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Abstract 

Classical radiation biology research has centred on nuclear DNA as the main target of radiation 

induced damage. Over the past two decades, this has been challenged by a significant amount of 

scientific evidence clearly demonstrating radiation induced cell signalling effects to have important 

roles in mediating overall radiobiological response. These effects, generally termed radiation induced 

bystander effects (RIBEs) have challenged the traditional DNA targeted theory in radiation biology 

and highlighted an important role for cells not directly traversed by radiation. The multiplicity of 

experimental systems and exposure conditions in which RIBEs have been observed has hindered 

precise definitions of these effects. However, RIBEs have recently been classified for different 

relevant human radiation exposure scenarios in attempt to clarify their role in vivo. Despite significant 

research effort in this area, there is little direct evidence for their role for in clinically relevant 

exposure scenarios. In this review, we explore the clinical relevance of RIBEs from classical 

experimental approaches through to novel models that have been used to further determine their 

potential implications in vivo.  
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Introduction 

Ionising radiation (IR) is an effective cancer therapy due to its ability to induce cell death as a 

consequence of DNA damage resulting from energy deposition in the cellular environment. Most 

cellular responses to IR are mediated through direct energy deposition in the DNA or indirectly 

through reactive oxygen species (ROS) and other free radicals formed due to the radiolysis of water 

(1). 

Classically, radiation biology research has focussed on nuclear DNA as the sole target of radiation 

induced damage. However, over the last 25 years a large body of scientific evidence has challenged 

the view that radiobiological responses occur only in cells directly targeted by radiation as biological 

effects have been shown to occur outside of the radiation target. These “Non-targeted effects” include 

genomic instability and several radiation induced signalling effects (2), generally termed radiation 

induced bystander effects (RIBEs). RIBEs were first identified by Nagasawa and Little (3) who 

observed chromosome damage in the form of sister chromatid exchanges in more than 30% of a cell 

population under conditions in which only 1% of cell nuclei had been targeted using α-particles. Since 

then, RIBEs have been demonstrated using a range of experimental systems with multiple biological 

endpoints. Despite increasing evidence in a growing number of model systems, the implications of 

RIBEs for radiotherapy and cancer risk remain to be fully determined. In this review, we describe 

RIBEs in the context of current experimental and clinical exposure scenarios and consider potential 

implications for cancer risk and radiotherapy. 

Discussion 

Defining RIBEs 

In general terms, RIBEs may be defined as radiobiological responses observed in cellular systems 

which have not been directly traversed by ionising radiation but are in close proximity to irradiated 

cells. These effects are cell signal mediated either through direct physical cell contact via gap junction 

intercellular communication (GJIC) (4) or through secreted, diffusible signalling molecules into the 

surrounding media (5-7). A number of candidate signalling molecules have been identified in 



mediating RIBEs such as reactive oxygen and nitrogen species (ROS/NOS) including nitric oxide 

(NO), and cytokines such as transforming growth factor-β (TGF-β) and interleukin-8 (IL-8). These 

have been shown to initiate multiple downstream signalling pathways including the mitogen activated 

protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways (8). 

Although RIBEs can be considered primarily as signalling mediated effects, precise definitions have 

remained difficult as effects are often dependent on the experimental system or exposure conditions 

being measured. The caveats associated with these different effects observed under different 

experimental and exposure conditions were the subject of recent review by Blyth and Sykes (9) who 

stated that ‘most reports in the literature are accompanied by the authors own definition, usually 

framed in the context of the data presented in that report’. This is an important consideration which 

the authors addressed by attempting to establish a general framework for the classification radiation 

induced signalling effects based on human radiation exposure scenarios. They define three different 

categories; bystander effects, cohort effects and abscopal effects. 

The most well-established of these classes are abscopal effects. These are defined as radiation induced 

effects in unirradiated tissues occurring outside of an irradiated volume.  Radiation induced abscopal 

effects were observed more than 60 years ago in some patients following radiotherapy and do not 

appear to be dose dependent dose making them particularly relevant to the partial body exposures 

typically delivered during conformal radiotherapy. Abscopal effects are rarely recognised in the clinic 

and so their importance in radiotherapy response remains controversial (10). 

More recently, bystander effects have been defined for human exposure scenarios as radiation 

induced, signal mediated effects in unirradiated cells within an irradiated volume exposed to a 

sufficiently low dose that a portion of cells within the exposed volume remain unexposed and survive. 

These effects are relevant for whole and partial body exposures to very low doses, such as those from 

background radiation, high altitude flights and ingested radioactive potassium. 

