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Abstract  
Significance: Ionising radiation can induce a wide range of unique DNA 

lesions due to the spatio-temporal correlation of the ionisation produced. Of 

these DNA DSB play a key role. Complex mechanisms and sophisticated 

pathways are available within cells to restore the integrity and sequence of the 

damaged DNA molecules.  

Recent Advances:  Here, we review the main aspects of the DNA DSB repair 

mechanisms with emphasis on the molecular pathways, radiation induced 

lesions and their significance for cellular processes. 

Critical Issues: Although the main characteristics and proteins involved in the 

two DNA DSB repair processes present in eukaryotic cells (homologous 

recombination and non-homologous end joining) are reasonably well 

established, there are still uncertainties regarding the primary sensing event 

and their dependency on the complexity, location and time of the damage. 

Interactions and overlaps between the different pathways play a critical role in 

defining the repair efficiency and determining the cellular functional behaviour 

due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in 

repairing lesions induced by soluble factors released from directly irradiated 

cells may also differ from the established response mechanisms.  

Future Directions: An improved understanding of the molecular pathways 

involved in sensing and repairing damaged DNA molecules and the role of 

DSB is crucial for the development of novel classes of drugs to treat human 

diseases and to exploit characteristics of ionising radiation and alterations in 

tumour cells for successful radiotherapy applications.  
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Innovation 

DNA double-strand breaks, where both strands of the double helix are broken 

are potentially very harmful to cells. Ionising radiations are very effective at 

producing DSB alongside other DNA lesions and cells have evolved pathways 

to try and remove these lesions. These detect the presence of damage then 

activate different repair pathways. Oxygen dependent reactive free radicals can 

also lead to DSB during DNA synthesis. Cells can also communicate between 

each other by bystander signals which can lead to indirect DSB. These 

pathways are being exploited to improve the efficiency of radiotherapy in 

combination with DSB repair inhibitors.  
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1. Introduction to radiation-induced DNA damage and repair 
 

All cells have extensive DNA repair mechanisms, which have evolved to 

maintain the stability of their genomes. This includes dealing with the 

consequences of DNA damage either from endogenous or exogenous sources. 

A careful balance must be maintained between the effective repair of DNA 

damage leading to genetic stability and survival, as the consequence of 

defective or incomplete repair can be genetic instability, which may lead to 

genetic divergences or disease such as cancer and other hereditary disease 

(96). Much of the endogenous DNA damage comes from reactive oxygen 

species produced during normal oxidative metabolism, which leads to 

increased levels of oxidised base damage (70).  Estimates of endogenous 

damage as high as 10,000 DNA damages per cell per day (72) have been 

reported although there are significant uncertainties over the measurements of 

these with recent work suggesting specific lesions are at much lower levels 

(42). Replication errors can also occur, leading to either the wrong or a 

modified base being incorporated. Finally, cells can be exposed to a range of 

exogenous environmental sources of DNA damage including ionising radiation 

(IR), ultraviolet (UV) radiation and multiple types of different chemicals, such as 

inhibitors of topoisomerase II and the radiomimetic agent bleomycin. Of these, 

ionising radiations prove to be significant challenges to genome stability, due to 

their ability to induce a range of different types of DNA damage and because 

these have distinct spatial patterns due to the type of radiation exposure. 

  

IR induced DNA damage includes single DNA strand breaks (SSBs), double 

DNA strand breaks (DSBs) and base modifications such as oxidation, 

alkylation, deamination, loss of bases residues to produce apurinic or 

apyrmidinic sites (AP sites), all of which can indirectly lead to SSBs and/ or 

DSBs. There are also crosslinks formed involving DNA-DNA and DNA-protein 

interactions (see figure 1).  

The most critical of these lesions in terms of lethality and mutation probability is 

the DSB, which is considered to be a form of “complex DNA damage” also 

termed clustered damage or multiply damaged sites (132). Complex DNA 

damage is usually described as two or more lesions within one to two helical 

turns of the DNA arising from a single radiation track and distinct from 

endogeneous DNA damage (46). IR causes DNA lesions by direct interaction 
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with DNA or indirectly via the generation of reactive species.  In the case of X-

rays, most DNA damage induced occurs via the latter method. Studies of DSB 

induction in mammalian cells exposed to X-rays suggest that ~70% of the total 

DSBs result indirectly by interaction of reactive oxygen, such as hydroxyl 

radicals, that are generated by the ionisation of other molecules, such as water, 

in close proximity to the DNA. In contrast, heavy ions have a higher probability 

of a particle traversal directly causing a DSB and therefore rely less on radical 

species for DNA damage induction. 

This review will cover key aspects of the induction, sensing and repair of DSBs 

caused by IR. Aside from the aspects of complex damage, most of the sections 

covered are of relevance to other agents that induce DSB directly or indirectly. 

 

2. Sensing DNA double strand breaks  

In order for the DSB repair mechanisms (described in section 3) to be 

successfully carried out, the DNA damage needs to be detected, cell cycle 

arrest must be induced and the lesion can then be repaired. This process is 

known as the DNA damage response (DDR), which involves interplay between 

three distinct sets of proteins as proposed by Jackson et al. (57). Damage is 

initially detected by sensor proteins, which recognise sites of damage within the 

DNA. These sensor proteins are recruited to damaged sites and amplify the 

damage signal to a set of proteins known as transducers which function to 

relay the signal to downstream effector proteins (12) (see figure 2). It is the 

activated effector proteins which then function to induce cell cycle arrest, DNA 

damage repair or apoptosis (57).  

Despite the method ultimately used to repair the damage (HR or NHEJ), DSBs 

are initially sensed by the Mre11-Rad50-Nbs1 (MRN) complex. This highly 

conserved complex also has a role in the processing and repair of DSBs (see 

section 3) (123). Each of the proteins within this complex has different functions 

in DNA damage signalling. Mre-11 is a 70-90 kDa protein which possesses 

DNA binding activity and appears to function to recruit other DNA repair 

proteins to the site of DNA damage. It also has DNA endonuclease and 

exonuclease activity (25). Rad50 is a 150 kDa protein that directly interacts 

with Mre11 (59) and functions to partially unwind double stranded DNA termini, 

enabling other proteins to access the site of damage and carry out repair 

functions. Finally, Nbs1 is a 65-85 kDa protein that binds to phosphorylated 

proteins via its N-terminus, thereby allowing the recruitment of various DNA 



Kavanagh et al.  
 

