
Evaluation of Large Integer Multiplication Methods on Hardware

Rafferty, C., O'Neill, M., & Hanley, N. (2017). Evaluation of Large Integer Multiplication Methods on Hardware.
IEEE Transactions on Computers. Advance online publication. https://doi.org/10.1109/TC.2017.2677426

Published in:
IEEE Transactions on Computers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:05. May. 2024

https://doi.org/10.1109/TC.2017.2677426
https://pure.qub.ac.uk/en/publications/cd216286-80ad-43e1-b9cc-8d8637be464e

1

Evaluation of Large Integer Multiplication
Methods on Hardware

Ciara Rafferty, Member, IEEE , Máire O’Neill, Senior Member, IEEE , Neil Hanley

Abstract—Multipliers requiring large bit lengths have a major impact on the performance of many applications, such as cryptography,
digital signal processing (DSP) and image processing. Novel, optimised designs of large integer multiplication are needed as previous
approaches, such as schoolbook multiplication, may not be as feasible due to the large parameter sizes. Parameter bit lengths of up to
millions of bits are required for use in cryptography, such as in lattice-based and fully homomorphic encryption (FHE) schemes. This
paper presents a comparison of hardware architectures for large integer multiplication. Several multiplication methods and
combinations thereof are analysed for suitability in hardware designs, targeting the FPGA platform. In particular, the first hardware
architecture combining Karatsuba and Comba multiplication is proposed. Moreover, a hardware complexity analysis is conducted to
give results independent of any particular FPGA platform. It is shown that hardware designs of combination multipliers, at a cost of
additional hardware resource usage, can offer lower latency compared to individual multiplier designs. Indeed, the proposed novel
combination hardware design of the Karatsuba-Comba multiplier offers lowest latency for integers greater than 512 bits. For large
multiplicands, greater than 16384 bits, the hardware complexity analysis indicates that the NTT-Karatsuba-Schoolbook combination is
most suitable.

Index Terms—Large integer multiplication, FPGA, hardware complexity, fully homomorphic encryption

F

1 INTRODUCTION

Large integer multiplication is a key component and one of
the bottlenecks within many applications, such as crypto-
graphic schemes. More specifically, important and widely
used public key cryptosystems, such as RSA and ellip-
tic curve cryptography (ECC), require multiplication. Such
public key cryptosystems are used along with symmetric
cryptosystems within the Transport Layer Security (TLS)
protocol, to enable secure online communications. Thus,
there is a demand for efficient, optimised implementations
and, to this end, optimised hardware designs are commonly
used to improve the performance of multipliers.

To demonstrate the importance of suitable hardware
multipliers for large integer multiplication, a case study on
a specific branch of cryptography called fully homomorphic
encryption (FHE) is detailed. FHE, introduced in 2009 [1],
is a novel method of encryption, which allows computation
on encrypted data. Thus, this property of FHE can poten-
tially advance areas such as secure cloud computation and
secure multi-party computation [2], [3]. However, existing
FHE schemes are currently highly unpractical due to large
parameter sizes and highly computationally intensive al-
gorithms amongst other issues. Therefore improvements in
the practicality of FHE schemes will have a large impact
on both cloud security and the usage of cloud services.
There has been recent research into theoretical optimisa-
tions and both software and hardware designs of FHE
schemes to improve their practicality; hardware designs
have been shown to greatly increase performance [4]–[13].
Indeed, several researchers studying the hardware design

C. Rafferty, M. O’Neill and N. Hanley are with the Centre for Secure In-
formation Technologies (CSIT), Queen’s University Belfast, Northern Ireland
(e-mail: {c.m.rafferty, maire.oneill, n.hanley}@qub.ac.uk)

for FHE have focused on the multiplication component to
enhance the practicality of FHE schemes [11], [14]–[16]. This
highlights the importance of selecting the most suitable
multiplication method for use with large operands. Previ-
ous hardware designs have mostly chosen multiplication
using the number theoretic transform (NTT) for the large
integer multiplication required in FHE schemes since this
method is known generally to be suitable for large integer
multiplication; however, there has been little research into
the use of alternative large integer multiplication methods
or indeed into multipliers of the operand sizes required for
FHE schemes.

Previous research has investigated and compared mul-
tipliers in hardware and more particularly for use in pub-
lic key cryptography [17]–[22]. Modular multiplication has
been investigated and Montgomery multipliers have been
optimised for use in public key cryptography [17], [19]–
[21]. An analysis of the hardware complexity of several
multipliers for modular multiplication and modular expo-
nentiation for use in public key cryptography has shown
Karatsuba outperforms traditional schoolbook multiplica-
tion for operands greater than or equal to 32 bits [17].
Fast Fourier transform (FFT) multiplication is also shown
to perform better than classical schoolbook multiplication
for larger operands [17]. In Section 2, several common mul-
tiplication methods are detailed and the previous research
into hardware designs is also discussed for each technique.

However, larger integer multiplication, such as those
required in new public key encryption schemes like FHE,
has not been previously investigated. While some previous
research looks at multiplications for specific applications,
to the best of the authors’ knowledge, there is no prior
research that analyses and compares hardware designs of
various multiplication algorithms for very large integers,

2

greater than 4096 bits. The authors have carried out previous
research on hardware designs for optimised multiplication
for use specifically in FHE schemes [13], [16], which offer
targeted designs for one particular FHE scheme. In this
research, hardware multiplier designs are considered for a
large range of operand sizes and in a wider context, for a
generic large integer multiplication. Moreover, to the best
of the authors’ knowledge, suitable multiplication meth-
ods for uneven operands, such as those required in the
integer-based FHE encryption scheme [23], have also not
previously been investigated. Also, hardware designs of
combination multiplication methods have also not yet been
considered. It is thus posed in this research that if hardware
designs of combined multiplication methods could improve
performance compared to hardware designs of individual
multiplication methods.

More specifically, the novel contributions presented in
this research are:

1) A comprehensive evaluation of very large integer
multiplication methods;

2) Novel combinations of common multiplication
methods and respective hardware designs are pro-
posed;

3) The first study of multiplication with uneven
operands;

4) A hardware complexity analysis is presented for all
of the proposed multiplication methods and rec-
ommendations are given from both the theoretical
complexity analysis and hardware results.

The structure of the paper is as follows: firstly, a back-
ground of the most popular multiplication methods is pre-
sented. Secondly, hardware designs of a selection of the
large integer multiplication methods are presented; these are
particularly suited or targeted to the application of FHE. Fol-
lowing this, hardware designs of combinations of these mul-
tipliers are presented. In Section 5, the hardware complexity
of the proposed multipliers is theoretically calculated and
recommendations are given on the most suitable multipli-
cation methods for large integer multiplication. All of the
proposed multipliers are implemented on a Virtex-7 FPGA
and performance results are discussed. The FPGA platform
is suitable for numerous applications including cryptogra-
phy, since such platforms are highly flexible, cost-effective
and reprogrammable. Finally, a discussion on suitable mul-
tiplication methods for uneven operands is included, which
is applicable to integer-based FHE, and conclusions with
overall recommendations are given.

2 MULTIPLICATION METHODS

The following subsections outline the most commonly used
multiplication methods for traditional integer multiplica-
tion:

2.1 Traditional Schoolbook Multiplication

Schoolbook multiplication is the traditional method that
uses shift and addition operations to multiply two inputs.
Algorithm 1 outlines the Schoolbook multiplication method.

Algorithm 1: Traditional Schoolbook Multiplication
Input: n-bit integers a and b
Output: z = a× b

1: for i in 0 to n− 1 do
2: if bi = 1 then
3: z = (a× 2i) + z;
4: end if
5: end for

return z

2.2 Comba Multiplication Scheduling

Comba multiplication [24] is an optimised method of
scheduling the partial products in multiplication, and it
differs from the traditional schoolbook method in the or-
dering of the partial products for accumulation. Algorithm
2 describes Comba multiplication. Although this method
is theoretically no faster than the schoolbook method, it
is particularly suitable for optimised calculation of partial
products. Comba multiplication has previously been con-
sidered for modular multiplication on resource restricted
devices such as smart cards [25]. A hardware design of
the Comba multiplication technique has been previously
shown to be suitable for cryptographic purposes [26]. The
use of a Comba scheduling algorithm targeting the DSP
slices available on a FPGA device reduces the number of
read and write operations by managing the partial products
in large integer multiplication.

