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Abstract 

Limb use, an indicator of hemispheric functioning, may be a useful predictor of cognitive 

bias and hence vulnerability to welfare risk. The relationship between cognitive bias and 

motor asymmetry, however, has been subject to little investigation.  This study explored the 

association between motor asymmetry and cognitive bias in the domestic dog, a species that 

displays lateral bias in the form of paw preferences and exhibits positive and negative 

affective states.  Thirty pet dogs had their paw preferences assessed using the KongTM ball 

test.  The subjects’ affective state was assessed using a cognitive bias test in which the 

animals’ latency to approach a bowl placed in one of three ambiguous positions was 

recorded.  Animals veering more towards a left-paw preference were found to be significantly 

slower to approach the bowl placed in one of the ambiguous positions than ambilateral or 

right-pawed dogs.  Left-pawed subjects approached the bowl located at the 3 ambiguous 

positions at roughly the same speed, while ambilateral and right-pawed animals became 

increasingly slower to approach the bowl the further it was located from the baited food bowl.  

The study points to a possible relationship between cognitive bias and paw preference in the 

dog, with left-pawed animals being more negative or “pessimistic” in their cognitive outlook 

than right-pawed or ambilateral individuals.   It is proposed that limb preference testing might 

offer a more practical and straightforward way of identifying individuals at risk from poor 

welfare by virtue of how they perceive the world than more time-consuming cognitive bias 

tests. 

 

Keywords: Animal welfare; Cognitive bias; Dogs; hand preference; judgement bias; lateral 

bias
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1.  Introduction 

Research has drawn attention to the importance of considering an animal’s affective state 

when assessing its welfare (e.g., Dawkins, 1990).  Unfortunately, emotional states are highly 

subjective and, as such, cannot be measured directly in animals (Dawkins, 1993).  A wide 

range of methods (e.g., studies of abnormal behaviour, physiological stress responses) have 

been used over the years in an effort to measure mammalian affect indirectly, although most 

have their limitations (for review Paul, Harding & Mendl, 2005). 

 

Cognitive bias measures, which are designed to detect the valence of affective states, have 

recently been proposed as a promising new tool to assess animal emotions and potential 

welfare risk (e.g., Marchant-Forde, 2015; Mendl, Burman, Parker & Paul, 2009).  Cognitive 

bias is a concept that was originally devised to explain human behaviour (Haselton & Nettle, 

2006).  The premise behind the paradigm is that cognitive processes, including attention, 

judgement and/or memory are influenced by affective state.  Individuals harbouring a 

negative state of mind are more likely to attend to aversive stimuli, recall more negative 

memories and judge ambiguous stimuli as more negative than individuals with a more 

positive affective state (Paul et al. 2005; Mendl et al. 2009; Mendl, Brook, Basse, Burman, 

Paul et al. 2010).  Cognitive bias tasks have been used successfully in an effort to shed light 

on the affective state and welfare of a wide range of animals [for reviews see Bethell, 2015; 

Roelofs, Boleij, Nordquist & van der Staay, 2016), including rats (e.g., Harding, Paul & 

Mendl, 2004), birds (Bateson & Matheson, 2007; Matheson, Asher & Bateson, 2008), sheep 

(e.g., Destrez, Deiss, Levy, Calandreau, Lee, Chaillou-Sagon et al. 2013) and, of pertinence 

to this paper, dogs (Burman, McGowan, Mendl, Norling, Paul, Rehn et al. 2011; Mendl et al. 

2010; Titulaer, Blackwell, Mendl & Casey, 2013).   
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An animal’s tendency towards a positive or negative cognitive bias appears to be related to 

dominance of the left or right cerebral hemisphere (Rogers, 2010).  The two hemispheres 

differ significantly in their functions, including emotional processing, although there is still 

debate as to the exact contribution of each hemisphere in this role (for reviews see Davidson, 

1995; Demaree, Everhart, Youngstrom & Harrison, 2005; Vallortigara & Versace, 2017].  

