.S. Unit, Road Safety Notes 6 - Safety Barrier, D.o. Roads ed., 1997. 
[25] J.W.G. Van de Kuilen, The first full timber guardrail for highways, in 

Internationale Holzbrückentage 12, Bad Wörishofen, 2012. 

 

 