Algorithm 2: Comba Multiplication
Input: n-bit integers a and b
Output: z = a× b

1: for i in 0 to (2n− 2) do
2: if n < i then
3: ppi =

∑i−1
k=0(ak × bi−k)

4: else
5: ppi =

∑n−1
k=0(ak × bi−k)

6: end if
7: end for
8: z =

∑2n−2
i=0 (ppi << 2i)

return z

Another advantage of the Comba scheduling method is
that the number of required DSP48E1 blocks available on
the target device, in this case a Xilinx Virtex-7 XC7VX980T
FPGA, scales linearly with the bit length. This is advanta-
geous when designing larger multipliers, such as those re-
quired in FHE schemes. However, the inherent architecture
of this algorithm inhibits a pipelined design and thus the
need for the encryption of multiple values may be better
addressed with alternative methods.

2.3 Karatsuba Multiplication

Karatsuba multiplication [27] was one of the first multipli-
cation techniques proposed to improve on the schoolbook
multiplication method, which consists of a series of shifts
and additions. The Karatsuba method involves dividing
each large integer multiplicand into two smaller integers,

3

one of which is multiplied by a base. Algorithm 3 details
Karatsuba multiplication.

Algorithm 3: Karatsuba Multiplication

Input: n-bit integers a and b, where a = a1 × 2l + a0
and b = b1 × 2l + b0

Output: z = a× b
1: AB0 = a0b0
2: AB1 = a1b1
3: ADDA = a1 + a0
4: ADDB = b1 + b0
5: AB2 = ADDA ×ADDB

6: MID0 = AB2 −AB0 −AB1

7: z = AB0 +MID0 × 2l +AB1 × 22l

return z

In general, if we take two n-bit integers, a and b, to be
multiplied, and we take a base, for example 2dn/2e, then a
and b are defined in Equations 1 and 2 respectively.

a = a1 × 2dn/2e + a0 (1)

y = y1 × 2dm/2e + y0 (2)

The Karatsuba multiplication method takes advantage
of Equation 3. As can be seen in Equation 3, three different
multiplications of roughly dn/2e-bit multiplicand sizes are
necessary, as well as several subtractions and additions,
which are generally of minimal hardware cost in compar-
ison to multiplication operations.

a× b = (a1 × b1)× 22×dn/2e

+ {(a1 + a0)× (b1 + b0)− a0 × b0 − a1 × b1} × 2dn/2e

+ a0 × b0 (3)

Thus, Karatsuba is a fast multiplication method, and
improves on the schoolbook multiplication. However, sev-
eral intermediate values must be stored and therefore this
method incurs some additional hardware storage cost and
also more control logic is required.

There has been a significant amount of research carried
out on the Karatsuba algorithm and several optimised hard-
ware implementations have been proposed; for example,
a hardware design of a Montgomery multiplier which in-
cludes a Karatsuba algorithm has previously been presented
[28]. A recursive Karatsuba algorithm is used, breaking
multiplications down to 32-bits on a Xilinx Virtex-6 FPGA;
this design offers a speedup factor of up to 190 compared to
software but consumes a large amount of resources. Another
Karatsuba design has targeted the Xilinx Virtex-5 FPGA
platform and uses minimal resources (only one DSP48E
block) by employing a recursive design [18]. Surveys on
earlier research into the hardware designs of Karatsuba and
other multiplication methods also exist [17], [29].

There have also been several algorithmic optimisations
and extensions to the Karatsuba algorithm. A Karatsuba-
like multiplication algorithm with reduced multiplication

requirements for multiplying five, six and seven term poly-
nomials has been proposed [30]. A comparison is given of
this proposed algorithm, which uses five term polynomials
and requires 14 multiplications, with alternative Toom-Cook
and FFT algorithms implemented in software. According to
this research, the FFT algorithm is the most suitable for large
multiplications.

Karatsuba has been shown to be useful for cryptographic
purposes [31]; an extended Karatsuba algorithm adapted to
be more suitable for hardware implementation for use in
computing bilinear pairings has been presented [31]. For
a 256-bit multiplication, 14 64-bit products are required,
compared to 25 for schoolbook multiplication.

2.4 Toom-Cook Multiplication

Toom-Cook multiplication is essentially an extension of
Karatsuba multiplication; this technique was proposed by
Toom [32] and extended by Cook [33]. The main differ-
ence between the Karatsuba and Toom-Cook multiplication
methods is that in the latter, the multiplicands are broken
up into several smaller integers, for example three or more
integers, whereas Karatsuba divides multiplicands into two
integers. Toom-Cook algorithms are used in the GMP library
for mid-sized multiplications [34]. The Karatsuba hardware
design could be adapted to carry out Toom-Cook multipli-
cation; however the hardware design of a Toom-Cook mul-
tiplication requires several more intermediate values, and
thus occupies more area resources on hardware devices. For
this reason, this multiplication technique is not addressed
further in this comparison study.

2.5 Montgomery Modular Multiplication

The discussion of multiplication methods for cryptography
would not be complete without the mention of Montgomery
modular multiplication [35]. This method of multiplication
incorporates a modular reduction and therefore is suitable
for many cryptosystems, for example those working in finite
fields. Equation 4 gives the calculation carried out by a
modular multiplication, with a modulus p and two integers
a and b less than p.

c ≡ a · bmod p (4)

There has been a lot of research looking into hardware
architectures for fast Montgomery reduction and multipli-
cation [20]. Montgomery modular multiplication however
requires pre- and post-processing costs to convert values to
and from the Montgomery domain. Therefore this method
is highly suitable for exponentiations, such as those re-
quired in cryptosystems such as RSA. The integer-based
FHE scheme does not require exponentiations and the aim
of this research is speed, so the conversions to and from
the Montgomery domain are considered expensive. For this
reason, Montgomery modular reduction is not considered
in this research.

4

2.6 Number Theoretic Transforms for Multiplication

NTT multiplication is arguably the most popular method
for large integer multiplication. Almost all of the previous
hardware architectures for FHE schemes incorporate an
NTT multiplier for large integer multiplication. Algorithm
4 outlines NTT multiplication.

Algorithm 4: Large integer multiplication using
NTT [36], [37]

Input: n-bit integers a and b, base bit length l,
NTT-point k

Output: z = a× b
1: a and b are n-bit integers. Zero pad a and b to 2n bits

respectively;
2: The padded a and b are then arranged into k-element

arrays respectively, where each element is of length
l-bits;

3: for i in 0 to k − 1 do
4: Ai ← NTT (ai);
5: Bi ← NTT (bi);
6: end for
7: for i in 0 to k − 1 do
8: Zi ← Ai ·Bi ;
9: end for

10: for i in 0 to k − 1 do
11: zi ← INTT (Zi);
12: end for
13: for i in 0 to k − 1 do
14: z =

∑k−1
i=0 (zi � (i · l)), where� is the left shift

operation;
15: end for
return z

The number theoretic transform (NTT) is a specific case
of the FFT over a finite field Z . The NTT is chosen for large
integer multiplication within FHE schemes rather than the
traditional FFT using complex numbers because it allows
exact computations on fixed point numbers. Thus, it is very
suitable for cryptographic applications as cryptographic
schemes usually require exact computations. Often in the
FHE literature, the NTT is referred to more generally as the
FFT. However, almost all hardware and software designs of
FHE schemes that use FFT are, more specifically, using the
NTT. The library proposed by [38] gives the only existing
FHE software or hardware design which uses the FFT with
complex numbers rather than the NTT with roots of unity.
The use of the NTT is particularly appropriate for hardware
designs of FHE schemes as a highly suitable modulus can
be chosen, which offers fast modular reduction due to the
modulus structure.

Modular reduction is required in all FHE schemes and
also in NTT multiplications. There are several methods for
the modular reduction operation, such as Barrett reduction
and also Montgomery modular reduction. However, if the
modulus can be specifically chosen, such as within NTT
multiplication, certain moduli values lend themselves to
efficient reduction techniques. Previous research has also
proposed the use of a Solinas prime modulus [37]. Further
examples of special number structures for optimised modu-
lar reduction include Mersenne and Fermat numbers [39].

For fast polynomial multiplication designs for lattice-
based cryptography, the largest known Fermat prime p =
65537 = 216+1 has been used [7]. Alternatively, researchers
have used larger prime moduli with a low Hamming
weight, such as the modulus p = 1049089 = 220 + 29 + 1
which has a Hamming weight of 3, [7], [40]. A modular mul-
tiplier architecture incorporating a Fermat number modulus
is also proposed by [41] for use in a lattice-based primitive.
Diminished one representation [42] has been shown to be
suitable for moduli of the form 2n + 1 and could be consid-
ered as an optimisation.