6 
 

damage repair and checkpoint control proteins to the site of DNA damage. 

Therefore, this complex functions both to detect damage and control 

checkpoint signalling in both HR and NHEJ repair pathways. Recent studies 

have indicated that MRN may be recruited to DNA DSBs by the single stranded 

binding protein hSSB1 that has a high affinity for short regions of ssDNA at 

broken DSB ends (101). Recruitment of hSSB1 to IR induced DSBs precedes 

MRN recruitment and, through a direct interaction with Nbs1, hSSB1 mediates 

MRN recruitment to DSB sites (102, 103).  

 

Following DNA damage recognition by the MRN complex, activation of a series 

of transducer and effector proteins occurs to form the DDR. ATM (Ataxia 

telangiectasia mutated), another primary sensor of DNA double strand breaks, 

is recruited to sites of DNA damage by the MRN complex, inducing the 

autophosphorylation of ATM at ser 1981 and its activation. Deficiency of the 

ATM gene results in the neurodegenerative disorder ataxia telangectasia (AT) 

(108). AT is characterized by neurodegeneration, high risk of cancer and 

hypersensivity to IR, a discovery that lead to the proposal of its key role in 

detection and repair of DNA DSBs. In undamaged cells, ATM exists as inactive 

homodimers and multimers. Phosphorylation of ATM at ser 1981 allows 

dissociation of these into monomers with kinase activity capable of downstream 

signalling (7). ATM can then phosphorylate the histone variant 2AX (H2AX) at 

ser 139 up to ~1 Mb on either side of a DSB to form γH2AX, which forms foci at 

the sites of damage that are visible by fluorescent microscopy (105). H2AX can 

also be phosphorylated by the other PI3-kinase like proteins ATR (ataxia 

telangiectasia and Rad3-related protein), which is primarily activated at stalled 

replication forks (130), and DNA-PK (DNA protein kinase) (90), which is 

required for NHEJ. Phosphorylation of ATM, ATR and H2AX leads to an 

amplification of the DNA damage signal and the recruitment of a large number 

of DNA repair and checkpoint control proteins to the site of DNA damage, 

including Mediator of Damage Checkpoint protein 1 (MDC1) (114,115), p53 

binding protein (53BP1) (131), Breast Cancer Susceptibility protein 1 (BRCA1) 

(21,136), Chk1 (140), Chk2 (2,35) and p53 (18) (see figure 2).  Also recruited 

are members of the Fanconi anemia (FA) family of proteins such as FANCD2 

(118), which co-operate with BRCA1 and BRCA2 in the FA/BRCA DNA repair 

pathway. A core complex of 8 FA proteins is recruited to sites of DNA damage, 

leading to ubiquitation of FANCD2 and recruitment of BRCA2 and RAD51 (65). 

Depending on the proteins recruited, the cell can undergo a number of fates, 
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including cell cycle arrest, DNA repair via HR or NHEJ, apoptosis if the damage 

cannot be repaired, or senescence (96).  

 

Recruitment of the MRN complex, phosphorylation of ATM and the subsequent 

phosphorylation of H2AX occur within minutes of DNA DSBs being induced. 

The localisation of the MRN complex to sites of DNA damage has been shown 

to be upstream of ATM phosphorylation and localisation, as silencing of MRN 

proteins results in impaired ATM signalling (19,122). However, the interactions 

between ATM and the MRN complex are not fully understood, as MRN seems 

to be required for the recruitment and activation of ATM, but ATM also appears 

to phosphorylate members of the MRN complex, allowing further downstream 

signalling (122). Recruitment of ATM may be through an interaction of its 

phosphatidylinositol 3-kinase (PI3-K) domain with the C-terminal of Nbs1 (34). 

ATM is not only activated in response to IR induced DNA DSBs. Conditions 

that alter chromatin structure such as exposure to topoisomerases also initiate 

ATM autophosphorylation, however, under these conditions many of the key 

DDR substrates of ATM (such as H2AX, MDC1, SMC1) are not phosphorylated 

indicating that amplification of the DNA damage signal cascade by ATM 

through its downstream effectors requires recruitment of ATM to DSB sites 

(68).  

Some studies suggest that ATM may be targeted to sites of DSBs by the 

monoubiquitination of H2AX by the BMI1/RNF2/RING1 E3 ligase complex 

(135). H2AX is then further di- or polyubiquitinated by RNF8 thus allowing 

recruitment of the BRCA1/RAP80 complex, which is required for DNA repair. 

ATM also stabilises hSSB1 by phosphorylation at theronine 117 in response to 

IR (101). 

 

3. DNA double strand break repair mechanisms 
DNA DSBs consist of two SSBs within one helical turn on opposing strands of 

DNA. IR induced DNA DSBs are not usually simple lesions but rather contain 

multiple complex lesions and overhanging ends (or ragged ends) of DNA that 

cannot be ligated directly and therefore must be removed before repair can 

begin. 

DSBs are primarily repaired by one of two pathways, homologous 

recombination (HR) or non-homologous end joining (NHEJ), irrespective of 
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their cause (see sections 4 and 5). Although the reasons why one repair 

pathway may be chosen over the other are not fully understood, the choice is 

thought to depend on the phase of the cell cycle, the presence of an intact 

sister chromatid, cell type (110), chromatin complexity (45) and the complexity 

of damage induced (87) (see section 4).  

HR requires the presence of an intact sister chromatid as a template and thus 

this pathway is only available during late S and G2 phases (53). Therefore 

during G1 (and early S-phase) when this option is not available DNA DSBs are 

repaired by NHEJ. Although HR is considered to be relatively error free DNA 

repair method, even in the presence of a homologous chromatid, repair factors 

of each pathway compete for binding to DNA DSBs. 

 

a. Homologous recombination repair of IR induced DNA DSBs  

The major event that determines the decision for repair by HR is DNA end 

resection. A crucial event therefore is binding and activity of the MRN complex 

that was described in section 2. The MRN complex binds to DNA at the site of 

a lesion, recruiting and activating ATM (1, 28, 7).  The endonuclease activity of 

Mre11 then facilitates 5’-3’ resection to produce 3’ single stranded DNA ends 

(58, 138). This endonuclease activity is regulated by an interaction with the 

CtBP-interacting protein (CtIP) in an ATM and BRCA1 dependent manner 

(107).  