The valence hypothesis (Davidson, 1995) proposes that the right hemisphere is responsible 

for the processing of fearful information, encouraging withdrawal from novel stimuli and 

situations (e.g., Rogers, Vallortigara & Andrew, 2013).  The left hemisphere, by contrast, 

largely inhibits fear, encouraging exploration and approach behaviour (e.g., Silbermann & 

Weingartner, 1986).  Dominance, or more frequent use, of one hemisphere over the other 

predisposes individuals to behave in a certain way, with left-handed or weakly lateralised 

individuals being more fearful than right-handed or strongly lateralised individuals (e.g., 

Rogers, 2010; Versace & Vallortigara, 2015).  Limb preference (i.e., the preferred use of one 

hand/paw to perform a task) is associated with greater activity of the contralateral motor 

cortex (Versace & Vallortigara, 2015). Thus, the observation of a bias in hand (or paw) use 

can be considered an indicator of brain laterality (Batt, Batt, & McGreevy, 2007; Branson & 

Rogers, 2006; Gordon & Rogers, 2010; Hopkins & Bennett, 1994; Marshall-Pescini, Barnard, 

Branson & Valsecchi, 2013).  Left-limbed animals, which tend to be right-hemisphere 

dominant, show stronger fear responses than right-limbed animals, which tend to be left-

hemisphere dominant (e.g., Braccini & Caine, 2009; Cameron & Rogers, 1999).  Left-sided 

biases of aggression, reactivity to fear-inducing stimuli and vigilance behaviour have also 

been noted in numerous species (e.g., amphibians-Lippolis, Bisazza, Rogers & Vallortigara, 

2002; birds-Koboroff, Kaplan & Rogers, 2008, Zappia & Rogers, 1983; rats-Denenberg, 

1984; horses-Austin & Rogers, 2012, Siniscalchi, Padalino, Lusito & Quaranta, 2014), 

including dogs (e.g., Siniscalchi, Lusito, Vallortigara & Quaranta, 2013; Quaranta, 

http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib21
http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib21
http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib19
http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib53
http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib13
http://www.sciencedirect.com/science/article/pii/S0003347211004829#bib13
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Siniscalchi & Vallortigara, 2007; Quaranta, Siniscalchi, Frate, Iacoviello, Buonavoglia, & 

Vallortigara, 2006). 

 

It has been proposed that limb use, a good indicator of hemispheric functioning (Annett, 

1985; Springer & Deutsch, 1989), may be a useful predictor of cognitive bias and hence 

vulnerability to welfare risk (Rogers, 2010; Versace & Vallortigara, 2015).  In the first, and 

only, study of its kind to explore this, Gordon and Rogers (2015) reported that left-handed 

marmosets were more likely than their right-handed counterparts to exhibit a negative 

cognitive bias, and concluded that hand preference, which can be easily measured, could be a 

straightforward and useful way of assessing welfare risk.  Further work is clearly needed to 

examine the relationship between limb use and judgement bias, firstly to determine whether 

motor asymmetry is a variable that needs to be controlled for in cognitive bias studies, and, 

secondly, to establish whether limb use can be used in place of more timely cognitive bias 

tests as a reliable way of assessing animal welfare risk. 

 

The following study examines the relationship between motor asymmetry and cognitive bias 

in the domestic dog, a species that has been shown to display both lateralised motor bias in 

the form of paw preferences (e.g., Branson & Rogers, 2006; Marshall-Pescini et al. 2013; 

Wells, 2003; Wells, Hepper, Milligan & Barnard, 2016) and exhibit positive and negative 

affective states as assessed by cognitive bias tests (Burman et al. 2011; Mendl et al. 2010; 

Titulaer et al. 2013) and other measures, e.g. approach-withdrawal responses, asymmetric 

tail-wagging, cardiac activity (Siniscalchi, Lusito, Vallortigara & Quaranta, 2013; Quaranta, 

Siniscalchi & Vallortigara, 2007).   It is anticipated that the study will shed useful light on the 

relationship between limb use and emotional functioning in the dog, and, importantly, 
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establish whether motor asymmetry can be used as a reliable tool for assessing affective state 

in a species prone to welfare risk.  
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2.  Methods 

2.1.  Subjects 

Thirty pet dogs (13 males, 17 females) of mixed breed were recruited via response to an 

email advertising a study on paw preferences sent to pet owners in Northern Ireland, UK.  

The vast majority of the animals (n=27, 90%) were castrated.  Animals ranged from 1 to 10 

years of age (mean age=4.47  ±SEM 0.47 years).  All of the dogs were family pets living in 

households, and whose owners had consented to them taking part in the study.  None of the 

dogs had undergone any behavioural training, nor had any disability preventing them from 

completing the study. 