Several hardware designs of FFT multiplication of large
integers have been proposed [17], [43]–[45]. Some research
has been conducted into the design of FFT multipliers for
cryptographic purposes and more specifically for use within
lattice-based cryptography [40], [41], [46]. It can be seen
from the previously mentioned hardware NTT multiplier
architectures, that the hardware design of an efficient NTT
multiplier involves several design and optimisation deci-
sions and trade-offs.

3 HARDWARE DESIGNS FOR MULTIPLIERS

3.1 Direct Multiplication

Direct multiplication is the optimised multiplication method
that can be employed in a single clock cycle using a basic
VHDL multiplication operation within the Xilinx ISE design
suite. In this research, ISE Design Suite 14.1 is used, and a di-
rect multiplication is arbitrarily used as a base standard for
multiplication to indicate the performance of the following
proposed hardware multiplier designs.

3.2 Comba Multiplication

Comba multiplication [24] is a method of ordering and
scheduling partial products. Previously, Güneysu optimised
the Comba multiplication by maximising the hardware re-
source usage and minimising the required number of read
and write operations for use in elliptic curve cryptography
[26]. A multiplication of two n- word numbers produces
2n − 1 partial products, given any word of arbitrary bit
length. Figure 1 outlines the proposed hardware architec-
ture of the Comba multiplier in this research targeting the
Xilinx Virtex-7 platform and in particular the available DSP
slices, as previously proposed for use in the design of
an encryption step for FHE schemes [16], [47]. The abun-
dant Xilinx DSP48E1 slices available on Virtex-7 FPGAs are
specifically optimised for DSP operations. Each slice offers
a 48-bit accumulation unit and an 18× 25-bit signed multi-
plication block [48]. These DSP slices can run at frequencies
of up to 741 MHz [49].

For the multiplication of a × b, where b ≤ a, the multi-
plicands are each divided into s blocks, where for example
s =

⌈
bit length(a)

w

⌉
. This can be seen in Figure 1. Each block

multiplicand is then of the size w bits, which is the size of
the next power of two greater than or equal to the bit length
of the b operand. Powers of two are used to maximise the
efficiency of operations such as shifting. Both multiplicands
are stored in 16-bit blocks in registers. Although 18× 25-bit
signed multiplications are possible within each DSP slice, a

5

...

MAC MAC MAC MAC

MUX

+

…

...

………….

sel

)(log

2

2 s

w

)(log

2

2 s

w

)(log

2

2 s

w

)(log

2

2 s

w

)(log

2

2 s

w

)(log2 s

1)(log2 sw

)(log

2

2 s

w

w

w w

w w w w

w

12 sP 22 sP 32 sP
2P 1P 0P

1sB 2sB 3sB 0B

3sA 2sA 1sA 0A

Fig. 1. Comba multiplier architecture [16], [47]

16-bit multiplication input is chosen to ensure efficient com-
putation on the FPGA platform. These blocks are shifted in
opposing directions and input into the multiply-accumulate
(MAC) blocks in the DSP slices. The partial multiplications
are accumulated in each of the MAC blocks.

3.3 Proposed NTT Hardware Multiplier Architecture for
Comparison

In this section, a ‘simple’ NTT module is presented, as
illustrated in Figure 2. The scope of this research is not to
produce a novel, optimal NTT or FFT architecture. Indeed,
there has been a plethora of research in this area. The NTT
module discussed here is used for comparison purposes
with other multiplication architectures and could be further
improved.

NTT

NTT

MULT INTT CARRY

A

B

C

Fig. 2. Architecture of a basic NTT multiplier

A radix-2 decimation in time (DIT) approach is used in
this NTT module. At each stage the block of butterfly units
is re-used and the addresses managed in order to minimise
hardware resource usage. Moreover, in this design, the
NTT module is optimised for re-use since both an NTT
module and an inverse NTT (INTT) module are required;
this minimises resource usage. This can be seen in Figure 3.

NTT/INTT
MUL REG

NTT()

NTT()

INTT()

a

b

Z

a

b z

Fig. 3. Architecture of NTT multiplier with optimised NTT module reuse

The advantage of NTT multiplication can be particularly
noticed when several multiplications are required, rather
than a single multiplication. This is because NTT designs
can be pipelined (and staged) so that many operations can
be carried out in parallel. Thus, for a single multiplication,
NTT multiplication may prove too costly, in terms of both
hardware resource usage and latency. However, if multiple
multiplications are required, the latency will be reduced
though the use of a pipelined design. The NTT design
referred to in the rest of this research is a design using
parallel butterflies to minimise latency.

4 PROPOSED MULTIPLICATION ARCHITECTURE
COMBINATIONS

In this section, hardware architectures for combinations of
the previously detailed multiplications are proposed. The
aim of these combinations is to increase the speed of the
multiplication for use within FHE schemes. More generally,
this research aims to show that a hardware architecture
incorporating a combination of multiplication methods can
prove more beneficial than the use of a single multiplica-
tion method for large integer multiplication. In order to
test the best approach for the various multiplication sizes
required in FHE schemes, the NTT, Karatsuba and Comba
multiplication methods will be compared against a direct
multiplication, that is the ISE instantiated multiplier unit
using the available FPGA DSP48E1 blocks.

As discussed previously, each of the multiplication meth-
ods has advantages and disadvantages. For example, NTT
is known to be suitable for very large integers; however,
the scaling of NTT multiplication on hardware platforms is
difficult. Karatsuba is faster than schoolbook multiplication,
yet it requires the intermediate storage of values. In fact, the
memory requirement can significantly affect performance
of multiplication algorithms. In this research, as the target
platform is an FPGA, all resources on the device, including
memory, are limited. The use of Comba multiplication ad-
dresses this memory issue, in that it optimises the ordering
of the generation of partial products and hence minimises
read and write operations.

6

+

+

-<<

- <<

MUL

MUL

MUL

MUL =Comba
Multiplication

Fig. 4. Architecture of a Karatsuba multiplier with Comba multiplier units
in the MUL blocks

4.1 Karatsuba-Comba
As can be noted from Equation 1 and Equation 2, a Karat-
suba design employs smaller multiplication blocks, which
can be interchanged. These can be seen in Figure 4 where
a combination architecture using Karatsuba and Comba
(Karatsuba-Comba) is given; the MUL units can use the
Comba architecture. Although this may require more mem-
ory than a direct multiplication, this method maintains a
reasonable clock frequency, unlike when a direct multiplica-
tion is instantiated, especially for larger multiplication sizes.

A Karatsuba-Comba combination has previously been
shown to be suitable with Montgomery reduction for mod-
ular exponentiation [50]. Moreover, a software combination
of Karatsuba and Comba has been previously proposed [51].

4.2 NTT Combinations
There has been an abundance of research carried out on FFT
and NTT multipliers and there are numerous optimisations
and moduli choices that can be selected to improve their
performance, particularly for the case study of FHE [4]–[13].
However, there is limited research into hardware architec-
tures of general purpose NTT multiplication for very large
integers. In this research, a basic NTT multiplier is presented
that has been optimised for area usage in order to fit the
design on the target FPGA device. It employs a modulus of
the form 22

n

+ 1, which is a Fermat number.
Akin to the Karatsuba design, an NTT design reduces a

large multiplication to a series of smaller multiplications,
which can be interchanged. In this research we consider
several combinations.

4.2.1 NTT-Direct
The initial NTT design employs the NTT unit introduced in
Section 3.3 with a direct multiplication using the FPGA DSP
slices. This design is presented for comparison purposes and
results are given in Section 6.4.

4.2.2 NTT-Comba
The NTT unit introduced in Section 3.3 can also be com-
bined with the Comba multiplier instead of direct mul-
tiplication to carry out the smaller multiplications. The

combined NTT and Comba design works well together in
comparison to NTT-Direct as a high clock frequency can be
achieved, since the multiplication unit is the bottleneck in
the design.

4.2.3 NTT-Karatsuba-Comba
A multiplication architecture combining NTT, Karatsuba
and Comba is also proposed. The Karatsuba multiplier
in this case requires a smaller multiplication unit within
its design and this can been employed with two options:
direct multiplication or Comba multiplication. As Karatsuba
and Comba work well together, this method is chosen and
presented in the results section.