 

Following the formation of long tails of 3’ ssDNA regions hSSB1 molecules are 

initially bound then displaced by replication protein A (RPA) to begin the 

formation of nucleoprotein filaments that will eventually invade the homologous 

DNA strand of the sister chromatid. A soft X-ray microbeam has been 

employed to show that binding of the hSSB1 protein to resected 3’ ssDNA ends 

not only occurs before RPA binding but is required for the RPA focus 

formation- thus elucidating an early step in the HR pathway (102). RPA is 

activated in response to IR by extensive phosphorylation (66) and plays a 

crucial role in DNA damage checkpoint signalling, control of DNA replication as 

well as each of the main DNA repair mechanisms (143).  

 

The RAD52/BRCA2/RAD51/RAD54 complex is then recruited to the ssDNA by 

a BRCA1/PALB2 (partner and localiser of BRCA2) complex. This facilitates the 

replacement of RPA with RAD51, thus stabilising the filament and catalysing 



Kavanagh et al.  
 

9 
 

the invasion into the sister chromatid and subsequent Holliday junction 

formation (55, 78). Additionally, direct binding of RAD52 to the ends of DSB 

lesions protects them from exonuclease activity. These vital roles of RAD52 in 

HR may indicate that it plays an important part in the decision for DSB repair by 

HR versus NHEJ (51). RAD51 focus formation can be observed in cells after 

exposure to IR. This focus formation does not occur in cells deficient for 

RAD54, and HR in these cells is less efficient (32). 

 

To facilitate invasion into the sister chromatid strand, the two chromatids are 

tethered together by the structural maintenance of chromosomes proteins 

(SMC) 1, 3, 5 and 6 (also called cohesins) (40). Following invasion to the sister 

chromatid, the two strands are aligned with homologous regions within the 

sister chromatid. DNA synthesis, catalysed by DNA polymerase δ, occurs from 

the 3’ end to replace the sequence of DNA disrupted by the break. Once this 

DNA replication is complete the Holliday junction is resolved by DNA 

resolvases through a complex process that remains unclear (56). Finally, the 

DNA ends are ligated (55). 

 

b. Non-homologous end joining repair 

In late S and G2 phase HR competes with NHEJ and in G1 cells the latter, a 

relatively more error prone process, dominates. The key factors involved in 

NHEJ are the Ku70/Ku80 heterodimer (Ku), the catalytic subunit of DNA-

dependent protein kinase (DNA-PKcs), the nuclease Artemis, XRCC4, DNA 

ligase IV and XRCC4-like factor (XLF). As IR induced DNA DSBs frequently 

contain overhangs and often have phosphate or phosphoglycolate groups 

bound to their 3’ ends, these require processing by additional factors such as 

the DNA polymerases μ and λ, polynucleotide kinase/phosphatase (PNKP) and 

Werner’s syndrome helicase (WRN) before ligation can take place (76). The 

processing of these unligatable ends may result in base loss from either strand 

and is likely to be the reason that that NHEJ is error-prone. For a 

comprehensive discussion of protein and DNA interactions involved in NHEJ 

see (76, 94). 

The first step in this pathway is the rapid recruitment of Ku to IR induced DNA 

DSBs (127) which occurs within a few seconds of irradiation (67). Ku70 and 

Ku80 together form a DNA binding core that has a high affinity for DNA without 

sequence specificity. This may explain the almost instantaneous recruitment of 
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this complex to break sites. Shortly after recruitment to break sites Ku 

translocates along the DNA leaving the ends accessible for processing. Binding 

of Ku results in conformational changes in the C-terminal regions of both Ku70 

and Ku80. This further acts to recruit the other key NHEJ players to sites of 

DSBs. Two DNA-PKcs molecules are recruited to each DNA DSB via an 

interaction with the C-terminal region of Ku80 (111). These two molecules 

tether the DNA ends together and that interaction stimulates their kinase 

activity. This interaction of two DNA-PKcs molecules tethering the extreme 

ends of the broken DNA is often referred to as the “synaptic complex” (27). 

DNA-PK is then phosphorylated at more than 16 sites via autophosphorylation 

and potentially by other kinases such as ATM and ATR. The protein kinase 

activity of DNA-PKcs that is ‘switched on’ by its interaction with DNA and Ku is 

thought to be a necessary step in NHEJ repair. Autophosphorylation of the ser 

2023–2056 PQR cluster and the thr 2609–2647 ABCDE cluster of DNA-PKcs is 

required for repair of IR induced DNA DSBs (20). There is also cross-over at 

this point between the NHEJ and HR pathways. Deficiency of DNA-PKcs 

results in high radio sensitivity (81). Cells in which DNA-PKcs was mutated so 

that key autophosphorylation events were inhibited had reduced capacity to 

undergo HR and were more radiosensitive (4). Therefore the kinase function of 

DNA-PKcs has a criticial role in repair of IR induced DNA DSBs. That function 

is believed to be important for its release from DNA DSBs and laser micro-

irradiation studies have shown that when DNA-PKcs lacked this function it was 

retained longer at the sites of DNA damage (120). 

 

Once DNA ends have been secured they require processing to remove ragged 

ends. The specific enzymes that carry out this processing depend on the 

complexity of the breaks, whether gaps in the DNA need to be filled and what 

groups are blocking the ends of the DNA. The exact timing of DNA end 

processing in NHEJ and the order of recruitment of many factors remains 

unclear but the most likely key players in this stage of NHEJ are summarised 

next. 

 

The nuclease Artemis has 5’-3’ exonuclease activity and acquires 

endonuclease activity in the presence of DNA-PKcs and adenosine 

triphosphate (ATP). The inactivation of the enzyme Artemis causes radiation-

sensitive severe immunodeficiency indicating that it must have a role in repair 

of radiation induced DNA damage. However, cells lacking Artemis still have 
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some DSB repair suggesting that it is only required for the repair of a subset of 

breaks (see section 5 for more on this). One proposed mechanism of 

recruitment of Artemis during NHEJ is by an interaction with DNA-PKcs. Proper 

function of Artemis in NHEJ requires the activation of its endonuclease 

function. Exactly how this occurs remains unclear however, in vitro Artemis has 

been shown to be a phosphorylation target of both DNA-PKcs and ATM. 

Artemis has a role in the processing of IR induced DNA DSBs with DNA hairpin 

loops, 3’-phosphoglycolate groups and functions in the repair of complex 

lesions in an ATM dependent manner (76). 

