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ABSTRACT 

 

PGLa-AM1 (GMASKAGSVL10GKVAKVALKA20AL.NH2) was first identified in skin 

secretions of the frog Xenopus amieti (Pipidae) on the basis of its antimicrobial properties. 

PGLa-AM1 and its [A14K] and [A20K] analogues produced a concentration-dependent 

stimulation of insulin release from BRIN-BD11 rat clonal β-cells without cytotoxicity at 

concentrations up to 3 μM.  In contrast, the [A3K] was cytotoxic at concentrations ≥  30 nM.  

The potency and maximum rate of insulin release produced by the [A14K] and [A20K] peptides 

were significantly greater than produced by PGLa-AM1. [A14K]PGLa-AM1 also stimulated 

insulin release from mouse islets at concentrations ≥ 1 nM and from the 1.1B4 human-derived 

pancreatic β-cell line at concentrations > 30 pM.  PGLa-AM1 (1 µM) produced membrane 

depolarization in BRIN-BD11 cells with a small, but significant (P < 0.05), increase in 

intracellular Ca2+ concentrations but the peptide had no direct effect on KATP channels. The 

[A14K] analogue (1 µM) produced a significant increase in cAMP concentration in BRIN-BD11 

cells and down-regulation of the protein kinase A pathway by overnight incubation with 

forskolin completely abolished the insulin-releasing effects of the peptide. [A14K]PGLa-AM1 (1 

µM) protected against cytokine-induced apoptosis (p < 0.001) in BRIN-BD11 cells and 

augmented (p < 0.001) proliferation of the cells to a similar extent as GLP-1. Intraperitoneal 

administration of the [A14K] and [A20K] analogues (75nmol/kg body weight) to both lean mice 

and high fat-fed mice with insulin resistance improved glucose tolerance with a concomitant 

increase in insulin secretion.  The data provide further support for the assertion that host defense 

peptides from frogs belonging to the Pipidae family show potential for development into agents 

for the treatment of patients with Type 2 diabetes. 
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Abbreviations:  

 

CCK-8,  Cholecytokinin-8 

CPF, Caerulein precursor fragment  

EGTA,  ethylene glycol tetraacetic acid 

GLP-1,  Glucagon-like peptide 1 

HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IBMX,  3-isobutyl-1-methylxanthine 

KRB, Krebs-Ringer bicarbonate buffer 

LDH, Lactate dehydrogenase   

MALDI-TOF, Matrix-assisted laser desorption/ionization-time of flight 

PGLa. Peptide glycine-leucine-amide 

PKA, Protein kinase A                                                                                                                                     

PKC,  Protein kinase C 

PMA,  phorbol 12-myristate 13-acetate 

T2DM, Type 2 diabetes mellitus 
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1. Introduction 

 

The order Anura (frogs and toads) currently contains 6660 well characterized species [1] and 

their skin secretions represent a vast reservoir of compounds with therapeutic potential for drug 

development. More than 1000 frog skin peptides have been described that possess antimicrobial 

activity with varying degrees of cytotoxicity against eukaryotic cells and it is postulated that they 

defend the host against invasion by pathogenic microorganisms in the environment [2,3]. It is 

now appreciated that these peptides are multi-functional and they may also display 

immunomodulatory, antioxidant, and chemoattractive properties [3,4]. In particular, several such 

peptides that were first identified on the basis of their antimicrobial activities have subsequently 

been found to display insulinotropic effects both in vitro using BRIN-BD11 clonal β cells and in 

vivo in both lean and insulin-resistant obese mice (reviewed in [4,5]). Consequently, these host-

defense peptides show potential for development into drugs for the treatment of patients with 

Type 2 diabetes mellitus (T2DM).  

Peptide glycine-leucine-amide (PGLa) was first identified in skin secretions of the South 

African frog Xenopus laevis [6] and subsequently othologs have been isolated from a wide range 

of species belonging to the genus Xenopus (reviewed in [7]). PGLa is best known for its broad-

spectrum antibacterial and antifungal activities and for its ability to act synergistically with 

magainin peptides [8,9].  Skin secretions of the octoploid frog Xenopus amieti contain two 

paralogous peptides related to PGLa:  PGLa-AM1 (GMASKAGSVLGKVAKVALKAAL.NH2) 

and PGLa-AM2 (GMASTAGSVLGKLAKAVAIGAL.NH2) [10]. The more cationic PGLa-

AM1 shows greater growth-inhibitory potency against Escherichia coli and Staphylococcus 

aureus [10] and the peptide is also active against several oral pathogens at concentrations that do 

not affect the viability of oral fibroblasts [11]. The possibility that PGLa-AM1 may show 
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potential for development into a drug for the treatment of T2DM is suggested by the observation 

that PGLa-AM1 stimulates the release of the potent incretin peptide glucagon-like peptide-1 

from the GLUTag murine enteroendocrine cell line at concentrations that are not toxic to the 

cells [12]. The aim of the present study was to investigate the insulinotropic actions of PGLa-

AM1 in vitro using BRIN-BD11rat clonal β-cells [13], 1.1B4 human-derived pancreatic β-cells 

[14], and dispersed isolated mouse islets and in vivo using both lean mice and mice fed a high fat 

diet to produce obesity and insulin resistance. 