5 HARDWARE COMPLEXITY OF MULTIPLICATION

In this section, the hardware complexity of the proposed
multiplier combination designs is considered. This com-
plexity analysis provides a generic insight into the most
suitable multiplication method with respect to the operand
bit length. Hardware complexity of multiplication and expo-
nentiation has previously been considered by [17]; a similar
approach is taken in this research to analyse the hardware
complexity of the previously presented multipliers.

The approach for calculating the hardware complexity is
defined as follows: each multiplication algorithm is recalled
and the algorithms are analysed in terms of the composition
of smaller units, such as gates, multiplexors and adders. In
particular, the hardware complexity of the various multi-
plication methods are described in terms of the number of
adders, and the notation hadd(w), hsub(w) and hmul is used
to describe a w-bit addition, subtraction and multiplication
respectively. Summations of these smaller units are used
to form an expression of the hardware complexity of each
multiplication method. Thus, routing and other implemen-
tation specific details are not taken into account in this
analysis. Also, shifting by powers of two is considered a free
operation. Four multiplication methods, that is, schoolbook,
Comba, Karatsuba and NTT multiplication, are considered
in the following subsections.

5.1 Complexity of Schoolbook Multiplication
Recalling the traditional schoolbook multiplication, defined
in Algorithm 1, it can be seen that, for an n-bit multi-
plication, at most n − 1 shifts and n − 1 additions are
required. The maximum bit length of the additions required
in the schoolbook multiplication is 2n. Thus, the hardware
complexity, hschoolbook, can be described as in Equation 5.

hschoolbook = (n− 1)hadd(2n) (5)

5.2 Complexity of Comba Multiplication
The Comba multiplication algorithm is defined in Algo-
rithm 2. This algorithm is similar to traditional schoolbook
multiplication, in that the same number of operations are
required and the computational complexity is the same,
O(n2). However, the optimised ordering of the partial
product generation improves performance, especially when
embedded multipliers on the FPGA platform are targeted.

7

Small multiplications are required, which can be assumed
to be carried out using traditional schoolbook shift and add
multiplication.

The hardware complexity of the Comba multiplication
is equal to hComba, given in Equation 6, where w is the bit
length of the smaller multiplication blocks to generate the
partial products, and w in this research is set to equal 16
bits. This multiplication can be carried out on a DSP slice, if
the FPGA platform is targeted.

hComba =
⌈ n
w

⌉2
hmul(w) +

⌈ n
w

⌉2
hadd(2n) (6)

The hardware complexity of the Comba multiplication
can be rewritten in terms of hadd, similar to the hardware
complexity for the schoolbook multiplication. In this case,
for each multiplication of w bits required in the Comba
multiplication, it is assumed that schoolbook multiplication
is used. Thus, the hardware complexity can be redefined as
Equation 7.

hComba =
⌈ n
w

⌉2
((w − 1)hadd(2w)) +

⌈ n
w

⌉2
hadd(2n) (7)

5.3 Complexity of Karatsuba Multiplication

The Karatsuba multiplication method is given in Algorithm
3. In this research, it is assumed firstly that the bit lengths
of a0, a1, b0 and b1 are equal and set to n

2 . Secondly, it is
assumed that only one level of Karatsuba is used, although
Karatsuba is usually employed recursively. The hardware
complexity of Karatsuba multiplication, hKaratsuba, is de-
fined in Equation 8.

hKaratsuba = 2hadd(
n
2) + 2hmul(

n
2) + hmul(

n
2 + 1)

+2hsub(n) + hadd(n) (8)

The hardware complexity of the Karatsuba can also be
written in terms of hadd and hsub. This is given in Equation
9, where the smaller multiplications are carried out using
schoolbook multiplication. Equation 10 gives the hardware
complexity of Karatsuba using the Comba method for the
smaller multiplications.

hK−S = 2hadd(
n
2) + (n− 2)hadd(n)

+(n2 + 1)hadd(n+ 2) + 2hsub(n) + hadd(n) (9)

hK−C = 2hadd(
n
2) + (2[

⌈
n
2w

⌉2
(w − 1)hadd(2w)

+
⌈

n
2w

⌉2
hadd(n)] +

⌈
n
2 +1

w

⌉2
)× ((w − 1)hadd(2w))

+
⌈

n
2 +1

w

⌉2
hadd(n+ 2) + 2hsub(n) + hadd(n) (10)

5.4 Complexity of NTT Multiplication
Recall Algorithm 4 for NTT multiplication. It can be seen
that the NTT requires several shift operations, additions and
also multiplications. The hardware complexity of the NTT
multiplication, hNTT , is given in Equation 11, where k is
the NTT-point, as given in the Tables of results found in
Section 6.

hNTT = k
2 × 2hadd(k) + k × hmul(k)

+2hadd(k) + k × hmul(k)

= (k + 2)hadd(k) + 2k × hmul(k) (11)

The hardware complexity of the NTT can be rewritten
in terms of hadd; this is given in Equation 12. Equations 13,
14 and 15 describe the hardware complexity of NTT-Comba,
NTT-Karatsuba-Comba and NTT-Karatsuba-Schoolbook re-
spectively.

hNTT−S = (k + 2)hadd(k) + 2k(k − 1)hadd(2k) (12)

hNTT−C = (k + 2)hadd(k)

+2k(
⌈
k
w

⌉2
((w − 1)hadd(2w))

+
⌈
k
w

⌉2
hadd(2k)) (13)

hNTT−K−C = (k + 2)hadd(k) + 2k(2hadd(
k
2)

+2(
⌈

k
2w

⌉2
(w − 1)hadd(2w)

+
⌈

k
2w

⌉2
hadd(k)) +

⌈
k
2+1

w

⌉2
(w − 1)hadd(2w)

+
⌈

k
2+1

w

⌉2
hadd(k + 2) + 2hsub(k)

+hadd(k)) (14)

hNTT−K−S = (k + 2)hadd(k) + 2k(2hadd(
k
2)

+(k − 2)hadd(k) + (k2 + 1)hadd(k + 2)

+2hsub(k) + hadd(k)) (15)

5.5 Hardware Complexity Analysis
The results of the hardware complexity analysis for a range
of operand widths are discussed in this section. The weights
used to calculate these results are defined in Table 1, using
a similar approach employed by David et al. [17]. These
weightings estimate a rough gate count of a full adder, with
the main purpose of allowing for fair comparison across
all multiplication methods. Figure 5 shows the hardware
complexity trend of all of the multipliers, with the exception
of Comba and Karatsuba-Comba multipliers. These two
multipliers are excluded from Figure 5 as they are much
larger in comparison to the other multipliers. However,
Comba and Karatsuba-Comba multiplication can be useful
when FPGA devices are targeted. All of the Figures indicate
how each of the various multiplication methods generally
scale with an increase in multiplicand bit length. It can be

8

TABLE 1
Weights for Addition and Subtraction units

Unit Weight
Add 5
Sub 6

0

20000

40000

60000

80000

100000

120000

C
o

m
p

le
xi

ty

M
ill

io
n

s

Multiplicand Bit Length

Schoolbook

Karatsuba-Schoolbook

NTT-Schoolbook

NTT-Comba

NTT-Karatsuba-Comba

NTT-Karatsuba-Schoolbook

Fig. 5. Hardware complexity of multipliers

seen from Figure 5, that for much larger bit lengths, NTT-
Karatsuba-Schoolbook and NTT-Schoolbook multipliers are
smallest in terms of hardware complexity.

If multipliers of smaller bit lengths are considered, the
suitability of various multiplication methods differs greatly.
Figure 6 illustrates the most suitable multipliers for bit
lengths under 512 bits. It can be seen that Karatsuba-
Comba has the smallest hardware complexity for mid length
operands, ranging from 64 bits to 256 bits. Karatsuba-
Schoolbook is best for small operands, ranging under 64
bits. Figure 7 and Figure 8 show the hardware complexity in
particular for the NTT combination multipliers. Of the NTT
multipliers, and more generally for large operands, NTT-
Karatsuba-Schoolbook is recommended.