 

Polynucleotide kinase (PNK) is phosphorylated in response to IR although the 

kinase responsible is unknown (79). Knock down of PNK results in increased 

IR sensitivity, most likely due to defective NHEJ DSB repair (62). PNK is 

involved in the removal of non-ligatable ends at the termini of DSBs. It’s DNA 

phosphatase and DNA kinase activities are key to this function. PNK may be 

recruited to DNA DSBs by an interaction with phosphorylated XRCC4. DNA 

polymerases μ and λ are recruited to sites of IR induced DSBs by their 

interaction with Ku (and possibly XRCC4-DNA ligase IV) and are required to fill 

gaps in the DNA created during the removal of ragged DNA ends. Their 

function in NHEJ is thought to be mainly through their respective BRCA1 C-

terminus (BRCT) domains. DNA pol λ is phosphorylated in response to IR (79). 

Which DNA pol is required depends largely on whether a DNA template is 

required. While DNA pol λ normally requires a template to fill gaps, DNA pol μ 

can direct template-independent-synthesis across a DSB with no terminal 

microhomology (86). Loss even of both these polymerases does not confer 

significantly increased sensitivity to IR, therefore it seems that they are required 

for the repair of only a small subset of IR induced DSBs (92). 

 

Aprataxin and PNK like factor (APLF) also has both exonuclease and 

endonuclease activity, is phosphorylated by ATM, interacts with Ku and its 

downregulation results in defective DSB repair. These findings together 

suggest a role for APLF in NHEJ repair. There is also evidence that The 

Werner’s Syndrome protein (WRN) may have a role in NHEJ. WRN is a RecQ 

helicase that has a number of functions that would be useful in processing non-

ligatable DNA ends. These include 3’-5’ exonuclease, 3’-5’ DNA helicase, 

strand annealing and DNA-dependent ATPase activities. Its exonuclease 

activity is stimulated by its interactions with Ku and the XRCC4-DNA ligase IV 
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complexes. Finally, loss of WRN activity in vivo is associated with cancer 

predisposition, premature aging and genomic instability thus suggesting a role 

in DNA damage repair. 

 

In order to complete the repair of DNA DSBs the processed ends must be 

ligated. In NHEJ this is done by the XRCC4-DNA ligase IV-complex. Although 

XRCC4 is required for NHEJ it has no enzymatic function on its own but 

instead acts as a scaffold bringing other factors to sites of DSBs (61). XRCC4 

has a α-helical region that interacts with a linker region between the two C-

terminal BRCT domains of DNA ligase IV (48). This forms a very stable 

complex that stabilises the activity of DNA ligase IV and via the interaction of 

XRCC4 with Ku brings it close to DNA ends requiring ligation (47). It has been 

proposed that in response to DNA DSBs, XRCC4 is phosphorylated by DNA-

PKcs and that this stabilises the complexes position at the break site and 

promotes ligation. Ligation however, is not dependent on that phosphorylation. 

The nuclear localisation of XRCC4 and its role in DSB repair is also dependent 

on its SUMO-ylation. Further to DNA end ligation by the XRCC4-DNA ligase IV 

complex, XLF is also required for a subset of DNA lesions where the processed 

ends are incompatible. The recruitment of XLF to DNA ends is independent of, 

but is stabilised by the XRCC4-DNA ligase IV complex. 

 

c. Alternate-Non-homologous-end-joining 

An alternative end-joining pathway may be employed when some parts of the 

NHEJ pathway are missing or mutated. There is cross over between this 

pathway and some components of HR and SSB repair (80) pathway is able to 

ligate broken DNA ends in the absence of DNA-PKcs, XRCC4 and DNA ligase 

IV. Instead this pathway may employ PARP1, XRCC1 and DNA ligase III (128). 

In this case PARP1 may bind the DNA DSB and stimulate fusion. The 

XRCC1/ligase III complex then ligates the DNA ends. When Ku is present it 

blocks the access of PARP1 to DSBs. Thus alternative end-joining only occurs 

in NHEJ-deficient cells (129). 

 

4. Choice of repair pathway 

Following IR induced DNA DSB induction, in cells in G1 or S/G2 phase there is 

competition for binding to the lesion by Ku and the MRN complex. The outcome 

of that competition in S-phase dictates the DNA damage repair pathway. 



Kavanagh et al.  
 

13 
 

Binding of MRN and its activation and recruitment of ATM commits cells to 

repair by HR, whereas successful binding of Ku70-Ku80 takes repair down the 

NHEJ route. Localisation of the MRN complex at DSBs is independent of the 

cell cycle phase (94). A further interaction that may dictate the choice of repair 

pathway in late S-phase is that of 53BP1 and BRCA1. 53BP1 binds DNA near 

sites of DSBs and 53BP1 focus formation can be observed by fluorescence 

microscopy after IR exposure. It may have a role in inhibiting end resection by 

binding to dimethyl-histone H4 Lys20 and tethering DNA ends to facilitate 

ligation. The prevention of DNA end resection by 53BP1 indicates that 53BP1 

binding may favour repair by NHEJ. Conversely, it is thought that BRCA1 can 

counteract the action of 53BP1 but the mechanism is unclear (13). 

There is increasing evidence that DSB repair rate and choice of repair 

mechanism are dependent on chromatin complexity. DSBs that are repaired 

slowly may be in regions of heterochromatin that require prolonged chromatin 

relaxation for repair intermediates to access break sites. It has been shown 

experimentally that sustained activation and localisation of ATM at these break 

sites is crucial for this and that ATM functions in this process to activate KRAB-

associated protein (KAP-1).  pKAP-1 forms persistent foci that co-localise with 

γ-H2AX and these are thought to represent DSBs in heterochromatin. The 

same study also suggested that DSBs in regions of heterochromatin are 

repaired in G2 phase by an Artemis dependent HR pathway. In contrast most 

DSBs in euchromatic regions were repaired during G2 by NHEJ (142, 45). 