One of the major disadvantages of naturally occurring peptides as therapeutic agents is 

their relatively low potency and bioavailability but these limitations may be circumvented to 

varying degrees by the design of appropriate analogues [15]. Although lacking secondary 

structure in aqueous solution, PGLa adopts an amphipathic α-helical conformation in a 

membrane-mimetic solvent (50% trifluoroethanol-water) or in the presence of negatively 

charged phosphatidylcholine /phosphatidylglycerol (3:1) vesicles [16]. Secondary structure 

prediction using the AGADIR algorithm [17] indicates that PGLa-AM1 has the propensity to 

adopt a stable α-helix from Val9 to Leu22.  Previous studies with analogues of other α-helical, 

frog skin host-defense peptides have shown that increasing cationicity by substitution of 

appropriate neutral or acidic amino acid residues by L-Lysine may produce more potent and 

effective insulin-releasing peptides [5,18-20]. Consequently, effects of increasing cationicity, by 

the substitutions by L-lysine of Ala14 and Ala20 within the α-helical domain and Lys3 outside the 

domain, on the insulin-releasing and glucose-lowering activities of the peptide were investigated. 

In addition, the mechanism of action and effects of the peptides on proliferation and apoptosis in 

BRIN-BD11 cells were determined. 
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2. Materials and Methods 

 

2.1   Peptide synthesis and purification  

 

PGLa-AM1 and its [A3K], [A14K] and [A20K] analogues were supplied in crude form 

by GL Biochem Ltd (Shanghai, China) and were purified to near homogeneity (>98% purity) by 

reversed-phase HPLC by reversed-phase HPLC on a (2.2-cm x 25-cm) Vydac 218TP1022 (C-

18) column (Grace, Deerfield, IL, USA) under the conditions previously described [11,12]. The 

identities of all peptides were confirmed by MALDI-TOF mass spectrometry using a Voyager 

DE PRO instrument (Applied Biosystems, Foster City, USA).  

 

2.2. In vitro insulin release studies using BRIN-BD11 and 1.1B4 cells 

 

The procedure for studying the effects of peptides on the release of insulin from BRIN-

BD11 rat clonal β-cells (passages 15-20)  and 1.1B4 human-derived pancreatic β-cells (passages 

25-28) has been described in detail previously [13,14]. Incubations with purified synthetic 

peptides (10-12 - 3 x 10-6 µM; n = 8) were carried out for 20 min at 37 ˚C using Krebs-Ringer 

bicarbonate (KRB) buffer supplemented with 5.6 mM glucose. After incubation, aliquots of cell 

supernatant were removed for insulin radioimmunoassay [21].  Incubations (n = 8) of BRIN-

BD11 cells were also carried out in the presence of 30 mM KCl and 30 mM KCl + 1 µM 

[A14K]PGLa-AM1. 
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2.3. Insulin-release studies using isolated mouse islets 

 

Pancreatic islets were isolated from adult, male National Institutes of Health (NIH) Swiss 

mice (Harlan Ltd, Bicester, UK) as described [22]. After 48 h of culture under the same 

conditions as used for clonal cell lines, islets were pre-incubated with 500 µL KRB containing 

0.1% bovine serum albumin, and 1.4 mM glucose (pH 7.4) for 1 h at 37 ˚C. Incubations (n = 8) 

with [A14K]PGLa-AM1(0.1 nM - 1µM), [A20K]PGLa-AM1 (0.1 nM - 1µM) and 1 µM GLP-1 

(positive control) were carried out for 1 h at 37 ˚C using KRB buffer supplemented with 16.7 

mM glucose. Aliquots of supernatant were removed for insulin radioimmunoassay and the 

insulin content of the islets following acid-ethanol extraction was determined as previously 

described [23].  

 

2.4. Cytotoxicity assay 

 

The effects of peptides upon the integrity of the plasma membrane of BRIN-BD11 cells 

was determined by measurement of the rate of release of the cytosolic enzyme lactate 

dehydrogenase (LDH) using a CytoTox 96 non-radioactive cytotoxicity assay kit (Promega, 

Southampton, UK) according to the manufacturer’s instructions as previously described [18,19].  