 

2.2.  Paw Preference Testing 

2.2.1.  Apparatus 

The subjects’ paw preferences were tested using a KongTM ball (KONG Company, Golden, 

CO, USA), the most commonly employed method of assessing motor asymmetry in the 

domestic dog (Batt, Batt & McGreevy, 2007; Batt, Baguley & McGreevy, 2008; Branson & 

Rogers, 2006; Marshall-Pescini et al. 2013; Schneider, Delfabbro & Burns, 2013; Tomkins, 

Thomson & McGreevy, 2010; Wells et al. 2016).   A medium-sized KongTM ball was used for 

testing.  This is a hollow 10.5cm long conical-shaped rubber toy that moves in an erratic 

manner.  The ball has a 2.9cm diameter hole at one end, and a smaller 1cm diameter hole at 

the opposite end.  Before testing, the toy was filled through the larger hole with moist dog 

food (Pedigree, original flavour, Waltham Mars, UK) and frozen.  Balls were washed 

thoroughly in between tests. 
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2.2.2.  Procedure 

Each dog was tested individually in its own home environment, on a hard-surfaced floor 

(tiled or linoleum), having been food deprived for at least 4 hours.  At the start of testing, the 

dog was shown, and allowed to sniff, the food-loaded KongTM ball.  The toy was then placed 

directly in front of the animal.  The paw used to stabilise the KongTM by the dog was recorded 

by the experimenter.  A paw use was classified as the animal having one or both paws on the 

KongTM ball, regardless of duration.  A separate paw use was considered to have been made 

when the animal removed its paw from the KongTM and replaced one or both of its paws on 

the object.  On occasion, dogs used both paws to stabilise the ball; these occurrences were 

recorded, but testing was not considered complete until one hundred paw uses (left plus right 

combined) had been made by the animal, regardless of the number of times dogs employed 

both paws. 

 

2.3.  Cognitive bias testing 

The affective state of the subjects was assessed one month (+/- 3 days) following paw 

preference testing using a cognitive bias test modelled on that described by others (Burman et 

al. 2011; Mendl et al. 2010).  Good test-retest reliability has been demonstrated in dogs tested 

with the Kong ball on 2 separate occasions, with an interim of 6 months between tests 

(Branson & Rogers, 2006), so it was assumed that the subjects’ paw preferences would be 

consistent at the time of cognitive bias testing.  All testing took place in an 8x7m room in the 

Animal Behaviour Centre, Queen’s University Belfast, UK. 

 

2.3.1.  Training  
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Dogs were initially trained to learn the position of a bowl containing a food treat (Positive, P) 

and the position of a bowl devoid of food (Negative, N).  The dog was held on a lead by its 

owner, while the Experimenter (SB) either placed a food treat (one cube of Frolic, Pedigree, 

Waltham Mars, UK) into the positive bowl (P) or set down an empty bowl (N).  The bowl 

was tapped twice as a baiting signal (so the animal’s performance was not influenced by 

hearing or not hearing the treat hit the bowl) and the Experimenter then said ‘ok’; at this 

point, the subject was released from its starting point (4m away), midway between P and N 

(see Figure 1).  The Experimenter consistently stood at the middle of furthest wall in the 

room, given that dogs can show lateralized responses upon seeing humans (Guo, Meints, 

Hall, Hall & Mills, 2009).  Dogs initially received two consecutive positive trials (i.e., with 

the baited bowl placed in the P position), followed by 2 consecutive negative trials (i.e., with 

the un-baited bowl placed in the N position).  Dogs were subsequently presented with 

positive and negative trials in a consistent, predefined order.  No more than two trials of the 

same type were presented consecutively.  P bowls were placed on the left-hand side of the 

room for 50% of the dogs, and on the right-hand side for the remainder of the subjects.  For 

each dog, the latency to make contact with (i.e., touch or put its head inside) the bowl was 

recorded.  A trial was terminated once the dog made contact with the bowl or 30 seconds had 

elapsed without the animal approaching the bowl.  Each dog received a minimum of 15 

training trials.  Dogs were considered to have learned an association between the location of 

the bowl and its status (i.e., baited, P or un-baited, N) when, for the preceding three positive 

trials and the preceding three negative trials, the longest latency to reach the positive location 

was at least half a second shorter than any of the latencies to reach the negative 

location.  Each dog was allowed a maximum of 50 trials to reach the criterion. 