0

100000

200000

300000

400000

500000

600000

700000

16 32 64 128 256

C
o

m
p

le
xi

ty

Multiplicand Bit Length

Schoolbook

Karatsuba-Schoolbook

Karatsuba-Comba

0

100000

200000

300000

400000

500000

600000

700000

16 32 64 128 256

C
o

m
p

le
xi

ty

Multiplicand Bit Length

Schoolbook

Karatsuba-Schoolbook

Karatsuba-Comba

Fig. 6. Hardware complexity of a selection of multipliers for bit lengths
under 512 bits

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

16 32 64 128 256 512 1024

C
o

m
p

le
xi

ty

Multiplicand Bit Length

NTT-Schoolbook

NTT-Comba

NTT-Karatsuba-Comba

NTT-Karatsuba-Schoolbook

Fig. 7. Hardware complexity of a NTT combination multipliers less than
2048 bits

0

20000

40000

60000

80000

100000

120000

2048 4096 8192 16384 32768 65536

C
o

m
p

le
x

it
y

M
il

li
o

n
s

Multiplicand Bit Length

NTT-Schoolbook

NTT-Comba

NTT-Karatsuba-Comba

NTT-Karatsuba-Schoolbook

0

20000

40000

60000

80000

100000

120000

2048 4096 8192 16384 32768 65536

C
o

m
p

le
x

it
y

M
il

li
o

n
s

Multiplicand Bit Length

NTT-Schoolbook

NTT-Comba

NTT-Karatsuba-Comba

NTT-Karatsuba-Schoolbook

Fig. 8. Hardware complexity of a NTT combination multipliers greater
than or equal to 2048 bits

6 PERFORMANCE RESULTS OF MULTIPLIER AR-
CHITECTURES

In this section the hardware architectures proposed in Sec-
tions 3 and 4 are implemented on FPGA and the associated
results are presented. A Xilinx Virtex-7 FPGA is targeted
and the Xilinx ISE design suite 14.1 [52] is used throughout
this research. More specifically, the target device is a Xilinx
Virtex-7 XC7VX980T. This particular device is selected be-
cause it is one of the high-end Virtex-7 FPGAs [53] with a
large amount of registers and the largest amount of available
DSP slices (3600 DSP slices). Other FPGAs could also be
considered in place of the target device. A Python script
is used to generate the test vectors used in this research
and a testbench is designed and used in ISE design suite
to verify that the output of the multiplier unit matches the
multiplication of the test vector inputs. It is to be noted that
the latency results given are for a single multiplication. The
multipliers can be considered as parts of larger hardware
designs, and thus it is assumed that multiplication inputs
are readily available on the device.

9

TABLE 2
Performance of direct multiplication on Virtex-7 FPGA

Bit Clock Clock Resource
Length Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
16 1 491 1 1 1
32 1 493 1 1 4
64 1 518 2 159 12
128 1 490 3 1033 56
256 1 492 6 4402 231
512* 1 33.482 3150 16780 798

6.1 Direct Multiplication on FPGA
FPGAs are often specifically optimised for fast embedded
multiplications, such as the Xilinx Virtex-7 FPGAs which
contain embedded DSP48E1 slices. The multiplication units
offered on the DSP48E1 slices have been heavily optimised
to work at a high clock frequency and therefore usually offer
very good performance. However, this performance gain is
reduced significantly as the bit length of the required multi-
plication increases. In this research, the various optimised
hardware multiplication designs are compared against a
direct multiplication, which is an ISE instantiated multiplier
unit that uses the DSP48E1 blocks on the FPGA to multiply
in a single clock cycle.

Table 2 shows the hardware resource usage require-
ments of a direct multiplication with various bit lengths
on a Virtex-7 FPGA xc7vx1140t. The asterisk, ∗, in Table
2 indicates the design IO pins are overloaded; it must be
noted that this is managed using a wrapper, which incurs
additional area cost. Although there are some further opti-
misations that can be made to improve the efficiency and
the scaling of the direct multiplication, the results show the
limitations of using direct multiplication and the need for
alternative hardware designs specifically for large integer
multiplication. This is particularly important for the area of
FHE, where million-bit multiplications are required.

As can be seen from Table 2, the hardware resource usage
increases rapidly. For example, if the number of required
DSP48E1 slices is considered, the usage increases greatly
with an increase in bit length of the multiplication operands.
This trend is illustrated in Figure 9. Therefore, the use of
direct multiplication is best when only smaller multiplica-
tions are required; thus it is recommended that alternative
multiplication methods which scale more efficiently are
considered for large multiplications such as that required
in FHE schemes.

The following subsections discuss the alternatives to the
direct multiplication instantiation on FPGA. These designs
also target a Xilinx Virtex-7 FPGA; however they could also
be used on other platforms. The results of the combinations
of multipliers are also discussed within the following sub-
sections.

6.2 Hardware Design of Comba Multiplication
Table 3 shows the performance post-place and route results
of the Comba multiplication unit targeting the Xilinx Virtex-
7 platform. The asterisk (*) in the table indicates the cases
when the input and output pins are overloaded in a straight-
forward implementation, and thus this is managed by using

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Pe
rc

en
ta

ge
 D

SP
48

E1
 U

sa
ge

Multiplier bit length

Percentage DSP48E1 usage for Direct
and Comba multiplication on a Virtex-7

FPGA (xc7vx1140t)

Percentage Usage Comba multiplier

Percentage Usage direct multiplier

Fig. 9. Graph of the percentage usage of the DSP48E1 blocks for given
direct multiplications of increasing bit-lengths on a Xilinx Virtex-7 FPGA

TABLE 3
Performance of Comba multiplication on Virtex-7 FPGA

Bit Clock Clock Resource
Length Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
32 6 274.952 168 199 2
64 10 230.696 303 355 4
128 18 260.146 569 412 8
256 34 209.249 1099 907 16
512* 66 291.121 4276 4202 32
1024* 130 234.028 8439 7761 64
2048* 258 162.973 16766 15675 128
4096* 514 139.392 33407 25381 256
8192* 1026 121.507 66794 57283 512
16384* 2050 104.275 133254 141193 1024

a wrapper in the design, which incurs additional resources
to store the input and output registers. As can be seen in
Table 3, the number of DSP slices required increases slowly
with an increase in multiplication operand bit length, unlike
in Table 2 for the direct multiplication unit. These trends
can be seen clearly in Figure 9; less than two percent of
the available DSP resources are used for a 1024-bit Comba
multiplier. Additionally, although in general more resources
are initially required for the Comba multiplication unit for
smaller operands, the usage scales slowly with the increase
in bit length.

6.3 Hardware Design of Karatsuba-based Multiplica-
tion

The Karatsuba multiplier design using direct multiplica-
tion (Karatsuba-Direct) and also the Karatsuba-Comba mul-
tiplier design have both been implemented on a Xilinx
Virtex-7 FPGA. Table 4 gives the performance results of
the Karatsuba-Direct multiplier. The Karatsuba-Direct mul-
tiplication approach results in a slower clock frequency,
due to the scaling limitations associated with the direct
multiplication that have been previously mentioned. There-
fore, the Karatsuba-Comba multiplier performs better. Table
5 shows the post-place and route performance results of
the Karatsuba-Comba multiplier. This design uses more

10

TABLE 4
Performance of Karatsuba-Direct multiplication on Virtex-7 FPGA

Bit Clock Clock Resource
Length Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
128 31 104.318 3687 3499 38
256* 49 74.512 8214 7452 181
512* 85 51.698 15909 20474 686

TABLE 5
Performance of Karatsuba-Comba multiplication on Virtex-7 FPGA

Bit Clock Clock Resource
Length Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
128 42 351.617 4049 3266 13
256 49 291.630 7657 7605 25
512* 65 236.855 17210 11219 49
1024* 97 160.720 34083 22995 97
2048* 161 96.237 67816 36236 193
4096* 289 50.075 135279 82122 385

hardware resources but has a lower latency than solely the
Comba multiplier design, as can be seen if Table 3 and Table
5 are compared. The latency is impacted greatly with the
choice of adder. The latency of the adder depends solely on
the add width, denoted as aw, that is the width of the smaller
blocks which are sub-blocks of the input blocks to be added.
Thus, a trade-off exists, such that the use of a larger aw
decreases the latency but also decreases the achievable clock
frequency of the design. In this design, aw is set to equal one
quarter of the multiplicand bit length, allowing the adder
block to increase in size with an increase in bit length. This
minimises the latency but for larger multiplicand bit lengths
this choice of aw significantly limits the achievable clock
frequency. Therefore, aw should be adjusted appropriately
depending on the target multiplicand bit length.