 

2.5. Effects of peptides on membrane depolarization and intracellular calcium ([Ca2+]i) 

The procedure for determining the effects of PGLa-AM1, [A14K]PGLa-AM1, and 

[A20K]PGLa-AM1 on membrane depolarization and intracellular Ca2+ concentrations 
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monolayers of BRIN-BD11 cells has been described previously [18]. The cells were incubated at 

37 C for 300 s with 1 µM test peptides, 5.6 mM glucose only, 5.6 mM glucose +30 mM KCl 

and 5.6 mM glucose +10 mM alanine.     

 

2.6. Patch clamp analysis 

 

Full details of the equipment and protocol for patch clamp analysis have been provided 

previously [23].  KATP currents were measured during the application of  a voltage ramp protocol 

which initially depolarized the membrane potential to  +20 mV and then progressively 

hyperpolarized to -80 mV over the course of 1 s. Ramps were applied every 5 s from a holding 

potential of 0 mV and KATP currents were selectively elicited by the application of  high K+ 

external solution containing (in mM) 130 KCl, 2.5 glucose, 10 tetraethylammonium Cl, 1.3 

MgCl2, 10 HEPES, 2 CaCl2, pH 7.4 together with 100nM penitrem A and 1μM nimodipine to 

inhibit BK and L-Type Ca2+ channels respectively. The internal (pipette) solution was K+ based 

(in mM) 130 KCl, 0.045 CaCl2, 1 MgCl2, 1 EGTA, 10 HEPES, pH 7.2). Prior to, and during 

application of 1 μM PGLa-AM1, KATP channel opening was stimulated by the addition of 200 

μM diazoxide. Current amplitudes were sampled at 10 mV intervals, normalized to membrane 

capacitance (a measure of cell surface area) and statistical analysis completed.  

 

2.7. Effects of PGLa-AM1 on cyclic AMP production 

 

The procedure for determining the effects of 1 µM [A14K]PGLa-AM1 and 10 nM GLP-1 

(positive control) on the production of cAMP in  BRIN-BD11 cells has been described 
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previously [5]. Incubations were carried out for 20 min in KRB buffer supplemented with 

5.6mM glucose and 200µM of the phophodiesterase inhibitor, 3-isobutyl-1-methylxanthine 

(IBMX). cAMP concentrations in the cell lysate were measured using a R & D Systems 

Parameter kit (Abingdon, UK) following the manufacturer’s recommended protocol. 

 

2.8. Effects of down-regulation of the PKA and PKC pathways on insulin release 

 

It has been shown that overnight culture of BRIN-BD11 cells with the activators of the 

protein kinase A (PKA) pathway, forskolin (25µM; Sigma-Aldrich, UK) or the protein kinase C 

(PKC) pathway, phorbol 12-myristate 13-acetate (PMA; 10 nM; Sigma-Aldrich, UK)  blocks the  

stimulatory actions of compounds that activate the pathways [24]. Using a previously described 

procedure for down-regulation of these pathways [5], BRIN-BD11 cells were incubated for 20 

min in KRB buffer supplemented with 5.6mM glucose containing (A) [A14K]PGLa-AM1 

(1µM), (B) GLP-1 (10nM) and (C) CCK8 (10 nM). Control incubations with forskolin (25µM), 

PMA (10nM) and forskolin (25µM) + PMA (10 nM) were also carried out.  

 

2.9. Effects of [A14K]PGLa-AM1on cytokine-induced apoptosis in BRIN-BD11 cells 

 

For determination of the ability of [A14K]PGLa-AM1 to protect against cytokine-induced 

DNA damage, BRIN-BD11 cells were seeded at a density of 5 x 104 cells per well and  exposed 

to a cytokine mixture (200 U/ml tumor-necrosis factor-α, 20 U/ml interferon-γ, and 100 U/ml 

interleukin-1β)  in the presence or absence of [A14K]PGLa-AM1 (10-6 M) for 18 h  at 37 °C 

with GLP-1 (10-6 M) as a positive control. Cells were rinsed with 0.9% phosphate-buffered 
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saline (PBS) and fixed using 4 % paraformaldehyde. The cells were permeabilized with 0.1 M 

sodium citrate buffer, pH 6.0 at 94 °C for 20 min.  For effects on apoptosis, the cells were 

incubated with TUNEL reaction mixture (In situ Cell Death Detection Kit; Roche Diagnostics, 

Burgess Hill, UK) for 1 h at 37 °C following the manufacturer’s recommended procedure. Slides 

were viewed using a fluorescent microscope with 488 nm filter (Olympus System Microscope, 

model BX51; Southend-on-Sea, UK) and photographed by a DP70 camera adapter system. 