 

2.3.2.  Testing 
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The testing phase commenced immediately following successful training to criterion.  Dogs 

were presented with a food bowl placed in one of 3 different positions (Figure 1) between the 

original positive (P) and negative (N): (1) near-positive, NP; here the bowl was positioned 

one third of the way along from P; (2) Middle, M; here the bowl was placed mid-way 

between P and N, and (3) near negative, NN; here the bowl was placed one third of the way 

along from N.  Dogs started each trial 4m away from the bowl at the mid-point between P 

and N as per training.  Dogs were exposed to three test trials per location (i.e., nine test trials 

in total) in the order: 1) M, NP, NN; 2) NP, NN, M; 3) NN, M, NP.  Test trials were separated 

from each other by 4 trials identical to those used in training to ensure dogs maintained their 

memory of the P and N locations.  For each dog, the mean latency to make contact with the 

presented bowl was calculated as per the training trials. 

 

Following testing, an empty food bowl was placed in the positive location.  The aim of this 

was to check that dogs ran as quickly to this empty bowl as to the baited bowl in this location 

and hence were not relying on olfactory cues to guide behaviour. 

 

(Figure 1 about here) 

 

 

2.4.  Data Analysis 

 

2.4.1.  Paw-preferences 

Binomial z-scores were calculated to determine whether the frequency of right- or left-paw 

use exceeded that expected by chance.  An alpha value of 0.05 was adopted for all analyses.  
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A z-score greater than +1.96 (two-tailed) reflected a significant left paw preference, whilst a 

z-score less than -1.96 indicated a significant right paw preference.  Dogs with z-scores 

between +1.96 and –1.96 were classified as ambilateral. 

 

A one-way chi-squared analysis was carried out to investigate whether there was a significant 

difference in the distribution of the dogs’ paw preferences.  Binomial tests were also 

conducted to determine whether there was a significant difference in the number of animals 

that were: (1) paw-preferent (either to the left or right) vs. ambilateral, and; (2) right- vs. left-

paw preferent.  Given the reported link between paw preferences and canine sex (McGreevy, 

Brueckner, Thomson & Branson, 2010; Quaranta, Siniscalchi, Frate & Vallortigara, 2004; 

Wells, 2003), chi-squared tests were carried out to establish whether the distribution of the 

dogs’ paw use was associated with the subjects’ sex (male, female). 

 

A directional handedness index (HI) was calculated to quantify each dog’s paw preference on 

a continuum from strongly left-paw preferent (+1) to strongly right paw-preferent (-1).  The 

HI was calculated by dividing the difference between the total number of left and right paw 

reaches by their sum (L-R)/(L+R) [see 34].  The strength of the dogs’ paw preferences was 

calculated by taking the absolute value of each HI score (ABS-HI).   

 

2.4.2.  Cognitive bias 

A series of non-parametric statistics was carried out to explore how long it took the subjects 

to reach the criterion for testing and to establish whether this was related to the animals’ paw 

preference classification (left, right, ambilateral) or sex (male, female).  A Kruskall-Wallis 

test was carried out to examine whether the dogs’ latency to reach the empty food bowl 
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placed in the positive location differed significantly from their latency to reach the baited 

bowl. 

 

For those animals that reach the criterion for testing, a Friedman test was carried out to 

determine whether the dogs’ latency to reach the food bowl varied according to its position 

(P, NP, M, NN, N). 

 

2.4.3.  The relationship between paw preference and cognitive bias 

Since the dogs recruited for this study differed in their size, each animal’s test trial latencies 

were adjusted as per Mendl et al. (2010) to ensure results were not simply due to between-

subjects differences in running speeds.  The adjusted score was calculated in the following 

manner: (mean latency to probe location [i.e., NN, M or NP]-mean latency to positive 

location)/(mean latency to negative location-mean latency to positive location)) x 100.  This 

adjustment resulted in the latencies to reach the bowls positioned in each of the 3 ambiguous 

locations being expressed as a percentage of the difference between each animal’s mean 

latencies to reach the bowls positioned at P and N. 

 

Kruskall-Wallis tests were carried out to explore whether there was relationship between the 

dogs’ latency to approach bowls located at P and N (using unadjusted raw scores) or the three 

ambiguous locations (i.e., NP, M, NN, using adjusted scores).  Friedman tests were 

subsequently conducted for left, right and ambilateral animals to determine if their speed to 

approach the three ambiguous bowls differed according to location.   
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Pearson moment correlations were carried out to examine the relationship between the 

direction (HI) and strength (ABS-HI) of the dogs’ paw preferences and their latency to reach 

the bowls positioned at each of the 3 ambiguous locations (NP, M, NN). 