The hardware design proposed in this research for
Karatsuba multiplication is optimised but does not use
the Karatsuba algorithm recursively; this design decision
is made to minimise the use of hardware resources on the
FPGA platform, especially for larger multiplications. Thus,
it should be noted that Karatsuba is a fast multiplication
method, and an improved hardware design of the Karatsuba
algorithm, which uses the algorithm recursively without in-
curring too much hardware resource cost could offer better
performance gains. As mentioned in Section 4.1, Karatsuba
and Comba have been combined on software and showed
promise. Although there have been several proposed soft-
ware designs of Karatsuba and Comba and also combined
with Montgomery multiplication, no hardware designs of
Karatsuba and Comba multiplication can currently be found
in the literature. Therefore, this is one of the first proposed
hardware designs of Karatsuba and Comba.

6.4 Hardware Design of NTT Multiplication

Table 6 and Table 7 give the hardware resource usage and
the clock latency of the NTT-Direct and the NTT-Comba
multiplication designs respectively. These tables show that

TABLE 6
Performance of NTT-Direct multiplication on Virtex-7 FPGA

Bit NTT Clock Clock Resource
Length Point Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
64* 64 3750 105.407 61021 73853 6
128* 64 3900 104.526 62184 74163 6
256* 64 4150 104.712 64489 75020 6

TABLE 7
Performance of NTT-Comba multiplication on Virtex-7 FPGA

Bit NTT Clock Clock Resource
Length Point Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
64* 64 4400 114.732 61273 73940 4
128* 64 4500 118.779 62433 74694 4
256* 64 4750 118.161 64745 75366 4

a large amount of area resources are required. Highly opti-
mised NTT hardware designs are required for FHE schemes
to minimise resource usage.

Similarly to the Karatsuba multiplier, the NTT multipli-
cation unit has an increased clock frequency when combined
with the Comba multiplication unit. The hardware resource
usage could be further reduced and the clock frequency
further increased through the deployment of several known
optimisations.

Table 8 gives the post-place and route hardware resource
usage and clock latency of the NTT-Karatsuba-Comba mul-
tiplier. In Table 6, Table 7 and Table 8 the clock latency
values are rounded up to the nearest fifty as the latency can
vary slightly between multiplications. It can be seen in Table
8 that the combination of NTT-Karatsuba-Comba leads to
a larger design with more latency and therefore currently
offers no advantages over the NTT-Comba multiplier. This
result shows that some combination multipliers can lead to
increased overhead. The hardware combination of multipli-
ers should therefore be carefully considered with respect to
the target application.

It can be seen in Table 7, that the resource usage increases
greatly with an increase in the NTT point, i.e. when the bit
length increases over a given threshold. This is because the
number of required butterflies in each stage and the number
of stages in an NTT architecture is dependent on the NTT
point.

The NTT hardware multiplier design in this research
could also be further improved. Two multiplication units
and two NTT units could be used to reduce latency. In addi-
tion to this, the butterfly units could be serially implemented
instead of a parallel implementation for each stage of the
NTT. These optimisations would improve the performance.

TABLE 8
Performance of NTT-Karatsuba-Comba multiplication on Virtex-7 FPGA

Bit NTT Clock Clock Resource
Length Point Latency Frequency Usage

(MHz) Slice Reg Slice LUT DSP
64* 64 8300 110.8033 63017 73250 7
128* 64 8450 110.156 64179 73713 7
256* 64 8700 102.354 66485 75499 7

11

However, all optimisations have a trade-off in terms of
either increased latency or increased hardware resources
and thus the design optimisations depend greatly on the
motivation of the design. Moreover, it must be mentioned
that, although the NTT multiplier architecture has a large
latency, due to the inherent and regular structure of the
NTT this architecture can be suitably pipelined to achieve
a high throughput. This is advantageous in applications
which require several multiplication operations.

6.5 Clock Cycle Latency and Clock Frequency for Mul-
tipliers

The clock cycle latency required for the different multipliers
is given in Table 9 for comparison purposes. This clearly
shows that the NTT design used in this research does
require considerably more clock cycles for a multiplica-
tion when compared to the other methods. Moreover, the
Karatsuba-Comba design presented in this research offers
a reduced latency for multiplicand bit lengths greater than
512 bits compared to Comba multiplication.

Table 9 also compares the clock frequencies to give an
idea of which multiplier operates the fastest. As can be
seen in the table, the Comba multiplication has the highest
clock frequency. Additionally, it must be noted that the
clock frequency of both the NTT and the Karatsuba designs
improve when combined with the Comba multiplication
unit. The clock frequency of the Karatsuba-Comba design
decreases rapidly with increased bit length; as previously
mentioned, the adder used within the Karatsuba-Comba
design has an impact on this clock frequency. Therefore,
this research shows that there are potential benefits in using
combined multiplier architectures, depending on the appli-
cation specifications.

The latency of each of the multipliers can be described
more generically, to give estimates for any multiplication bit
length. The latency for the Direct multiplier is equal to 1
clock cycle for any multiplication bit length. Let w be the
multiplication width and s be the small multiplication block
width, used within the DSP slices (s is set to 16-bits in the
Comba design). Then, the latency of the Comba multiplier
is given in Equation 16. As the Comba design employs the
DSP slices to calculate the partial products required in large
multiplication in a scheduled manner, the latency is directly
associated with the number of required DSP slices, which
is w

s , and there is also a small overhead for partial product
accumulation.

2
⌈w
s

⌉
+ 2 (16)

The latency of the Karatsuba designs also depend on
w and s and additionally a, the addition block width. The
latency of the Karatsuba designs is calculated by summing
the latency of one small multiplier, the adders and an
additional constant latency requirement of 4 clock cycles.
One w

2 + s-bit multiplier is required. Also, four additions
are required, which are of the size w

2 -bit, w+2s-bit, w+3s-
bit and 2w + 1-bit respectively. The latency of each adder is
set to dwadd

a e+ 1, where wadd is the maximum bit length of
the elements to be added. The latency of Karatsuba-Direct is

given in Equation 17. Within the Karatsuba-Direct design,
the addition block width is set to equal a = 32. Within
the Karatsuba-Comba design, the addition block width is
set, such that a = w

4 . Equation 18 gives the latency for the
Karatsuba-Comba design. For any values greater than 192-
bits, Equation 18 is equivalent to Equation 19.

⌈ w
2a

⌉
+ 2
⌈w
a

⌉
+

⌈
5s

a

⌉
+

⌈
2w + 1

a

⌉
+ 9 (17)

⌈w
s

⌉
+

⌈
8s

w

⌉
+

⌈
12s

w

⌉
+

⌈
4

w

⌉
+ 30 (18)

⌈w
s

⌉
+ 33 (19)

Lastly, an estimation for the latency of the NTT combi-
nation architectures is given in Equation 20, where w′ is the
NTT point size and m is the latency of the multiplication,
either Comba, Direct or Karatsuba, as defined above. Also,
r is the latency of the modular reduction step, b is the
latency of the NTT butterflies and t is the latency of the
addition step. In the modular reduction step, a maximum of
2 additions are required as well as an additional 2 clock
cycles. As the addition block width is set to equal the
width of the entire addition, the addition requires 2 clock
cycles. Thus, in this case r = 4. The latency of the butterfly
operations is estimated in this case as b = 21 and the latency
of the addition step is estimated as t = 4.

3b log2(w
′) + 2(w′m+w′r) +

w′(w′ − 1)

2
+ (w′ − 1)t (20)

A graph is given in Figure 10 that compares the latencies
of all of the multiplier methods, with the exception of the
NTT combinations, as these require much greater latencies.
This graph highlights the impact the multiplication bit
length has on the performance of these designs. It can be
seen that for larger numbers Karatsuba-Direct has the high-
est latency and Karatsuba-Comba has the lowest latency, not
including the Direct multiplication, which has a low latency
but requires much greater area resources with each increase
in multiplication bit length and thus is not a feasible option
for large integers.

7 COMPARISON FOR UNEVEN OPERANDS

An alternative approach to a regular square multiplier is
sometimes required for various applications, for example
in the case of the encryption step in the FHE scheme over
the integers, see [23]. The multiplicands within the large
integer multiplication step differ greatly in size. In order
to investigate this further, the multiplication methods pre-
sented in this research are also employed within an uneven
multiplication unit. This unit is depicted in Figure 11. In
this design, the MUL unit is interchanged to measure the
performance of various multiplication methods.

For the case of integer based FHE, as proposed by [23], a
much smaller multiplicand, bi, is required in the encryption
step, which ranges from 936 bits to 2556 bits. Thus, a

12

TABLE 9
Clock cycle latency and frequency (MHz) of multipliers with respect to bit length

Bit Comba Karatsuba Karatsuba NTT NTT
Length + Direct + Comba + Direct + Comba

Latency clock Latency clock Latency clock Latency clock Latency clock
freq. freq. freq. freq. freq.