To determine effects on proliferation, the cells were incubated in the presence or absence 

of [A14K]PGLa-AM1 (10-6 M) for 18 h  at 37 °C with GLP-1 (10-6 M) as a positive control and 

treated as above followed by staining with rabbit anti-Ki-67 primary antibody and subsequently 

with Alexa Fluor 594 secondary antibody (Abcam. Cambridge, UK) as previously described 

[25]. Proliferation frequency was determined in a blinded fashion and expressed as % of total 

cells analysed. Approximately 150 cells per replicate were analyzed.   

 

2.10. In vivo insulin release studies 

 

All animal experiments were carried out in accordance with the UK Animals (Scientific 

Procedures) Act 1986 and EU Directive 2010/63EU for animal experiments and approved by 

Ulster University Animal Ethics Review Committee. All necessary steps were taken to prevent 

any potential animal suffering.  The procedure for determining the effects of glucose alone (18 

mmol/kg body weight) and in combination with [A14K]PGLa-AM1 (75 nmol/kg body weight) 

or [A20K]PGLa-AM1 (75nmol/kg body weight) in overnight fasted  adult (8 week old), male, 

National Institutes of Health Swiss mice (Harlan Ltd, Bicester, UK (n =8)  has been described 
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previously [26]. Blood samples were collected before and after peptide administration at the 

different time points shown in Fig. 9.   

In a second series of experiments, mice were maintained for 3 months on a high-fat diet 

as previously described [19, 27] and displayed clear manifestations of obesity, glucose 

intolerance and insulin resistance. Overnight fasted animals (n = 8) were injected 

intraperitoneally with glucose alone (18mmol/kg body weight) or together with [A14K]PGLa-

AM1 (75nmol/kg body weight) or [A20K]PGLa-AM1 (75nmol/kg body weight). Blood samples 

were collected and analyzed as described for the lean mice. 

 

2.11. Statistical Analysis 

 

Data are compared using unpaired Student’s t test (non-parametric, with two-tailed P values and 

95% confidence interval) and one-way ANOVA with Bonferroni post-hoc test wherever 

applicable. Area under the curve (AUC) analysis is performed using the trapezoidal rule with 

baseline correction. Values are presented as mean ± SEM.  Results are considered significant if p 

< 0.05.  

 

3. Results 

 

3.1.  Effects of PGLa and analogues on insulin-release from BRIN-BD11 and 1.1B4 cells 

The glucose-responsive BRIN-BD111 cell line was generated by electrofusion of rat 

insulinoma-derived RINm5F cells with New England Deaconess Hospital rat pancreatic islet 

cells [13]. In the presence of the well-established insulin secretagogue, 10 mM alanine, the rate 
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of insulin release from BRIN-BD11 cells, increased approximately 8-fold (Fig. 1). Incubation 

with PGLa-AM1 produced a significant (P < 0.05) stimulatory response at concentrations ≥ 100 

nM with a 4-fold increase above the basal rate at 3µM. The minimum concentrations producing a 

significant increase in secretion rate for the [A14K] analog (10 pM) and for the [A14K] (30 pM) 

were significantly less and the maximum response at 3 µM were significantly greater the 

corresponding parameters for the native peptide (Fig. 1). At concentrations up to and including 3 

µM, neither PGLa-AM1 nor the [A14K] and the [A20K] peptides stimulated the release of LDH 

from the cells indicating that the integrity of the plasma membrane had not been compromised. 

In contrast, [A3K]PGLa-AM1, while potently stimulating insulin release (threshold 

concentration 3 pM), also produced an increase in the rate of release of LDH at concentrations ≥ 

30 nM (Supplementary Fig. 1). This cytotoxic analogue was not investigated further. Incubation 

of BRIN-BD11 cells with medium containing 30 mM KCl produced an increase in the rate of 

insulin release from 1.13 ± 0.14 ng/106cells/20 min  in glucose alone to 9.48 ± 0.60 

ng/106cells/20 min. This rate was significantly (P < 0.001) augmented to 12.24 ± 0.92 

ng/106cells/20 min when incubations were carried out in the presence of 30 mM KCl + 1 µM 

[A14K]PGLa-AM1. 
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Fig. 1. Comparison of the effects of (A) [A14K]-PGLa-AM1 and (B) [A20K]PGLa-AM1 with 

PGLa-AM1 on insulin release from BRIN-BD11 cells Values are mean ± SEM for n = 8. 

 *P < 0.05, **P < 0.01***P < 0.001 compared to 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, 

ΔΔΔP < 0.001 compared to PGLa-AM1.  