A third classification of effects, termed cohort effects describe the component of overall 

radiobiological response in irradiated cells which is not a consequence of direct energy deposition in 



the target cell but rather due to communication between cells within an irradiated volume. Cohort 

effects are relevant for any exposures where the majority of a cell population is exposed to significant 

dose and whilst this interpretation is relatively uncommon in the literature, there is increasing 

evidence that intercellular signalling plays a role in overall radiation response.  

These classifications of radiation induced signalling are shown schematically in figure 1. Distinction 

between the classifications is difficult in modern radiotherapy as patients are exposed to complex field 

geometries with steep dose gradients resulting in delivery of differential doses to cells in close 

proximity which can freely signal to one another. Whilst these effects are typically classified and 

studied separately, they have many common characteristics in that they all occur in response to 

radiation exposure, are mediated by extracellular signalling factors and cause negative radiobiological 

effects in neighbouring cells.  

Consequently, many of these experimentally and clinically observed phenomena which are often 

classified as different effects actually stem from the same or similar cellular signalling origin and may 

be interpreted as different consequences of the same generalised RIBEs. As a result, there is 

significant opportunity for novel approaches to investigate these effects in more clinically relevant 

scenarios. 

Classical experimental approaches for studying RIBEs 

A diverse range of experimental approaches have been used to investigate RIBEs at the single cell, 

multicellular and whole organism levels. A selection of these studies in single cells is summarised in 

Table 1 and the various approaches used shown schematically in figure 2. Classical in vitro studies 

used polonium needles (11) or low fluence α-particle exposures (12) to target a small number of cells 

within a population. Technological developments have driven more sophisticated approaches using 

radiation microbeams allowing the delivery of highly focussed low energy micron sized radiation 

beams to single cells or subcellular targets. They have been successfully used as mechanistic probes 

to investigate biological processes including kinetics of DNA damage repair and subcellular 



signalling processes involved in RIBEs (13). Microbeam approaches have utilised not only ion beams, 

including protons and helium ions, but focussed soft X-ray microbeams and electron microbeams. 

In addition to microbeam studies, several cell culture methods have been applied to study RIBEs. 

These have involved the transfer of culture medium from irradiated cells onto unirradiated recipient 

cells known as media transfer (14,15) or co-culturing methods where irradiated and unirradiated cell 

populations are physically separated but free to signal to one another (6). These techniques have been 

used to demonstrate RIBEs manifested in a range of biological endpoints including DNA damage 

(4,16), cellular transformation (17), changes in gene expression (18), chromosomal aberrations 

(3,19,20) and mutations (21). 

Whilst these early experimental approaches have provided significant understanding of the signalling 

mechanisms and kinetics of RIBEs, in most cases, they do not accurately represent the physiological 

multicellular environment or radiation dose distributions delivered during clinical treatment protocols. 

This has led to the development of new approaches to investigate RIBEs under more clinically 

relevant exposure conditions and at the multicellular and whole organism levels.    

New experimental approaches for studying RIBEs 

Early approaches to investigate RIBEs fail to accurately replicate clinically relevant exposure 

scenarios in respect to beam energy, delivery time and dose distributions. This has recently been 

addressed in several studies which have delivered modulated 6 MV radiation fields using clinical 

linear accelerators to more accurately replicate exposure conditions in vivo (7,23,24). Work from our 

laboratory determined cell survival responses occurring in- and out-of-field using a modulated beam 

profile generated using a multi leaf collimator (MLC) and demonstrated significantly reduced out-of-

field cell survival following irradiation compared to the level of response predicted on scattered dose 

alone (7). In addition, the observed out-of-field responses were shown to be dependent on cell 

signalling between the differentially irradiated cell populations in part mediated by nitric oxide. 

Whilst these studies have provided evidence for RIBEs in response to more clinically relevant 



radiation exposures at high dose using MV energy, cell culture models are limited to two dimensions, 

lacking cellular architecture and physiological context.  

Several multicellular tissue models summarised in table 2, have been used to investigate RIBEs ex 

vivo using sections of porcine ureter (26,27) and reconstructed 3D skin models (28,29). Recently, 

Sheridan et al, (31) observed RIBEs manifest as elevated DNA damage in nonadjacent colon tissue 

obtained from patients receiving post neoadjuvant radiotherapy.  

At the whole organism level, RIBEs have been observed in a number of systems for different 

exposure scenarios (32). These are summarised in table 3. The first in vivo evidence of RIBEs was 

provided by the identification of cell damaging or clastogenic factors in the serum of irradiated 

patients which when transferred onto cultures of unirradiated lymphocytes showed cell damaging 

activity (33,34). As in more simplistic cell models, it is difficult to distinguish between types of 

radiation induced signalling in vivo. Most experimental models have involved partial body exposures 

and are therefore classified as abscopal effects. These have been observed clinically for many years 

and were originally defined as systemic radiation effects following local radiotherapy (35).  