 

5. DSB and radiation quality  
a. Complex lesions 

The type of DNA lesions that result from cellular exposure to IR is 

heterogeneous and in general the complexity of breaks strongly depends on 

the characteristics of the incident radiation. The term “radiation quality” is 

commonly used to discriminate the density of ionisations produced along the 

path of a charged particles track as this is correlated with the density of DNA 

lesions caused. Linear energy transfer (LET) is the amount of energy per unit 

distance that is transferred by a particle to the surrounding medium along its 

trajectory. This factor depends on the charge and kinetic energy of the 

particle and is normally reported in units of keV/μm. In first approximation, the 

LET is inversely proportional to the square of the particle kinetic energy, 
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proportional to the square of the particle charge and independent from its 

mass as indicated by the Bethe-Block formula (9);  

    

v = velocity of the particle 

c = speed of light 

β = v/c 

E = energy of the particle 

x = distance travelled by the particle  

Z = particle charge 

e = charge of the electron 

merest = mass of the electron 

n = electron density of the target 

I = mean excitation potential of the target 

ε0 = vacuum permittivity  

 

Although LET is a quantity defined for charged particles, an LET value can 

also be calculated for X-rays leading to an average value of 2 keV/μm for 250 

kVp X-rays. LET is therefore an indication of the ionization pattern (i.e. track 

structure) produced by a particle beam at a certain energy (141). The pattern 

of DNA damage caused by a particle traversal is directly related to the LET 

and track structure of the particle beam. As the primary charged particle 

traverses a cell it causes ionisations itself that are capable of causing DNA 

DSBs due to their spatial and temporal proximity. These ionisations generate 

secondary delta electrons that have tracks away from the trajectory of the 

primary particle. The delta electrons are able to cause further ionisations. The 

result is a penumbra around the primary particle path the width of which 

increases with increasing energy of the primary particle. As charged particles 

slow down (lose energy) the track length of the delta electrons also 

decreases so the pattern of ionisations has a higher density (and LET) near 

the end of the primary particles’ path. This corresponds with the peak of 

energy deposition for charged particles known as the ‘Bragg peak’.  

For charged particles, particularly heavy ions, the probability of causing 

complex, or ‘clustered’ DNA damage increases as LET increases and 

therefore as a given particle slows down. Complex DNA damage caused by 

high LET radiation is believed to be more difficult for the cell to repair and 
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therefore more lethal. An excess of small DNA fragments (<3 Mb) have been 

observed using pulsed field gel electrophoresis (PFGE) of DNA after 

irradiation of human fibroblasts with charged particles of different LET (80-

300 keV/μm). This was not observed after low LET irradiation. These small 

fragments may be created as a result of intra-track ionisations (112). 

 

A DSB is a type of clustered lesion as these breaks are usually formed from 

two DNA lesions on opposite strands within 10 base pairs of each other. 

However ‘complex’ DNA DSBs can also involve two or more breaks on each 

DNA strand within 10 base pairs (23). DSBs induced by high LET ions are 

~70% complex DSBs and 30% simple DSBs, compared to low LET particles 

such as X-rays that cause only 30% complex DSBs. Clustered lesions also 

include non-DSB damage and are most likely made up of closely opposed 

SSBs and abasic damage sites (49). These complex lesions, that potentially 

occur at 4-8 fold higher yields than prompt DSB, are also less repairable than 

single lesions and can lead to a DSB during repair (30). Complex damages 

present a harder challenge for the cellular repair processes due to clustering 

of lesions and the loss of DNA fragments. Clustered DNA lesions are more 

likely to be misrepaired or unrepaired conferring an increased probability of 

chromosome aberrations, mutation and cell death for high LET radiation (5). 

The main methods for studying induction and repair of DNA DSBs in 

radiobiology are PFGE and inspection of ionising-radiation-induced foci (IRIF) 

(see figure 4a and b). Although historically the PFGE method has been used 

most frequently, IRIF based assays provide higher sensitivity thus enabling 

their use at radio-biologically relevant doses (<2 Gy) and are a versatile 

platform for the study of DNA repair factor dynamics. The induction and 

resolution of IRIF has been employed for the investigation of the role of many 

factors involved in the sensing and repair of DNA DSBs, including but not 

restricted to pATM, 53BP1, BRCA1, γH2AX, MRN, RAD51 and DNA-PKcs 

(see figure 4.c for a schematic representation of IRIF resolution over time 

post IR exposure). With the advent of GFP (green fluorescent protein) and 

other live cell tags, it is now also possible to qualitatively and quantitatively 

monitor the DNA repair process in live cells and assess protein interaction 

and turnover at site of damage using techniques such as FRET (Forster 

Resonance Energy Transfer) and FRAP (Fluorescent Recovery After 

Photobleaching). The effectiveness of heavy charged particles for the 

induction of complex DNA DSBs has been shown using both methods (94, 6, 
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121). Imaging of IRIF has also shown that very early (< 1 hr) after irradiation 

with high LET radiation, foci are larger and more intensely fluorescing 

compared to those resulting from X-irradiation (22). IRIF localise in stripes 

through cell nuclei along heavy ion tracks and the co-localisation of DNA 

repair factors involved in multiple repair processes suggests the highly 

complex nature of the lesions induced (86, 5). These complex lesions may 

include multiple DSBs, SSBs and abasic sites within close proximity that 

appear as a single larger and brighter focus but are repaired slower than 

those observed following low LET exposures (23). 

 

b. Mechanism for repair of high LET complex DSBs 

Repair kinetics studies have identified two specific components: a fast one 

which is responsible for the majority of the repair and which dominates the 

repair response in the immediate hours post-irradiation, and a slower 

component which protracts for 24 hrs and longer. It has also been shown that 

the slow phase of DNA repair is longer for high LET induced DNA DSBs than 

for low LET DSB. This is most likely due to a higher frequency of complex 

clustered damage that require additional processing before DNA ligation can 

occur and due to the presence of unrepairable lesions. Analysis of DNA 

rejoining by PFGE demonstrated an LET dependent increase in rejoining time 

up to ~200 keV/μm (105, 133). Studies of IRIF resolution kinetics has 

provided further evidence for the complex nature of high LET particle induced 

lesions. The disappearance of heavy ion induced foci is slower compared to 

X-rays, and heavy ion (such as 1 GeV/nucleon Iron ion) exposures induce a 

proportion of foci that persist even beyond 48 hours after exposure (87, 6, 

121). These persistent foci are generally believed to represent unrepaired 

DSBs, however, these have also been associated with IR induced 

senescence and chromatin alterations (116, 115).  

Precisely how high LET DNA DSB processing differs from that of simple 

DSBs is yet to be elucidated. The kinase ATM and nuclease Artemis have 

been associated with the repair of complex DNA DSBs (99, 72). Recent 

evidence suggests that complex clustered DNA damages that include DSBs 

with other DNA lesions close to them are processed in the slow phase of 

repair by a sub-pathway of NHEJ that is dependent on ATM, DNA-PKcs and 

Ku (98). That study showed that simple DSBs (induced by ultra soft X-rays) 

are repaired by an NHEJ pathway that does not require ATM or DNA-PKcs, in 
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contrast those factors were necessary for repair of more complex lesions 

(induced by multi photon near-infrared microbeam). This is probably due to a 

necessity for extensive DSB end processing in these complex lesions. Finally, 

evidence suggests that slow kinetics of repair of high LET radiation lesions 

may be strongly influenced by chromatin complexity. Proposed methods for 

dealing with heterochromatic DSBs are described in section 3. 