 

 The 1.1B4 cell line was generated by electrofusion of freshly isolated human pancreatic 

islet cells with human PANC-1 epithelial cells [14]. It displays good responsiveness to glucose 

[28] and sensitivity to cytotoxic agents [29,30] and so represents a useful surrogate for primary 
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human β-cells [31]. As shown in Fig. 2, incubation of 1.1B4 cells with [A14K]PGLa-AM1 

produced a significant (P < 0.05) increase in the rate of insulin release at concentrations ≥ 30 pM 

with an approximately 3-fold increase at 3 µM. No significant increase in the rate of LDH 

release was observed at concentrations up to and including 3 µM. The response produced by the 

GLP-1 receptor agonist exenatide-4 (10 nM) was 2-fold greater than the maximum response 

produced by 3μM [A14K]PGLa-AM1. 

 

Fig. 2. Effects of [A14K]-PGLa-AM1 on insulin release from the 1.1B4 human-derived 

pancreatic β-cell line, Values are mean ± SEM for n = 8. *P < 0.05, **P < 0.01***P < 0.001 

compared to 5.6 mM glucose alone. 
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3.2. Effects of [A14K]PGLa-AM1 and [A20K]PGLa-AM1 on insulin release from isolated 

mouse islets  

 

In the presence of 16.7 mM glucose, [A14K]PGLa-AM1 and [A20K]PGLa-AM1 

produced a concentration-dependent increase in the rate of insulin secretion from dispersed 

mouse islets (Fig. 3). A significant stimulatory effects of [A14K]PGLa-AM1 was seen at 

concentrations ≥ 1nM while [A20K]PGLa-AM1 showed a significant  stimulatory effect at 10 

nM. These effects were not accompanied by significant release of LDH from isolated islets at 

any concentration tested. The magnitude of the increase produced by 1 µM concentration of each 

peptide was not significantly different from that produced by 1 µM GLP-1. 
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Fig. 3: Effects of (A) [A14K]PGLa-AM1 and (B) [A20K]PGLa-AM1 on insulin release from 

dispersed mouse islets. Values are mean ± SEM (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001 

compared to 16.7 mM glucose alone  
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3.3. Effects of PGLa-AM1 and analogues on membrane depolarization and [Ca2+]i 

A rapid and significant (P<0.01) membrane depolarisation was observed in BRIN-BD11 

cells after treatment with PGLa-AM1 (Figs. 4A and B), [A14K] PGLa-AM1 (Fig. 4A) and 

[A20K] PGLa-AM1 (Fig. 4B. The magnitudes of the effects are compared with that produced by 

30 mM KCl in Fig. 4C.  

 

Fig. 4.  Comparison of the effects of (A) [A14K]PGLa-AM1 and (B) [A20K]PGLa-AM1 with 

PGLa-AM1 on membrane potential in BRIN-BD11 cells expressed as  relative fluorescence 

units, RFU and (C) integrated response (area under the curve). Values are mean ± SEM (n = 6).  

**P < 0.01,   ***P < 0.001 compared with 5.6 mM glucose alone. 
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The membrane depolarisation produced by the peptides was accompanied by a small but 

significant (P < 0.05) increase in intracellular calcium concentration (Figs 5A and B). The 

magnitudes of the effects are compared with that produced by 10 mM alanine in Fig. 5C. Patch 

clamp studies demonstrated that PGLa-AM1 had no significant effect on the KATP current 

activated by diazoxide in BRIN-BD11 cells (Fig. 6). 

  



19 
 

 

Fig. 5.  Comparison of the effects of (A) [A14K]PGLa-AM1 and (B) [A20K]PGLa-AM1 with 

PGLa-AM1 on intracellular calcium concentrations in BRIN-BD11 cells expressed as (A) 

relative fluorescence units, RFU and (B) integrated response (area under the curve). Values are 

mean ± SEM (n = 6). *P < 0.05, and **P < 0.01 compared with 5.6 mM glucose alone. 
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3.4. Effects of [A14K]PGLa-AM1  on intracellular concentrations of cyclic AMP   

 

In the presence of 200µM IBMX, [A14K]PGLa-AM (1 µM) produced a significant (P < 

0.01) increase in cAMP concentration in BRIN-BD11 cells compared to 5.6mM glucose 

suggesting an involvement of the PKA pathway (Fig. 7A). The magnitude of the increase was 

similar to that produced by 10 nM GLP-1.  