64 10 230.696 - - - - 3750 105.407 4400 114.732
128 18 260.146 31 104.318 42 351.617 3900 104.526 4500 118.779
256 34 209.249 49 74.512 49 291.630 4150 104.712 4750 118.161
512 66 291.121 85 51.698 65 236.855 - - - -
1024 130 234.028 - - 97 160.720 - - - -
2048 258 162.973 - - 161 96.237 - - - -
4096 514 139.392 - - 289 50.075 - - - -
8192 1026 121.507 - - - - - - - -
16384 2050 104.275 - - - - - - - -

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048

L
a

te
n

cy

Bit length of Multipliers

Latency Comparison of Multiplier Designs

Direct

Comba

Karatsuba-Comba

Karatsuba-Direct

Fig. 10. Latency of four of the multipliers

MUL
MUL
REG

ACC
ACC
REG

CARRY
REG

OUT
REG

DOUT
REG

A

B

C

Fig. 11. Architecture of the uneven multiplication unit

smaller square multiplication unit, of the size of the smaller
multiplicand, is reused in this design for the multiplication
with uneven operands and the subsequent partial products
are accumulated to produce the final output.

Table 10 presents latency results for the uneven multipli-
cation unit with respect to several multiplication methods.
A selection of bit lengths are investigated. There are several
assumptions in this design that must be taken into consider-
ation when analysing the results. Firstly, the multiplication
methods are not pipelined as only one multiplication is
considered here for comparison purposes. Of the current
designs presented in this research, Table 10 shows that
Comba is most suitable for uneven operands, due to the
relatively high clock frequency and low latency achievable.

TABLE 10
Clock cycle latency and hardware resource usage of multipliers within

an uneven multiplication

Multiplier Latency Clock Freq Slice Slice DSP
Type (MHz) Reg LUT

Bit length of A = 64; Bit length of B = 128
Comba 56 399.457 1401 1077 4
Karatsuba-Comba 136 399.457 3417 2781 7
Direct 26 109.077 1099 753 12

Bit length of A = 256; Bit length of B = 1024
Comba 226 212.981 2182 1587 16
Karatsuba-Comba 316 84.328 7400 8105 181
NTT-Comba 25550 127.159 86436 99123 18
Direct 38 63.930 2074 5679 231

Bit length of A = 512; Bit length of B = 1024
Comba 280 122.680 10871 6870 32
Karatsuba-Comba 496 122.680 24240 13004 49
NTT-Comba 16300 122.680 273527 405246 8
Direct 26 42.405 8737 18921 798

Bit length of A = 1024; Bit length of B = 4096
Comba 802 66.386 27833 11220 64
Karatsuba-Comba 1372 66.386 51492 27408 97

Bit length of A = 1024; Bit length of B = 8192
Comba 1334 66.386 27833 11220 64
Karatsuba-Comba 2284 66.386 63781 29454 97

Bit length of A = 1024; Bit length of B = 16384
Comba 2398 66.386 64699 20888 64
Karatsuba-Comba 4108 66.386 88358 33553 97

8 CONCLUSIONS

In this paper, the hardware designs of several large inte-
ger multipliers were proposed and a hardware complexity
analysis was also given for each of the most common
multiplication methods. In conclusion, the hardware results
of the proposed multiplier combination designs show that
Karatsuba-Comba offers low latency at the cost of additional
area resources in comparison to a hardware Comba multi-
plier. Additionally, Comba is shown to be the most suitable
multiplication method when uneven operand multiplication
is required.

Moreover, it can be seen from the hardware complexity
analysis and the latency analysis, that the bit length range
of the operands is an important factor in the selection of
a suitable multiplication method. The hardware complexity
figures give an idea of how these combination multipliers
will generally scale, without targeting any specific platform.
Generally, the results of the hardware complexity analysis

13

show that NTT-Karatsuba-Schoolbook multiplication is the
best choice for very large integers. Other factors must also be
considered when selecting multipliers, such as the optimi-
sation target, for example low area or high speed. Another
factor is the algorithm to be implemented and the associ-
ated computations required for such algorithms other than
multiplication, which will potentially dictate the amount of
available resources on the target device for multiplication
and thresholds on latency for multipliers within the entire
implementation.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, 2009, URL: http://crypto.stanford.edu/craig.

[2] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic
encryption,” in Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, 2012, pp. 1219–1234.

[3] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “Cloud-assisted
multiparty computation from fully homomorphic encryption,”
IACR Cryptology ePrint Archive, Report 2011/663, 2011.

[4] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic
encryption with polylog overhead,” Cryptology ePrint Archive,
Report 2011/566, 2011.

[5] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart, “Ring switching in
BGV-style homomorphic encryption,” in Security and Cryptography
for Networks - 8th International Conference, SCN 2012, Amalfi, Italy,
September 5-7, 2012. Proceedings, 2012, pp. 19–37.

[6] S. Halevi and V. Shoup. (2012) HElib, homomorphic encryption
library. https://github.com/shaih/HElib.

[7] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware,” in
Progress in Cryptology - LATINCRYPT 2012 - 2nd International
Conference on Cryptology and Information Security in Latin America,
Santiago, Chile, October 7-10, 2012. Proceedings, 2012, pp. 139–158.

[8] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating
fully homomorphic encryption using GPU,” in IEEE Conference on
High Performance Extreme Computing, HPEC 2012, Waltham, MA,
USA, September 10-12, 2012, 2012, pp. 1–5.

[9] W. Wang and X. Huang, “FPGA implementation of a large-number
multiplier for fully homomorphic encryption,” in 2013 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS2013), Beijing,
China, May 19-23, 2013, 2013, pp. 2589–2592.

[10] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 99, no. PrePrints, p. 1, 2013.

[11] W. Wang, X. Huang, N. Emmart, and C. C. Weems, “VLSI design
of a large-number multiplier for fully homomorphic encryption,”
IEEE Trans. VLSI Syst., vol. 22, no. 9, pp. 1879–1887, 2014.

[12] X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan,
“High speed fully homomorphic encryption over the integers,”
in Financial Cryptography and Data Security - FC 2014 Workshops,
BITCOIN and WAHC 2014, Christ Church, Barbados, March 7, 2014,
Revised Selected Papers, 2014, pp. 169–180.

[13] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and
N. Hanley, “Optimised multiplication architectures for
accelerating fully homomorphic encryption,” IEEE Trans.
Computers, vol. 65, no. 9, pp. 2794–2806, 2016. [Online].
Available: http://dx.doi.org/10.1109/TC.2015.2498606

[14] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware per-
formance of a million-bit multiplier,” in 16th Euromicro Conference
on Digital System Design (DSD), 2013, pp. 955–962.

[15] Y. Doröz, E. Öztürk, and B. Sunar, “A million-bit multiplier
architecture for fully homomorphic encryption,” Microprocessors
and Microsystems - Embedded Hardware Design, vol. 38, no. 8, pp.
766–775, 2014.

[16] C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “Accelerating
integer-based fully homomorphic encryption using Comba multi-
plication,” in 2014 IEEE Workshop on Signal Processing Systems, SiPS
2014, Belfast, United Kingdom, October 20-22, 2014, 2014, pp. 62–67.

[17] J. David, K. Kalach, and N. Tittley, “Hardware complexity of mod-
ular multiplication and exponentiation,” IEEE Trans. Computers,
vol. 56, no. 10, pp. 1308–1319, 2007.

[18] I. San and N. At, “On increasing the computational efficiency of
long integer multiplication on FPGA,” in 11th IEEE International
Conference on Trust, Security and Privacy in Computing and Com-
munications, TrustCom 2012, Liverpool, United Kingdom, June 25-27,
2012, 2012, pp. 1149–1154.

[19] A. Abdel-Fattah, A. Bahaa El-Din, and H. Fahmy, “Modular mul-
tiplication for public key cryptography on FPGAs,” in Computer
Sciences and Convergence Information Technology, 2009. ICCIT ’09.
Fourth International Conference on, Nov 2009, pp. 1096–1100.

[20] C. McIvor, M. McLoone, and J. McCanny, “Fast Montgomery
modular multiplication and RSA cryptographic processor archi-
tectures,” in 37th Asilomar Conference on Signals, Systems and Com-
puters, 2003, pp. 379–384.