 

Finally, independent t-tests and Mann-Whitney U tests were conducted to determine the 

relationship between the dogs’ latency scores and canine sex. 

 

Ethical approval 

All methods adhered to the Association for the Study of Animal Behaviour/ Animal Behavior 

Society Guidelines for the Use of Animals in Research (Association for the Study of Animal 

Behaviour, 2006).  Ethical approval for the study was granted by the Research Ethics 

Committee, School of Psychology, QUB.  
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3.  Results 

 

3.1.  Paw preferences 

The distribution of the dogs’ paw preferences was not significantly different from that 

expected by chance alone, χ
2
(2, N=30)=1.80, p=.41).  Seven (23.33%) dogs consistently used 

their left paw to balance the KongTM ball, 10 (33.33%) consistently employed their right paw, 

while 13 animals (43.33%) were ambilateral.  Dogs were no more likely to be paw-preferent 

(N=17, 57.0%) than ambilateral (N=13, 43%) [p=.58, binomial test].  There was no 

significant difference in the number of animals that were right- vs. left-paw preferent (p=.63, 

binomial test).  Distribution of paw use was not significantly associated with canine sex, χ
2
(2, 

N=30)=0.71, p=.70). 

 

3.2.  Cognitive bias 

3.2.1.  Training 

All of the dogs successfully completed the cognitive bias training, with animals reaching 

criterion after an average of 24.10 (±95% C.I. 21.23-27.43) attempts. A Kruskall-Wallis test 

revealed no significant difference in the number of trials taken to reach criterion by 

ambilateral (mean number of trials=22.62 ±95% C.I. 19.62-25.77), right- (mean number of 

trials=25.30 ±95% C.I. 19.00-33.40), or left- (mean number of trials=25.14 ±95% C.I. 20.43-

29.57) pawed dogs, χ
2
(2, N=30)=0.71, p=.70).  Male and female dogs did not differ 

significantly in the number of trials required to reach criterion (U=151.00, p=.09, r=.31).  The 

position of the positive (P) bowl (i.e., on the left- or right-hand side of the room) had no 

significant effect on the dogs’ reaching criterion (U=108.00, p=0.89, r=.03).   

 

It was concluded that all of the subjects successfully learned the cognitive bias task. 
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3.2.2.  Testing 

A Friedman test revealed a highly significant difference in the dogs’ latency to reach the food 

bowl depending upon its position (χ
2
(4)=90.03, N=30, p<.001).  Animals became 

increasingly slower to reach the bowl the further it was located from position P (see Figure 

2). 

 

(Figure 2 about here) 

 

 

3.3.  The relationship between paw preference and cognitive bias  

Kruskal-Wallis tests revealed no significant relationship between the dogs’ paw preferences 

and their latency to approach the food bowl located at either the Negative, N (χ
2
(2)=.02, 

N=30, p=.99) or Positive, P (χ
2
(2)=1.57, N=30, p=.46) position during the test trials 

(unadjusted raw scores, see Table 1).  There was equally no significant association between 

the dogs’ paw preferences and the speed with which they approached the food bowls located 

at NN (χ
2
(2)=2.05, N=30, p=.36), M (χ

2
(2)=2.15, N=30, p=.34) or NP (χ

2
(2)=3.26, N=30, 

p=.20) [Figure 3].  However, both right-pawed (χ
2
(2)=7.40, N=30, p=.02, W=.37) and 

ambilateral (χ
2
(2)=22.15, N=30, p<0.001, W=.85) dogs differed significantly in their latency 

to approach the 3 ambiguous food bowls, becoming increasingly slower the further the bowl 

was positioned from P.  Left-pawed animals, by contrast, showed no significant difference in 

their latency scores for the bowls positioned at the 3 ambiguous locations (χ
2
(2)=3.71, N=30, 

p=.16) [Figure 3]. 