In a second series of experiments, the effects on [A14K]PGLa-AM1 stimulated insulin 

release of down-regulation of the PKA and PKC pathways by overnight incubation of  BRIN-

BD11 cells with forskolin and PMA respectively  were investigated.  When the activators were 

not present, the rates of insulin release produced by [A14K]PGLa-AM1, GLP-1, and CCK-8  

were significantly (P < 0.001) greater than that produced by 5.6mM glucose alone (Fig. 7B). The 

insulin stimulatory activities of [A14K]PGLa-AM1 and GLP-1, but not CCK-8, were completely 

abolished when the PKA pathway was down-regulated with 25µM forskolin.. In contrast, down-

regulation of the PKC pathway with 10 nM  PMA was without effect on the stimulatory activity 

of [A14K]PGLa-AM1 and GLP-1 but the effect of CCK-8 was abolished.  Down-regulation of 

both the PKA and PKC pathways by forskolin + PMA abolished the stimulatory responses of all 

peptides tested (Fig. 7B). 
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Fig. 7. (A) Effects of [A14K]PGLa-AM1 on cAMP production in BRIN-BD 11 cells. Values are 

mean ± SEM for n = 6. ***P<0.001 compared to 5.6 mM glucose alone. ΔΔP<0.01, ΔΔΔP<0.001 

compared to 5.6 mM glucose + IBMX. (B)  Effects of [A14K]PGLa-AM1 on insulin release 

from BRIN-BD11 cells following down regulation of the PKA and PKC pathways by overnight 

culture with 25 μM forskolin or 10 nM PMA respectively. Values are mean ± SEM for n = 8. 

***P < 0.001 compared to 5.6mM glucose, ΔΔΔP < 0.001 compared to incubation under standard 

culture conditions ϕϕP < 0.01, ϕϕϕP < 0.001 compared to incubation with forskolin , 

 
++

P <0.01, 
+++

P < 0.001, compared to respective incubation with PMA. 
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3.6.  Effects of [A14K]PGLa-AM1 on apoptosis and cell proliferation in BRIN-BD11 cells 

 

As shown in Fig. 8A, neither [A14K]PGLa-AM1 (1 µM) nor GLP-1(1 µM) alone 

affected the number of BRIN-BD11 cells exhibiting DNA damage  as measured by TUNEL 

assay. Incubation with a mixture of pro-inflamatory cytokines significantly (P < 0.001) increased 

the number of apoptotic cells by 3.7-fold. Co-incubation of the cells with [A14K]PGLa-AM1 

and the cytokine mixture significantly (P < 0.001) reduced the number of apoptotic cells by 49%. 

This value was comparable to the degree of protection (48 % reduction) provided by the same 

concentration of GLP-1. As shown in Fig. 8B, 1 µM [A14K]PGLa-AM1 significantly (P < 

0.001) stimulated proliferation of BRIN-BD11 cells by an amount (42% increase) that was 

comparable to that produced by 1 µM GLP-1 (43 % increase). 
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Fig, 8. (A) Comparison of the effects of [A14K]PGLa-AM1 (1 µM) and GLP-1 (1 µM) on 

protection against cytokine-induced apoptosis in BRIN-BD11 cells .***P < 0.001 compared to 

incubation in culture medium alone, ΔΔΔP < 0.001 compared to incubation  in cytokine-

containing medium. (B) Comparison of the effects of [A14K]PGLa-AM1 (1 µM) and GLP-1 (1 

µM) on proliferation of BRIN-BD11 cells .***P < 0.001 compared to incubation in culture 

medium alone 
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3.7.  Effects of PGLa analogues on insulin concentrations and glucose tolerance in lean and 

high-fat fed mice 

 

Administration of the peptides did not produce any apparent adverse effects in the 

animals.  Plasma glucose concentrations in lean mice receiving glucose plus [A14K]PGLa-AM1 

(75nmol/kg body weight) (Fig. 9A) or glucose plus [A20K]PGLa-AM1 (75nmol/kg body 

weight) (Fig. 9B) were not significantly different at any time point compared with animals 

receiving glucose only. However, the integrated response of plasma glucose (area under the 

curve) of the two peptides was significantly (P < 0.05) less after administration of vehicle only 

(Fig. 9C).  Plasma insulin concentrations were significantly (P < 0.05) higher at 15 min after 

glucose administration in animals receiving [A14K]PGLa-AM1 (Fig. 9D) or [A20K]PGLa-AM1 

(Fig. 9E) and the integrated response (total amount of insulin released over 60 min) was 

significantly greater  (P < 0.05) for both peptides (Fig. 9F).  