Experimentally, abscopal effects have been demonstrated in a number of whole organisms, 

summarised in table 3. Using the C57BL/6 mouse, Camphausen et al, (36) showed significant 

reduction in the growth of tumours implanted to the dorsal midline when the legs of the animals were 

irradiated. In the same model, Koturbash et al, (37) showed induction of DNA damage in skin tissue 

up to 7 mm away from the irradiated site following partial body exposure. 

An important model which has been used to demonstrate the tumourigenic potential of abscopal 

effects is the Patched-1 (Ptch1+/-) mouse (41,42). PTCH is a Sonic Hedgehog (SHH) receptor and 

negative regulator of the pathway causing predisposition to childhood medulloblastoma (43). Ptch1+/- 

mutant mice develop cerebellar tumours resembling human medulloblastoma which is accelerated 

when irradiated as neonates (44). Partial body irradiation of neonatal Ptch1+/- mice was shown to 

significantly increase the occurrence of medulloblastoma compared to control animals, accompanied 

with increased DNA damage and apoptosis in the cerebellum. 



In addition to partial body exposures, other approaches have involved bone marrow transplantations 

in which irradiated bone marrow cells differentiated from unirradiated bone marrow cells using 

cytogenetic markers, are capable of inducing genetic instability in the progeny of unirradiated bone 

marrow cells (38).  

In vivo demonstration of RIBEs has not been exclusively limited to mouse models. In Sprague 

Dawley rats, partial irradiation of the lower lung has been shown to cause increase damage in the 

upper out-of-field regions of the lung (45,46). Mothersill and colleagues have used several species of 

fish including rainbow trout (47), zebrafish (48) and medaka (49) to demonstrate RIBEs in vivo. 

Although RIBEs have clearly been demonstrated in vivo, the systems in which they have been 

investigated do not accurately replicate typical exposure conditions during radiotherapy. Whilst next 

generation higher energy microbeams will provide improved subcellular targeting accompanied with 

advanced imaging, there is a need to determine RIBEs under conditions analogous to clinical 

protocols. This is potentially possible through the application of tumour bearing animals models in 

combination with advanced small animal radiation research platforms (52) and presents an exciting 

opportunity to determine the precise implications of RIBEs for radiotherapy and cancer risk following 

clinically relevant exposures. 

Predictive models of RIBEs 

To fully determine the implications of RIBEs in the clinical context, several attempts to describe 

predictive frameworks of radiation induced cell signalling have been proposed (53-61). Generally, 

these models tend to describe cellular responses to ionising radiation as resulting from two distinct 

components – a “direct” component, due to radiation interactions within a particular cell, and an 

“indirect” component resulting from intercellular communication, which is dependent on the exposure 

across the entire cellular population. 

One of the primary areas for disagreement between these different models is the case where cells are 

subject to both direct and indirect effects, determining how they interact and which effects are 

dominant under which conditions. Many older models, based on media transfer or co-culture 



experiments suggested that indirect components are small compared to the direct component, or even 

mutually exclusive with direct exposures. However, more recent work such as that of Ebert et al, (60) 

and McMahon et al, (61) suggest that indirect effects may play a significant role not only in out-of-

field bystander cells, but also on the survival of cells within an irradiated population at high doses, 

reflecting the significance of intercellular communication in cohort effects, as outlined above. These 

results may have significant implications for the interpretation of a large portion of radiobiology data 

as they suggest the traditional paradigm of independent cellular responses may not be valid, with 

further consequences for the evaluation of many clinical conditions.  

Implications for radiotherapy and cancer risk 

From our understanding of RIBEs and increasing evidence of their role in vivo, it is clear that 

radiation induced signalling is of significant importance in responses to radiotherapy. From the 

clinical perspective RIBEs have a number of important potential implications particularly relating to 

tumour control, normal tissue response and risk of secondary cancer.   

Whilst classically defined bystander effects were interpreted as a low dose phenomenon, recent 

findings have highlighted the potential significance of radiation induced signalling in cohort and 

bystander effects following modulated dose distributions suggesting these may have a role in directly 

irradiated regions (7,23,24). Signalling from cells irradiated to high doses within the planning target 

volume (PTV) may contribute to increased tumour cell killing and improved outcomes. Validation of 

such effects is likely to have significant impact on clinical decisions particularly at tumour margins as 

it is currently suggested that the optimal planning solution should incorporate a ‘biological’ margin to 

ensure the irradiation of some healthy tissue.  