 

(Table 1 about here) 
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(Figure 3 about here) 

Analysis revealed a highly significant positive correlation between the dogs’ HI scores and 

their latency to approach the food bowl positioned at NP (r(30)=.66, p<0.001).  Animals 

became slower to reach the bowl located in this position with increasing left-pawedness 

(Figure 4).  Two outliers were visible on the scattergram and confirmed using the outlier 

labelling rule (Hoaglin & Iglewicz, 1987); the analysis was therefore re-run without these two 

datapoints.  The dogs’ HI Scores and latency to reach the bowl located at NP were still found 

to be positively correlated (r(28)=.48, p=.01); the removed datapoints were therefore not 

considered to be bivariate outliers.  There was no significant correlation between the dogs’ 

directional pawedness scores and their latency to reach the food bowl located at NN (r(30)=-

.28, p=.14) or M (r(30)=.01, p=.96).   

 

(Figure 4 about here) 

 

The strength of the dogs’ paw preferences (ABS-HI) was significantly correlated with their 

speed to reach the food bowl located at NP (r(30)=0.39, p=.03).  Animals became slower to 

reach the bowl at this location with increasing lateralisation (Figure 5).  The strength of the 

dogs’ paw preferences was not significantly correlated with their latency scores for bowls 

located at NN (r(30)=.16, p=.40) or M (r(30)=.20, p=.29).   

 

(Figure 5 about here) 

 

3.4.  The effect of canine sex on paw preference and cognitive bias  

Analysis revealed no significant effect of canine sex on either the direction (U=99.50, p=.65, 

r=.08) or strength (U=106.50, p=.87, r=.03) of the animals’ paw preferences.  There was no 



17 
 

significant difference in the latency scores of male and female dogs for the food bowl located 

at NN (U=72.0, p=.11, r=.29), M (U=87.00, p=.32, r=.18) or NP (U=109.00, p=.95, r=.01). 

 

3.5.  Latency to reach the empty food bowl 

Dogs showed no significant (Z=-.30, p=0.76) difference in their latency to approach the 

empty food bowl placed in the positive location (P) and the baited bowl.  Latency to approach 

the empty food bowl placed at P was not significantly related to the animals’ paw preference 

classification (χ
2
(2)=.24, N=30, p=.89) or canine sex (U=85.50, p=.30, r=.19).  
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4.  Discussion 

This study aimed to examine, for the first time, the relationship between motor asymmetry 

and cognitive bias in the domestic dog.  The findings from the investigation point to a 

relationship between these two phenomena. 

 

The results from this study revealed a roughly equal distribution of lateralised (57%) and 

non-lateralised (43%) dogs as assessed using the Kong ball test; there was therefore no 

evidence of a population-level bias.  Existing research on the distribution of paw preferences 

in dogs is conflicting, with some studies highlighting a higher percentage of lateralised than 

non-lateralised animals (e.g., 75% lateralised [Tan 1987]; 77% lateralised [Branson & 

Rogers, 2006]; 79% lateralised [Siniscalchi et al. 2008], and others showing more of an equal 

distribution of ambilateral and paw-preferent individuals (46% lateralised [Marshall-Pescini 

et al. 2013]; 37% lateralised [McGreevy et al. 2010]; 52% lateralised [Tomkins et al. 2010]).  

The results from the present investigation add to the conflict, but are more in line with those 

studies pointing to a roughly equal split of lateralised and non-lateralised dogs.  It is likely 

that differences in sample constitution (e.g. sex split, castration status), task complexity and 

other, uncontrolled for, variables (e.g. experimenter handedness), contribute towards this 

discrepancy in results in dogs, in much the same way as they do in other species (see Rogers, 

2009; Strockens, Gunturkun & Ocklenburg, 2013; Versace & Vallortigara, 2015). 

 

The dogs in this study were all successfully trained to criterion and performed as expected on 

the cognitive bias test, becoming increasingly slower to approach the food bowl the further it 

was located from the baited position (P).  Although the dogs’ paw preference classification 

(i.e., left, right, ambilateral) was not significantly related to their latency to approach the food 

bowls positioned in any of the locations, analysis did reveal a significant positive correlation 
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between the latency of dogs to approach the Near Positive (NP) bowl and their directional 

pawedness (HI) scores.  Dogs became increasingly slower to approach the bowl located at NP 

with increasing left-pawedness.  As indicated earlier, the right hemisphere is generally 

considered to be responsible for the processing of fearful information, encouraging 

withdrawal from novel stimuli and situations (e.g., Rogers et al. 2013).  Left-limbed 

individuals, which are more right-hemisphere dominant, are therefore more likely to be 

fearful and prone to maladaptive behaviour than their right-limbed counterparts.  