In a second series of experiments using the same protocol, plasma glucose concentrations 

in high-fat fed mice receiving intraperitoneal A14K]PGLa-AM1) or [A20K]PGLa-AM1 were 

also not significantly different at any time point compared with injection of glucose alone but the 

integrated plasma glucose response area under the curve) was significantly (P < 0.05) greater 

than after administration of both peptides (Supplementary Figure 2). Similarly, plasma insulin 

concentrations were significantly (P < 0.05) higher at 15 min after glucose administration in 

animals receiving [A14K]PGLa-AM1 and the integrated insulin responses  were significantly 

greater  for [A14K]PGLa-AM1 (P < 0.01)  and for [A20K]PGLa-AM1 (P < 0.05).   
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Fig. 9. Effects of acute administration of [A14K]PGLa-AM1 (75 nmol/kg body weight) and 

[A20K]PGLa-AM1 (75 nmol/kg body weight) on blood glucose (panels A-C) and plasma insulin 

(panels D-F) concentrations in lean  mice after intraperitoneal injection of glucose ((18 mmol/kg 

body weight). Values are mean ± SEM (n = 8). *P <  0.05, **P < 0.01 compared to glucose 

alone.  
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Discussion 

The global pandemic of T2DM has intensified the search for naturally occurring 

compounds that may be developed into therapeutic agents that maintain normoglycaemia and 

prevent or retard the development of the complications associated with the disease. Particular 

attention has been directed towards compounds that stimulate insulin release (sulphonyureas and 

incretins) [32] and long acting peptide analogues based upon the structure of the physiologically 

important incretin GLP-1 have been widely adopted in clinical practice [33]. Norepinephrine-

stimulated skin secretion of frogs belonging to the family Pipidae, comprising the genera  

Hymenochirus, Pipa, Pseudhymenochirus and Xenopus [1],  contain a diverse range of peptides 

whose primary function is probably host-defense (reviewed in [7]). Several such peptides have 

been shown to stimulate insulin release from BRIN-BD11 cells at concentrations that are 

appreciably less than those required to kill microorganisms. These include CPF-6 from Xenopus 

laevis [34], CPF-SE1 from Xenopus epitropicalis [34], hymenochirin-1B from Hymenochirus 

boettgeri [5] and pseudhymenochirin-1P and -2a from Pseudhymenochirus merlini [20]. In this 

study, PGLa-AM1 and its [A14K] and [A20K] analogues stimulate the rate of insulin release in 

vitro by BRIN-BD11 rat clonal β-cells, by the 1.1B4 human-derived pancreatic β-cell line, and 

by dispersed mouse islets at concentrations that are not toxic to the cells. Taken together, these 

results suggest that host-defense peptides from frogs belonging to the Pipidae show potential for 

development into therapeutically valuable agents for treatments of patients with T2DM. 

The ability of a cationic, α-helical peptide to permeabilize the plasma membrane of a 

mammalian cell is dependent on complex interactions between conformation, cationicity, 
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hydrophobicity, and amphipathicity.  While PGLa-AM1 and the [A14K] and the [A20K] 

analogues were not toxic to BRIN-BD11 cells at concentrations up to 3 μM, incubation with 

[A3K]PGLa-AMI in concentrations as low as 30 nM led to an increase in the rate of release of 

the cytosolic enzyme LDH indicative of loss of integrity of the plasma membrane. The changes 

in cationicity and hydrophobicity produced by the L-Ala → L-Lys substitutions are the same in 

the three analogues. Studies with a range of naturally occurring and model peptides [35-37] have 

shown that small changes in hydrophobic moment (a semi-quantitative measure of the 

amphipathicity of α-helical peptides) may produce major changes in cytolytic activity against 

microorganisms and mammalian cells, such as erythrocytes. In the absence of data derived from 

NMR measurements, one may speculate that the Ala3 → Lys substitution produces a substantial 

change in the conformation of the α-helical domain that results in a change in the degree of 

amphipathicity. 

On the basis of  previous studies, cationic insulinotropic peptides from frog skin may be 

divided into two classes. The peptides alyteserin-2a, tigerinin-1R, CPF-6, esculentin-2CHa and 

peptides of the temporin family produce cellular depolarization and increase intracellular 

calcium concentration in BRIN-BD11 cells (reviewed in [4]).  In contrast, the insulin-releasing 

actions of brevinin-2GUb, phylloseptin-L2, pseudin-2, and hymenochirin-1b do not appear to 

involve membrane depolarization or an increase in intracellular Ca2+ concentrations [4]. PGLa-

AM1, when incubated with BRIN-BD11 cells, produces membrane depolarization (Fig. 4) and a 

small but significant increase in intracellular calcium concentration (Fig. 5) but patch-clamp 

studies (Fig. 6) have shown that the insulin-releasing effects of the peptide are probably not 

mediated by a pathway which involves closure of ATP-sensitive potassium channels and opening 

of voltage-dependent calcium channels. Consistent with this proposal, the rate of insulin release 
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from BRIN-BD11 cells produced by a depolarizing stimulus (30 mM KCl) was augmented by 1 

µM PGLa-AM1 suggesting an involvement of an, as yet uncharacterized, KATP channel-

independent pathway.   