[21] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster inter-
leaved modular multiplication based on Barrett and Montgomery
reduction methods,” IEEE Trans. Computers, vol. 59, no. 12, pp.
1715–1721, 2010.

[22] S. Srinivasan and A. Ajay, “Comparative study and analysis of
area and power parameters for hardware multipliers,” in Electrical,
Electronics, Signals, Communication and Optimization (EESCO), 2015
International Conference on, Jan 2015, pp. 1–5.

[23] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compres-
sion and modulus switching for fully homomorphic encryption
over the integers,” in Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings, 2012, pp. 446–464.

[24] P. G. Comba, “Exponentiation cryptosystems on the IBM PC,” IBM
Systems Journal, vol. 29, no. 4, pp. 526–538, 1990.

[25] L. Malina and J. Hajny, “Accelerated modular arithmetic for low-
performance devices,” in 34th International Conference on Telecom-
munications and Signal Processing (TSP 2011), Budapest, Hungary,
Aug. 18-20, 2011, 2011, pp. 131–135.

[26] T. Güneysu, “Utilizing hard cores of modern FPGA devices
for high-performance cryptography,” J. Cryptographic Engineering,
vol. 1, no. 1, pp. 37–55, 2011.

[27] A. A. Karatsuba and Y. Ofman, “Multiplication of multidigit
numbers on automata,” Soviet Physics Doklady, vol. 7, pp.
595–596, 1963, URL: http://cr.yp.to/bib/entries.html#
1963/karatsuba.

[28] G. C. T. Chow, K. Eguro, W. Luk, and P. H. W. Leong, “A
Karatsuba-based Montgomery multiplier,” in International Confer-
ence on Field Programmable Logic and Applications, FPL 2010, August
31 2010 - September 2, 2010, Milano, Italy, 2010, pp. 434–437.

[29] N. Nedjah and L. de Macedo Mourelle, “A review of modular mul-
tiplication methods and respective hardware implementation,”
Informatica (Slovenia), vol. 30, no. 1, pp. 111–129, 2006.

[30] P. L. Montgomery, “Five, six, and seven-term Karatsuba-like for-
mulae,” IEEE Trans. Computers, vol. 54, no. 3, pp. 362–369, 2005.

[31] C. C. Corona, E. F. Moreno, and F. Rodrı́guez-Henrı́quez, “Hard-
ware design of a 256-bit prime field multiplier suitable for com-
puting bilinear pairings,” in 2011 International Conference on Re-
configurable Computing and FPGAs, ReConFig 2011, Cancun, Mexico,
November 30 - December 2, 2011, 2011, pp. 229–234.

[32] A. L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers,” Soviet Mathematics Dok-
lady, vol. 3, pp. 714–716, 1963.

[33] S. A. Cook, “On the minimum computation time of func-
tions,” Ph.D. dissertation, 1966, URL: http://cr.yp.to/bib/
entries.html#1966/cook.

[34] GMP, “GMP library: Multiplication,” 2014, URL:
https://gmplib.org/manual/Multiplication-Algorithms.html.

[35] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519–521,
1985.

[36] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer
Zahlen,” Computing, vol. 7, no. 3-4, pp. 281–292, 1971.

[37] N. Emmart and C. C. Weems, “High precision integer multipli-
cation with a GPU using Strassen’s algorithm with multiple FFT
sizes,” Parallel Processing Letters, vol. 21, no. 3, pp. 359–375, 2011.

[38] L. Ducas and D. Micciancio. (2014) A fully homomorphic
encryption library. https://github.com/lducas/FHEW.

[39] J. A. Solinas, “Generalized Mersenne numbers,” 1999, tech Report.
[40] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,

D. Pao, and I. Verbauwhede, “High-speed polynomial multiplica-
tion architecture for ring-LWE and SHE cryptosystems,” Cryptol-
ogy ePrint Archive, Report 2014/646, 2014.

14

[41] T. Gyorfi, O. Cret, G. Hanrot, and N. Brisebarre, “High-throughput
hardware architecture for the SWIFFT / SWIFFTX hash func-
tions,” Cryptology ePrint Archive, Report 2012/343, 2012.

[42] L. M. Leibowitz, “A simplified binary arithmetic for the fermat
number transform,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 24, no. 5, pp. 356–359, 1976.

[43] K. Kalach and J. P. David, “Hardware implementation of large
number multiplication by FFT with modular arithmetic,” 3rd
International IEEE-NEWCAS Conference, pp. 267–270, 2005.

[44] C. Cheng and K. K. Parhi, “High-throughput VLSI architecture for
FFT computation,” IEEE Trans. on Circuits and Systems, vol. 54-II,
no. 10, pp. 863–867, 2007.

[45] S. Baktir and B. Sunar, “Achieving efficient polynomial multi-
plication in fermat fields using the fast Fourier transform,” in
Proceedings of the 44st Annual Southeast Regional Conference, 2006,
Melbourne, Florida, USA, March 10-12, 2006, 2006, pp. 549–554.

[46] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Ver-
bauwhede, “Compact ring-LWE cryptoprocessor,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2014 - 16th In-
ternational Workshop, Busan, South Korea, September 23-26, 2014.
Proceedings, 2014, pp. 371–391.

[47] C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and
X. Cao, “Targeting FPGA DSP slices for a large integer multiplier
for integer based FHE,” in Financial Cryptography and Data Security
- FC 2013 Workshops, USEC and WAHC 2013, Okinawa, Japan, April
1, 2013, Revised Selected Papers, 2013, pp. 226–237.

[48] Xilinx. (2013) 7 series DSP48E1 Slice. [Online]. Available:
http://www.xilinx.com/ support/documentation/user guides/
ug479 7Series DSP48E1.pdf

[49] Xilinx. (2014) 7 series FPGAs overview. [Online]. Available:
http://www.xilinx.com/ support/documentation/data sheets/
ds180 7Series Overview.pdf

[50] M. P. Scott, “Comparison of methods for modular exponentiation
on 32-bit Intel 80x86 processors,” 1996. [Online]. Available:
goo.gl/SxGkGD

[51] J. Großschädl, R. M. Avanzi, E. Savas, and S. Tillich, “Energy-
efficient software implementation of long integer modular arith-
metic,” in Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-
ber 1, 2005, Proceedings, 2005, pp. 75–90.

[52] Xilinx. (2015) ISE design suite. [Online]. Avail-
able: http://www.xilinx.com/ products/design-tools/ise-design-
suite.html

[53] Xilinx. (2014) 7 series FPGAs overview. [Online]. Available:
http://www.xilinx.com/ support/documentation/data sheets/
ds180 7Series Overview.pdf

Ciara Rafferty (M’14) received first-class hon-
ours in the BSc. degree in Mathematics with Ex-
tended Studies in Germany at Queen’s Univer-
sity Belfast in 2011 and the Ph.D. degree in elec-
trical and electronic engineering from Queen’s
University Belfast in 2015. She is currently a Re-
search Assistant in Queen’s University Belfast.
Her research interests include hardware cryp-
tographic designs for homomorphic encryption
and lattice-based cryptography.

Máire O’Neill (M’03-SM’11) received the M.Eng.
degree with distinction and the Ph.D. degree
in electrical and electronic engineering from
Queen’s University Belfast, Belfast, U.K., in 1999
and 2002, respectively. She is currently a Chair
of Information Security at Queen’s and previ-
ously held an EPSRC Leadership fellowship
from 2008 to 2015. and a UK Royal Academy
of Engineering research fellowship from 2003
to 2008. She has authored two research books
and has more than 115 peer-reviewed confer-

ence and journal publications. Her research interests include hard-
ware cryptographic architectures, lightweight cryptography, side channel
analysis, physical unclonable functions, post-quantum cryptography and
quantum-dot cellular automata circuit design. She is an IEEE Circuits
and Systems for Communications Technical committee member and
was Treasurer of the Executive Committee of the IEEE UKRI Section,
2008 to 2009. She has received numerous awards for her research and
in 2014 she was awarded a Royal Academy of Engineering Silver Medal,
which recognises outstanding personal contribution by an early or mid-
career engineer that has resulted in successful market exploitation.

Neil Hanley received first-class honours in the
BEng. degree, and the Ph.D. degree in electri-
cal and electronic Engineering from University
College Cork, Cork, Ireland, in 2006 and 2014
respectively. He is currently a Research Fellow
in Queen’s University Belfast. His research in-
terests include secure hardware architectures
for post-quantum cryptography, physically un-
clonable functions and their applications, and
securing embedded systems from side-channel
attacks.