 

One explanation for the results observed here is that the dogs with left-paw preferences were 

more “pessimistic” (i.e., negative) in their cognitive bias.  Mendl and colleagues (2010) 

found that dogs with higher separation-related behaviour (SRB) scores displayed a more 

“pessimistic” judgement of ambiguous test locations (M and NN) than animals with lower 

SRB scores, using the same experimental paradigm adopted here.  More recently, Gordon and 

Rogers (2015) found that left-handed marmosets were less likely to remove the lid of an 

ambiguous food bowl than their right-handed counterparts.  In the present study, the bowl 

located at NP, although ambiguous in nature, was more likely to contain a food treat than a 

bowl located further away from P, and one would therefore have expected animals to have 

displayed relatively low latencies to approach the bowl positioned in this location.  The left-

pawed dogs in this study, however, were slower to approach NP than their ambilateral or 

right-pawed counterparts; it could therefore be argued that these animals were more likely to 

perceive the bowl located in this position as unloaded, than loaded, with food.  Further 

support for this hypothesis comes from the finding that the left-pawed dogs approached the 

food bowl located at the 3 ambiguous positions (NP, M, NN) at roughly the same speed.  

Ambilateral and right-pawed animals, by contrast, showed a significant difference in their 

latencies across the three locations, becoming increasingly slower, as one would expect, the 
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further the bowl was located from P.  Left-pawed dogs were certainly able to distinguish 

between the positive and negative food locations (as evidenced by their faster latencies to 

approach P than N), which increases the likelihood that they were able to perceive and 

understand the difference in the valence of the food bowls located in each of the ambiguous 

positions.  The most likely explanation is that these animals simply adopted the more 

pessimistic outlook that food would not be available in any of the bowls, regardless of where 

it was positioned between P and N. 

 

An intriguing alternative account for the above is that the left-pawed dogs in this study were 

more inflexible in their way of thinking than the right-pawed or ambilateral animals.  

Research from the human literature suggests that people with pervasive developmental 

disorders (e.g., Autism Spectrum Disorder), veer more towards left- than right-handedness 

(for review, Lindell & Hudry, 2013).  There is a tendency for such individuals to be relatively 

‘rigid’ in their outlook, finding it challenging to overlook minute details.  Perhaps the left-

pawed dogs in this study, as is often the case in people with atypical cortical organization, 

were more focused on the detail than their right-pawed or ambilateral counterparts, regarding 

all of the ambiguous bowls to be ‘incorrect’.  Further work, perhaps exploring problem-

solving strategies in left vs. right-pawed/ambilateral dogs, may help to elucidate whether 

there is any plausibility to this idea. 

 

The strength of the dogs’ paw preferences was also found to be correlated with their latency 

to reach the bowl located at NP.  The degree to which one hemisphere is dominant over the 

other may influence an individual’s reactivity to potential stressors (Rogers, Zucca & 

Vallortigara, 2004).  Individuals with a more strongly dominant hemisphere may be better able 



21 
 

to deal with stress than those who do not rely on one hemisphere over the other (Branson & 

Rogers, 2006).  For example, ambilateral chicks emit more distress calls in response to the 

sight of a predator than their more lateralised counterparts (Dharmaretnam & Rogers, 2005).  

In light of this, one might have expected the more strongly lateralised dogs in this study to 

have been faster to approach the ambiguous food bowls than those with weaker paw 

preferences.  There were indeed individuals that displayed this pattern, but further work is 

needed to explore the relationship between strength of lateralisation and cognitive bias in 

domestic dogs before firm conclusions on this relationship can be drawn. 

 

The results of this study revealed no significant effect of canine sex on any of the dependent 

variables under scrutiny, including distribution of paw use.  This is interesting, since several 

studies have pointed to a relationship between paw preference and canine sex, with male 

animals veering more towards left-paw use and females showing more of a tendency to use 

their right paw (McGreevy et al. 2010; Quaranta et al. 2004; Wells, 2003).  These studies, 

however, all used non-castrated animals as subjects.  Other investigations, either using 

castrated, or a mixture of de-sexed and entire, animals have not reported a significant sex 

effect on dogs’ paw preferences (Batt et al. 2008; Branson & Rogers, 2006; Schneider et al. 