Incubation of BRIN-BD11 cells with GLP-1 stimulates cAMP production and it was 

proposed that signaling via the protein kinase A (PKA) pathway may contribute to the 

modulation of KATP independent secretory pathway triggered by the peptide [24]. PGLa-

AM1also increases intracellular cAMP concentration in BRIN-BD11 cells and down-regulation 

of PKA pathway by overnight incubation with forskolin abolishes the insulinotropic activity of 

the peptide (Fig. 7).  In contrast, down-regulation of the protein kinase C pathway by phorbol 12-

myristate 13-acetate, while attenuating the insulinotropic action of CCK-8, had no significant 

effect on the rate of insulin release produced by PGLa-AM1.  PKA activation causes a marked 

increase in L-type Ca2+ currents in cardiac myocytes [38] and it is tempting to speculate that the 

increase in cAMP concentrations produced by PGLa-AM1 increases the open probability of L-

type channels in BRIN-BD11 cells resulting in the observed depolarisation and small increase in 

[Ca2+]. 

As well as lowering blood glucose levels by stimulating insulin secretion, GLP-1 exerts 

other beneficial effects on glucose homeostasis by suppression of appetite, reduction in plasma 

glucagon concentrations, and improvement of glucose uptake in peripheral tissues. In addition, 

GLP-1 [39,40] and GLP-1 receptor agonists [41,42] stimulate β-cell proliferation and 

regeneration, and protect against β-cell damage leading to increased β-cell mass and improved β-

cell function. This study has shown that [A14K]PGLa-AM1 shows  beta-cell proliferative 

activity comparable to that  of GLP-1 when tested in BRIN-BD11 cells and is equally effective 

in  protecting the cells against  cytokine-induced apoptosis (Fig 8). A role for pro-inflammatory 
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cytokines in promoting β-cell apoptosis is well established [43,44]. β-cell mass is determined by 

the relative rates of  replenishment and death and T2DM involves a gradual decline in both the 

function and mass  of the β-cells.  Consequently, agents such as [A14K]PGLa-AM1, which not 

only stimulate insulin release but also stimulate β-cell proliferation and reduce β-cell loss, are 

attractive from a therapeutic prospective. 

 Finally, the study has shown that [A14K]PGLa-AM1 and [A20K] PGLa-AM1 display 

anti-hyperglycaemic properties in vivo when administered acutely to lean mice (Fig. 9). The 

glucose-lowering and insulin-releasing effects were significant and the magnitude of the changes 

were comparable those observed following similar administration of equimolar doses of the frog 

skin peptides phylloseptin-L2 [25], and brevinin-2GUb [45]. The high-fat fed mouse presents 

with obesity, hyperglycaemia, and insulin resistance and so is a useful model to study the 

development of metabolic syndrome and Type 2 diabetes [46,47].  The present study has 

demonstrated that [A14K]PGLa-AM1 also lowered blood glucose and enhanced insulin secretion 

in high-fat fed mice.  

In conclusion, PGLa-AM1 and its more cationic [A14K] and [A20K] analogues stimulate 

the rate of insulin release from the rat  BRIN-BD11 and human 1.1B4 established cell lines and 

are equipotent with GLP-1 in stimulating insulin release from isolated mouse islets. In addition, 

[A14K]PGLa-AM1 protects BRIN-BD11 clonal β-cells against cytokine-induced apoptosis and 

stimulates proliferation. These encouraging results warrant further studies to develop long-acting 

analogues of PGLa-AM1, for example by incorporating D-amino acids and/or  a fatty acid 

moetiy into the molecule, to stimulate the function and arrest the β-cell degeneration seen in 

patients with long-standing T2DM. 
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Supplementary Fig. 1.  Comparison of the effects of [A3K]PGLa-AM1 with PGLa-AM1 on 

(A) insulin release and (B) LDH release from BRIN-BD11 cells Values are mean ± SEM,  

  n = 8 for insulin release and n = 4 for LDH release. *P < 0.05, **P < 0.01***P<0.001 

compared to 5.6 mM glucose alone. ΔP < 0.05, ΔΔP < 0.01, ΔΔΔP < 0.001 compared to PGLa-

AM1.  
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Supplementary Fig. 2. Effects of acute administration of [A14K]PGLa-AM1 (75 nmol/kg body 

weight) and [A20K]PGLa-AM1 (75 nmol/kg body weight, E-H) on blood glucose (panels A-C) 

and plasma insulin (panels D-F) concentrations in high fat fed  mice after intraperitoneal 

injection of glucose (18 mmol/kg body weight). Values are mean ± SEM (n = 8). *P < 0.05, **P 

< 0.01***P < 0.001 compared to glucose alone.  