 

6. DSB and replicative stress  
a. Oxidative stress induced DSB 

DNA DSBs arise following direct damage to DNA by IR. However, other 

mechanisms involving oxidative stress can also lead indirectly to DSB induction 

(see figure 5). Reactive oxygen species (ROS) can be produced in cells as a 

consequence of various cellular processes, including CO2 metabolism, 

stimulation of immune responses or release of cytokines and chemokines from 

neighbouring cells. ROS can have a number of different effects on 

carbohydrates, proteins, lipids and DNA (70), including causing the oxidation of 

purines and pyrimidines, AP DNA sites and SSBs. The majority of this damage 

is repaired using base excision repair (BER) or nucleotide excision repair 

(NER). BER is important for the removal of non-bulky modifications and abasic 

sites and involves removal of a damaged base by a DNA glycosylase, incision 

at the remaining site, addition of an undamaged base by DNA polymerase and 

finally re-ligation of the DNA by a DNA ligase. NER is important in repair of 

bulky base modifications which cause distortion of the DNA helix and requires 

the damage to be recognised by xeroderma pigmentosum (XP)/cockayne 

syndrome (CS) proteins, DNA unwinding and incision, addition of an 

undamaged base and ligation. However, it is estimated that approximately 1% 

of these single strand lesions are converted into DSBs (118), particularly at 

replication forks during DNA replication. Recognition of these DSBs differ from 

DSBs induced by direct IR in that ATR appears to play an important role, as 

well as ATM. They are then consequently repaired by NHEJ or HR.  

b) Hypoxia 

Relative oxygen concentrations within cells have also been reported to 

influence both levels of DNA damage induced and how this damage is 

repaired. Hypoxia within tumours has been associated with increased 

radioresistance and decreased disease-free survival (126). DNA repair 

pathways including HR and NHEJ have been shown to be less effective in 
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hypoxic conditions (89). This is thought to be due to the alteration of expression 

of DNA DSB-associated genes (reviewed by (14)). Cellular responses to 

hypoxia are mediated primarily by the HIF (hypoxia inducible factor) family of 

transcription factors. DNA DSB repair proteins downregulated in response to 

hypoxia include BRCA1 (10), RAD51, RAD52 and BRCA2 (82). The result of 

this is that DNA DSB repair by HR is compromised in hypoxic conditions, 

potentially leading to an increase in biological effects including translocations or 

chromosomal deletions.  

Oxidative stress may also positively or negatively impact on DNA damage 

recognition and repair. ATM has been shown to be activated by oxidation in the 

absence of either a DSB or MRN recruitment indicating that it may be a key 

mediator in the cellular response to oxidative stress (50), while DNA-PKcs 

which stabilises pP53, has been shown to be negatively regulated by Artemis 

during oxidative stress therefore preventing G1 arrest and apoptosis (139). 

Furthermore, repair of DSBs by NHEJ under conditions of oxidative stress is 

impeded due to an inability of Ku to bind to the lesion. This may be due to an 

oxidation mediated conformational change of Ku (8). 

 

 

c. Bystander effects 

DNA DSBs can also result following signalling from neighbouring cells that 

have been damaged by radiation. The radiation-induced bystander effect is 

defined as the ability of an untreated cell to respond to signals from a 

neighbouring irradiated cell (96). Bystander effects have been observed in a 

wide range of cell lines and in vivo (96). The damage can arise in two ways, 

either through intercellular communication via gap junctions, or via the release 

of soluble factors, which can travel to distant cells. The soluble factors released 

are dependent on the cell type which has been irradiated, but have been 

reported to include chemokines/cytokines (29, 91, 109), death ligands (74), 

ROS (75), nitric oxide (75, 109), growth factors (29) and Ca2+ (75). Bystander 

effects are reported to be the result of increased ROS generation in non-

irradiated cells as a consequence of signalling from irradiated cells, most likely 

due to increases in intracellular Ca2+ and subsequent mitochondrial 

depolarisation and ROS release (75). Endpoints for which bystander effects 

have been observed include DNA damage, mutations, terminal differentiation 
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and apoptosis (reviewed by Prise and O’Sullivan (96)). DNA damage occurring 

in cells following bystander signalling differ from the responses of directly 

irradiated cells, with damage being detected at later timepoints. Bystander-

induced DNA damage is also primarily detected by ATR, with ATM found to act 

downstream of ATR in bystander cells (see figure 5) (16, 96).  

 

7. Targeting DSB repair in cancer therapy 
The aim of radiation therapy is to induce DNA damage in the form of DSBs, 

which ultimately leads to cell death within the tumour. However, resistance is a 

major mechanism limiting the effectiveness of radiotherapy as a cancer 

treatment. One way in which tumour cells can develop resistance to radiation 

treatment is by improving the effectiveness of DNA repair pathways, thereby 

enabling the cells to repair the damage and allowing the cells to survive and 

replicate. Targeting these repair pathways may therefore be a good therapeutic 

option to try to improve the effectiveness of radiation treatment.  

 

a.  Expression of DNA damage repair proteins in cancer 

AT is a condition resulting from mutation of the ATM gene. It is characterised 

by a predisposition to cancer and very high cellular sensitivity to radiation 

treatment. As explained in sections 2 and 3, ATM plays a role early in the DNA 

damage response network, being one of the first proteins to be phosphorylated 

following DNA damage detection. It is therefore easy to see why loss of 

function of ATM can lead to an increased predisposition to cancer 

development, as loss of ATM has a major impact on the cells ability to repair 

damage efficiently. Mutations in ATM lead to a much higher risk of 

development of breast cancer (98, 119) and leukemia (77), while also reducing 

time to recurrence. Mutation of ATM has also been reported to lead to an 

increased sensitivity to radiotherapy treatment (17), indicating that this protein 

may be important in radiation response.  