In the absence of an accurate estimate of the spatial component of radiation induced signalling, it is 

difficult to define the role of RIBEs in normal tissue. Potentially, RIBEs may have a negative impact 

in normal tissue due to the signalling extending beyond the physical dose distributions of 

conventional treatment plans. This would mitigate the anticipated reduction in radiation toxicity 

achieved with more conformal dose distributions to the tumour target. 



As a result of these effects, definitions of PTV based on physical dose constraints may not accurately 

describe biologically effective dose mediated through cell signalling. Current tumour control 

probability (TCP) and normal tissue complication probability (NTCP) models could be significantly 

enhanced by the input of biological parameters to account for spatial dose distributions and biological 

response. An example of this would be in dose-painting scenarios e.g. where dose is boosted into 

discrete regions of the tumour based on biological activity (62). 

The role of RIBEs on secondary cancer risk has been considered for some time in relation to low dose 

environmental exposures and out-of-field regions in radiotherapy (63, 64). Attempts to attribute 

additional cancer risk to these effects have remained challenging as current empirical models of 

secondary cancer risk do not address specific mechanisms such as in vivo signalling effects.  

In addition, further understanding of the underlying molecular mechanisms mediating RIBEs may 

identify novel therapeutic targets enabling the exploitation of cell signalling mechanisms to improve 

the specificity of radiotherapy treatment by sparing healthy tissues which lie close to radiation field. 

Taken together it is clear that the radiation induced signalling effects demonstrated at the single-, 

multi-cellular and whole organism level are likely to have important radiobiological consequences for 

clinical exposures. Further understanding of these effects gained through the application of new 

models and new technologies including precision image-guided in vivo radiobiology is likely to 

provide opportunities to improve the efficacy of radiotherapy through biologically optimised 

treatment planning and novel therapeutic targets. 
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Table 1 
Summary of experimental approaches to study RIBEs using in vitro single cell models 

 

Experimental system Observed effects  Biological endpoint  Reference(s) 
Low fluence α-particle Bystander  Genomic instability (3) 
Radiation microbeam    Clonogenic survival (22)   

     

      Cell survival  (17) 
   Transformation 

Media transfer     Clonogenic survival  (5, 14, 15) 
Co-culture     Micronuclei  (6) 
      DNA damage 
Modulated field  Bystander &  Clonogenic survival (7, 23, 24) 
   cohort      

         

      DNA damage  (25) 

 

 

 

Table 2 
Summary of experimental approaches to study RIBEs using ex vivo tissue models 

 

Experimental system Observed effects  Biological endpoint  Reference(s) 
Urothelial explant model Bystander  Differentiation  (26, 27) 
3D skin model     MN, apoptosis  (28, 29) 
      DSBs    
Fish explant model    Clonogenic survival (30) 
Human colon explant    DSBs   (31) 

 

 

 

 

 

 

 

Table 3 



Summary of experimental approaches to study RIBEs using in vivo models 

 

Organism Model system Observed effects  Biological endpoint  Reference(s) 
Mouse  CBA/H mouse Bystander  Genomic instability (38) 
   NCr nude mice Bystander  Tumour volume   (39) 

125IUdR labelling  
  C57BL/6 Abscopal  Tumour growth  (36) 

C57BL/6 & Abscopal  DNA damage   (37) 
BALB/c mice     Proliferation 

Apoptosis  
C57BL/6 Bystander  DNA methylation  (40) 
Ptch1+/- mouse  Abscopal  Tumourigenesis  (41,42)  

Fish  Rainbow trout  Bystander  Reporter assay  (47) 
Zebrafish Bystander  Reporter assay  (48) 
Medaka   Bystander  Apoptosis  (49) 

Other  Rat  Abscopal  DNA damage   (45, 46) 
C. elegans Abscopal  hsp GFP reporter   (50) 

  A. thaliana Abscopal  DNA damage  (51) 

 

 

 

 

 



 
Figure 1 

Schematic representation of radiation induced signalling effects classified by Blyth and Sykes (8). 

Irradiated cells are shown in red; unirradiated cells in blue. Bystander effects occur in unirradiated 

cells within an irradiated volume; within the same volume, radiation induced signalling contributes to 

the overall response through cohort effects. Abscopal effects occur in unirradiated tissue at a distant 

site outside of an irradiated volume 

 

 



 
Figure 2 

Schematic representation of experimental approaches for investigating radiation induced signalling 

effects in vitro using single cell models. a) Radiation microbeams are used to target single cells or 

subcellular components within cell populations. b) Irradiated cell conditioned medium is transferred 

to unirradiated recipient cells from irradiated donor cells. c) Irradiated cells are co-cultured with 

unirradiated using a cell insert system. d) Modulated fields are created using a multi-leaf collimator 

(MLC) to place cells out-of-field.  

 

 

 