2012).  This is more in keeping with our results, using a population of mostly (90%) neutered 

animals.  It seems most likely that a hormonal factor is at play in explaining these disparate 

results (see Geschwind & Galaburda, 1985a, 1985b; Witelson, 1991).  However, other, 

uncontrolled for, individual differences deserve attention.  For example, laterality has been 

linked to personality in some species (e.g., fish-Brown & Bibost, 2014; cats-McDowell, 

Wells & Hepper, 2016).  The relationship between temperament and lateral bias in dogs is 

still inconclusive (see Batt et al. 2009; Schneider et al. 2013), although our recent work points 

to a possible link (Barnard, Wells, Hepper & Milligan, in press). 
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While this study shows an association between cognitive bias and paw preferences in the dog, 

it does not enable us to draw any causal relationship between these two variables.  Cats 

typically develop a stable paw preference by 1 year of age (Wells & Millsopp, 2012).  It is 

still unknown at what age dogs develop a stable paw preference, however measuring the 

lateral and cognitive biases of such animals during their first year of life may help to establish 

whether paw preferences develop before or after cognitive bias.  Care does need to be taken 

with this approach, however, since it is possible that training for cognitive bias may actually 

influence an animal’s emotional state (see Bethell, 2015).  Further work is certainly needed, 

ideally using larger numbers of subjects, to determine the causal mechanisms underlying 

preferred paw use in dogs and its complex relationship with other variables. 

 

Conclusion 

Cognitive bias tests have become an increasingly popular and influential way of assessing 

emotional functioning and the affective state of animals (Bateson & Nettle, 2015).  Although 

clearly a useful tool for welfare assessment, the training involved in such tests is a time-

consuming process, potentially stressful for social animals that require individual testing and 

not always practical for use in applied contexts, e.g., rescue shelters (see Roelofs et al. 2016).  

Assessing an animal’s paw preferences, by contrast, is a quick and, in most cases, 

straightforward procedure from a methodological perspective.  If paw preferences and 

cognitive bias are indeed related, then this opens the door for motor bias testing to be used as 

a quick and easy tool for assessing animals which might be at risk from reduced welfare by 

virtue of how they perceive the world (see Rogers, 2010).  Identifying such individuals would 

then enable appropriate interventions to be put in place with the aim of improving animal 

well-being.  For example, the rescue shelter environment is a highly stressful one for the 

many thousands of dogs around the globe that find themselves in this situation (see Wells, 
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2004 for review).  Paw preference testing might be of use in this context, allowing kennel 

staff to identify animals at heightened risk from developing behavioural or physiological 

symptoms of stress.  Beyond the kennel environment, paw preference tests could perhaps be 

used to identify animals that are more prone to developing behaviour problems symptomatic 

of anxiety, e.g., fear aggression, separation anxiety.  Appropriate advice could then be given 

to potential adopters, highlighting the needs of the individual.  Work is currently underway in 

an effort to shed further light on the relationship between cerebral functional asymmetry, 

emotional vulnerability and well-being in non-human animals. 
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Figure Legends 

Figure 1.  Depiction of the food bowl positions used in the cognitive bias test (P=positive 

position [bowl baited with food]; NP=near positive; M=middle; NN=near negative; 

N=negative position [bowl devoid of food]) 

Figure 2.  Mean latencies (±SEM) for dogs to reach the food bowl located at 5 separate 

positions  

Figure 3.  Mean adjusted latency (±SEM) scores for the food bowl located at three ambiguous 

places (NP, M, NN) according to the dogs’ paw preference classification. 

Figure 4.  Scattergram showing the relationship between the dogs’ HI (direction of paw use) 

scores and adjusted latency scores when presented with the Near Positive (NP) bowl 

Figure 5.  Scattergram showing the relationship between the dogs’ ABS-HI (strength of paw 

use) scores and adjusted latency scores when presented with the Near Positive (NP) bowl  
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Table Legend 

 

Table 1.  The mean (+/-SEM) latency scores for ambilateral, right- and left-pawed dogs for 

food bowls positioned at the Positive (P) and Negative (N) location.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 

 

Paw preference  Positive 

Mean (±SEM) 

Negative 

Mean (±SEM) 

Ambilateral 3.26 (0.30) 17.03 (2.15) 

Right 3.58 (0.60) 16.67 (2.23) 

Left 3.15 (0.74) 16.62 (2.01) 

 