 
Altered expression of other proteins in DNA repair pathways have been shown 

to both increase risks of developing cancer and influence the effectiveness of 

treatments designed to induce DNA damage. For example, overexpression of 

members of the FA family of proteins, which function to co-operate with BRCA1 

and BRCA2 in DNA damage repair by HR, leads to a higher risk of developing 

various types of cancer, including breast cancer (31, 41, 97, 112, 124), 
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leukemia (33, 54) and pancreatic cancer (24, 52, 60). In addition, low 

expression of FA proteins have been shown to predict response, with low 

FANCD2 expression associated with increased response of esophageal cancer 

patients to treatment with a combination of chemotherapy and radiotherapy (3). 

It is also widely known that mutations of the DNA damage repair proteins 

BRCA1 and BRCA2 significantly predisposes carriers to development of breast 

and ovarian cancer, with up to 85% of these tumours associated with changes 

in expression levels of BRCA1 or BRCA2 (39). BRCA status may also be 

important in patient outcome, with BRCA2 mutations reported to correlate with 

improved survival and chemotherapy response in ovarian cancer patients 

(137). PARP, which is important for detecting single strand DNA breaks, plays 

a key role in the response of HR defective cells to DNA damage, as unrepaired 

SSBs can be converted to DSBs which the cells cannot effectively repair. 

PARP is overexpressed in breast cancer compared to normal breast tissue, 

and its overexpression has also been correlated with high grade, tumour size 

and worse survival (44). These studies highlight the importance of DNA repair 

pathways in cancer treatment outcomes and the need to target these pathways 

in order to improve response rates.  

 

b. Therapeutic inhibition of DNA repair pathways 

Various inhibitors have been developed to target DNA repair proteins. A dual 

PI3K/mTOR inhibitor, NVP-BEZ235, has been reported to potently inhibit both 

ATM and DNA-PKc, thereby inhibiting both HR and NHEJ pathways. This 

inhibitor has shown promising results, showing significant radiosensitisation in 

a panel of cell lines and in tumour xenograft models (85). In addition, this 

inhibitor is currently in Phase1/2 clinical trials for the treatment of solid tumours. 

Inhibition of ATM using different inhibitors has also shown to significantly 

increase sensitivity to radiation treatment (reviewed by (71)). Interestingly, the 

inhibition of ATR function in hypoxic cells, which show higher levels of radiation 

resistance, using the specific inhibitor VE-821 has been shown to sensitise 

these cells to radiation treatment, indicating that this approach may be 

important in a therapeutic setting for the treatment of tumours with hypoxic 

regions (93).  

 

Chk1/Chk2 inhibitors have also been tested in combination with DNA damaging 

agents. The inhibitor AZD7762 has been used in pancreatic cancer cells both 
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in vitro and in tumour xenograft models and has shown to be effective at 

inducing cell death and tumour regression both as a single agent and in 

combination with gemcitabine and radiation (84). Mitchell et al. have also 

shown that AZD7762 can sensitise a panel of human tumour cell lines to 

radiation treatment, and in addition can sensitise HT29 xenograft models to 

radiation with minimal side effects from treatment with the inhibitor both alone 

and in combination with radiation (83), indicating the potential of this inhibitor 

as a clinical agent. Other Chk inhibitors have also been shown to increase 

radiosensitivity of tumour cells, such as XL-844 (104) and PF-477736 (37), 

which has shown potential both as a single agent and in combination with DNA 

damaging agents (11).  

 

c. Synthetic lethality 

Many types of cancer arise from cells that have developed mutations in DNA 

DSB repair pathways. Alterations in these pathways allow cells to accumulate 

damage and other mutations but still retain their ability to divide. However, cells 

possess numerous DNA repair pathways, which can be activated following 

DNA damage. If one of these pathways is inactivated in tumour cells due to 

mutations of key proteins within the pathway, the tumour cells can become 

more dependent on other repair pathways to repair replication-associated and 

other types of DNA damage. This opens up important therapeutic options, as 

targeting the intact pathways should prevent the tumour cells from repairing 

any DNA damage incurred and allow the cells to undergo apoptosis. This 

concept has been named synthetic lethality (see figure 6).  

 

Synthetic lethal interactions can be seen between a number of proteins, most 

notably in the use of PARP inhibitors in a BRCA mutant setting (36). Cells that 

have developed a mutation in BRCA1 or BRCA2 have defective HR function. 

Inhibition of PARP results in an accumulation of SSBs, which can be converted 

into DNA DSBs at replication forks. These DSBs cannot be repaired in HR 

deficient cells, resulting in the cells undergoing apoptosis. PARP inhibitors may 

be very useful in treatment of patients with tumours possessing BRCA 

mutations, as tumour cells have developed mutations in BRCA1 or BRCA2 

while the surrounding normal tissue will not have these mutations. This means 

that the inhibitors should specifically target the tumour cells while sparing the 



Kavanagh et al.  
 

22 
 

surrounding normal cells (36), which have an intact HR pathway to repair the 

damage.  

 

Inhibition of PARP has been shown to sensitise cells to radiation treatment 

(125). Importantly, the use of PARP inhibitors or PARP targeted siRNA as a 

single agent has been shown to result in a significant reduction in cell survival 

of BRCA2 mutant cells (15, 36). In addition, xenograft models developed from 

patient tumour samples have shown that PARP inhibitors induce significant 

apoptosis and reduce proliferation of BRCA2 mutant tumours, both as a single 

agent and in combination with DNA damaging agents, while BRCA2 wild-type 

tumours show greatly reduced responses to PARP inhibition (69). These 

studies and others have indicated the importance of PARP inhibitors as a 

treatment strategy, leading to the testing of PARP inhibitors in clinical trials. In 

a Phase I clinical trial, the PARP inhibitor olaparib was shown to exhibit 

antitumour activity in patients with BRCA1 or BRCA2 mutations while causing 

few adverse side effects (38). This inhibitor was also tested in Phase II clinical 

trials. Gelmon et al. reported that 41% of BRCA1 or BRCA2 mutant ovarian 

cancer patients showed a response following treatment with olaparib, 

compared to 24% of patients without mutations (43). However, another study 

reported that there was no statistically significant improvement in progression 

free survival in ovarian cancer patients with BRCA1 or BRCA2 mutations 

treated with the inhibitor (63). Astra Zeneca have withdrawn olaparib from 

Phase III trials after analysis of the data indicated that there was no 

improvement on overall survival following treatment of BRCA1 and BRCA2 

mutant ovarian cancer patients. However, it is still being investigated in other 

disease settings, such as BRCA1/2 defective breast cancer. There are also 

other PARP inhibitors in various phases of clinical trials, including iniparib 

(which was the first PARP inhibitor to be tested clinically), rucaparib and 

veliparib.  

 

PARP inhibitors also show synthetic lethality when combined with ATM 

mutations (134), as well as mutations in MRE11 and NBS1 (26). Synthetic 

lethal interactions are also observed between mutations of the FA family 

members and ATM inhibitors (64).  

 

8. Summary  
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DNA double-strand breaks are critical lesions for cells which if not repaired 

can lead to a high probability of mutations and cell death. Taking ionising 

radiations as an example of an effective inducer of DNA DSB, lesion 

complexity, where additional damages are associated with a DSB due to the 

radiation track structure, is also important causing additional challenges for 

repair pathways. DSBs can also be produced indirectly via oxidative stress 

and the consequences of replication fork stalling, typically seen for ionising 

radiation induced bystander responses. Cells have evolved several options 

for sensing and repairing DSBs with the molecular mechanisms being 

defined. The restricted options of repair pathways available to tumour cells, 

when specific mutations in key repair enzymes are present, allows selective 

targeting of these particularly via synthetic lethality approaches. Our 

expanding knowledge of DSB induction, using ionising radiation as a 

paradigm, is providing new opportunities to target these in cancer therapy. 
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List of Abbreviations 

53BP1 p53 binding protein 1 
AP apurinic/apyrmidinic 
APLF aprataxin and PNK like factor 
AT ataxia telangectasia 
ATM ataxia telangectasia mutated 
ATP adenosine triphosphate 
ATR ataxia telangectasia and Rad3-related protein 
BER base excision repair 
BMI1 B lymphoma Mo-MLV insertion region 1 
BRCA breast cancer susceptibility protein 
BRCT BRCA1 C-terminus 
Chk checkpoint kinase 
CO2 carbon dioxide 
CS cockayne syndrome 
CtIP CtBP-interacting protein 
DDR DNA damage response 
DNA  deoxyribonucleic acid 
DNA pol DNA polymerase 
DNA-PK DNA protein kinase 
DNA-PKcs catalytic subunit of DNA-PK 
DSB double DNA strand break 
FA/FANC Fanconi anemia 
FRAP fluorescent Recovery after photobleaching 
FRET forster Resonance Energy Transfer 
GeV gigaelectron volt 
GFP green fluorescent protein 
H2AX histone variant 2AX 
HR homologous recombination 
hr hour 
hSSB1 human single stranded DNA binding protein 1 
IR ionizing radiation 
IRIF ionizing radiation induced foci 
kDa kilo dalton 
KAP-1 KRAB-associated protein  
keV kilo electonvolts 
Ku Ku70/Ku80 complex 
kVp kilovoltage peak 
LET linear energy transfer 
Lys lysine 
Mb mega bases 
MDC1 mediator of damage checkpoint protein 1 
MRN Mre11-Rad50-Nbs1 complex 
mTOR mammalian target of rapamycin 
NER nucleotide excision repair 
NHEJ non-homologous end-joining 
PALB2 partner and localiser of BRCA2 
PARP poly ADP ribose polymerase 
PFGE pulsed field gel electrophoresis 
PI3-K phosphatidylinositol 3-kinase 
PNK polynucleotide kinase 
PNKP polynucleotide kinase/phosphatase 
RING1 really interesting new gene 1 
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RNF2 RING finger protein 2 
ROS reactive oxygen species 
RPA Replication protein A 
Ser serine 
siRNA small interfering RNA 
SMC structural maintenance of chromosomes proteins 
SSB single strand DNA break 
ssDNA single stranded DNA  
Thr threonine 
UV ultra violet 
WRN Werner's syndrome helicase 
XLF XRCC4-like factor 
XP xeroderma pigmentosum 
γH2AX Phospho-serine-139-H2AX 
μm micron 
  
< less than 
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Figure Legends 

Figure 1. Introduction to radiation induced DNA damage. Ionizing radiation causes 

many different types of damage to DNA, by direct and indirect routes. That damage 

ranges from ‘simple’ lesions such as base or sugar modifications, DNA-protein 

interactions; to DNA crosslinks and single strand breaks to more ‘complex’ lesions 

such as DNA double stand breaks. 

Figure 2. Pathways sensing DNA DSBs. DNA double strand breaks are initially 

recognised by sensor proteins, such as the MRN complex, MDC1 and γH2AX. These 

sensor proteins activate downstream transducer proteins including ATM, ATR and 

53BP1, which function to activate effector proteins, resulting in cell cycle arrest, DNA 

damage repair or cell death pathways, if the damage cannot be repaired.  

Figure 3. DSB repair pathways. DNA double strand breaks are repaired 

predominantly by one of two pathways. 1) Homologous recombination (HR) requires 

a homologous sister chromatid as a template from which to rebuild sections of DNA 

lost at break sites. This method has high fidelity. 2) Non-homologous end-joining 

(NHEJ) repair can be employed in the presence or absence of a sister chromatid. In 

this repair process ragged ends of DNA at sites of lesions are first tethered together 

then processes and any gaps filled before the ends are ligated to complete repair. 

Figure 4. DSB repair and radiation quality. DNA DSBs can be detected by 

immunofluoresence using antibodies to factors recruited to, or modified at breaks 

sites, such as γH2AX. Examples of γH2AX foci induced by low LET radiation such as 

X-rays (a) and high LET radiation such as helium ions (b) are shown. Analysing the 

kinetics of foci disappearance and can indicate the complexity of DNA lesions 

caused by radiations of different quality. A schematic illustrating the difference in foci 

resolution kinetics between high and low LET radiations is shown in (c). 

Figure 5. DSB repair and oxidative stress. DNA double strand breaks can occur as a 

consequence of oxidative stress within the cell or as a downstream effect of 

bystander signaling by chemokines, cytokines or death ligands released from other 

cells. This damage is recognised primarily by ATR, with ATM acting downstream in 

the pathway.  

Figure 6. Synthetic lethality. Cells possess numerous DNA repair pathways. In the 

case of double-strand break repair, these pathways include HR and NHEJ. a) When 

both pathways are intact cells can efficiently repair and DNA damage encountered. If 
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one of the pathways is lost, cells can rely on the second pathway to repair damage 

and allow the cells to survive. b) Inhibitors targeting one of the pathways (denoted x) 

have little effect on DNA repair and cell survival when the other pathway is intact. 

However, if one of the pathways is mutated, inhibition of the other pathway results in 

the cell being unable to repair damage and cell death.  
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