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Abstract

This work presents a novel approach for automatic epilepsy seizure detection

based on EEG analysis that exploits the underlying non-linear nature of EEG

data. In this paper, two main contributions are presented and validated: the

use of non-linear classifiers through the so-called kernel trick and the proposal of

a Bag-of-Words model for extracting a non-linear feature representation of the

input data in an unsupervised manner. The performance of the resulting system

is validated with public datasets, previously processed to remove artifacts or

external disturbances, but also with private datasets recorded under realistic and

non-ideal operating conditions. The use of public datasets caters for comparison

purposes whereas the private one shows the performance of the system under

realistic circumstances of noise, artifacts, and signals of different amplitudes.

Moreover, the proposed solution has been compared to state-of-the-art works

not only for pre-processed and public datasets but also with the private datasets.

The mean F1-measure shows a 10% improvement over the second-best ranked

method including cross-dataset experiments. The obtained results prove the
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robustness of the proposed solution to more realistic and variable conditions.

Keywords: Classification algorithms, Non-linear classifiers, SVM, Bag of

words, Wavelet, Epilepsy

1. Introduction

Epilepsy is a disease that affects approximately 1% of the world’s population

Shoeb et al. (2004). This neurological disorder might cause a loss of conscious-

ness, muscle jerks or, in the most severe cases, prolonged convulsions. Its effects

have a significant impact on the patient’s quality of life as well as other impor-5

tant social and economic considerations, due to health-care needs, premature

death and/or loss of productivity Organization (2016).

Epilepsy diagnosis is a tedious, expensive and time-consuming task, which is

performed by highly trained professionals who examine EEG data in seeking ab-

normal brain activity. Currently, neurophysiologists analyse long EEG logs that10

should ideally record as much cerebral activity as possible to increase the proba-

bility of recording seizure occurrences. This manual analysis of EEG is therefore

the current bottleneck in the epilepsy diagnosis stage and, as consequence, in

the process of providing a treatment for epileptic patients. Despite the great

impact that epilepsy has on society, there are few computational systems or15

tools that support automatic analysis and categorisation of EEG recordings.

The lack of reliable systems for automatic epilepsy diagnosis is not casual. In

contrast, several reasons seem to be responsible for this scarcity, such as the

great variability found among individuals and the overlapping among seizure

and non-seizure states Echauz et al. (2008).20

This work proposes and analyses two expert systems for epilepsy diagnosis

that exploit the non-linear separability of the data. More importantly, this paper

demonstrates their expert-system performance under realistic and variable con-

ditions, similar to the ones that would be found in a real hospital environment.

For this reason, special emphasis has been made in this paper to demonstrate25

the robustness of the solution regardless the training data and in cross-dataset
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experiments.

1.1. Previous work

Many different approaches have been proposed for automatic seizure de-

tection and epilepsy diagnosis, for the sake of simplicity, we will mention some30

of the most relevant but for a thorough analysis of the state of the art, please

refer to Tsiouris et al. (2015); Alotaiby et al. (2014).

The first acknowledged and widely used approach for automatic recognition

of epileptic seizures based on EEG analysis was proposed in Gotman (1982,

1990) by Gotman. The approach presented in this work consists of quantitati-35

vely measuring the novelty of the EEG signal. Therefore, a continuous temporal

analysis is performed that compares one epoch or EEG signal segment against

a reference or background segment. Gotman’s Monitor algorithm employs a set

of rules for identifying and triggering seizures. The work of Wilson et al. in the

Reveal algorithm Wilson et al. (2004) also relied on the analysis of EEG tenden-40

cies and a rule-based system to identify potential seizure scenarios. However,

Wilson introduced analysis of frequency parameters.

Methods that combine time and spectral analysis of an EEG signal have

showed an improvement in the success ratios for seizure detection in contrast to

those that only focus on one domain. In this regard, the wavelet transform is45

one of the most frequently used signal processing algorithms for EEG analysis

(see Faust et al. (2015) for a detailed summary of published research on EEG

signal feature extraction using DWT).

As a common stage of all current approaches, after characterising the signal

either in time or frequency, a decision must be made as to whether the EEG50

signal presents the characteristics of a seizure or not. This decision is supported

by the use of a classifier that has as inputs several signal features that are

computed from the EEG data after the pre-processing stage. There is a variety

of methods that have been used to characterise the pre-processed EEG record:

entropies Acharya et al. (2015), energy distribution Omerhodzic et al. (2013);55

Orhan et al. (2011); Patnaik & Manyam (2008); quantitative statistical variables
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such as the mean, standard derivation, variance, inter-quartile range and other

measurements Pippa et al. (2015); autoregressive models (AR) Atyabi et al.

(2016); Chen (2014); or independent component analysis Siuly & Li (2015),

just to name some of the most promising approaches. The type and number of60

such features has a direct impact in the behaviour of the system. Thus, it is

necessary to select the most appropriate techniques to maximise the recognition

rates. The work in Upadhyay et al. (2016) carries out a comparative study of

feature ranking techniques.

Given the complex and non-linear nature of EEG, any feature extraction65

technique that can detect and quantify some aspect of these non-linear me-

chanisms are specially relevant in distinguishing different types of EEG signals

(normal, ictal, interictal). Thus, the use of Higher Order Spectra (HOS) is

studied in Chua et al. (2008) Chua et al. (2011) to conclude that the analysed

parameters are statistically significant therefore appropriate for the classifica-70

tion of EEG signals. Recurrent Quantification Analysis ( RQA) Acharya et al.

(2011b) parameters yields an accuracy result of 95.6% when run with Support

Vector Machine (SVM) classifiers. The work in Acharya et al. (2011a) report the

use of Higher Order Cumulant features (HOC). This study reports an accuracy

rate of 98.5% when used with SVM classifiers. The work in Martis et al. (2013)75

proposes the use of a novel method, as it is the Intrinsic time-scale decom-

position (ITD), to compute features for the automated classification process.

Accuracy rate of 95.67% was reported in this study. Spectral and embedding

entropy Kannathal et al. (2005); Acharya et al. (2012a), used to measure the

system complexities, and Lyapunov exponents Guler & Ubeyli (2007) have been80

also employed to epilepsy detection in EEG analysis.

Regarding classification strategies, the existing literature mainly reveals two

different approaches in EEG analysis for automatic seizure detection: non-linear

methods, particularly Artificial Neural Networks (ANN) Alfaro-Ponce et al.

(2016); Omerhodzic et al. (2013); Husain & Rao (2012); Orhan et al. (2011);85

Patnaik & Manyam (2008); Tzallas et al. (2007); Bao et al. (2008); N & Tha-

nushkodi (2009) but also Decision Tress (DT) Martis et al. (2013); Polat &
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Table 1: Summary of most relevant state-of-the-art works for automated EEG analysis

Reference Features Classifier Accuracy(%) Dataset Size [Sequences]

Chua et al. (2008) HOS features GMM 93.3 100

Acharya et al. (2011b) RQA SVM 94.3 300

Martis et al. (2013) IDT NN/DT 95.67 100

Acharya et al. (2011a) HOC SVM 98.5 300

Acharya et al. (2012a) Entropy Fuzzy Inference 98.1 300

Acharya et al. (2012b) Entropy+HOS+others Fuzzy Inference 99.7 300

Polat & Güneş (2007) FFT DT 98.72 100

Guo et al. (2009) Relative Wavelet Energy ANN 99.6 200

Wang et al. (2012) DWT+Bag of Words ANN 99.2 500

Guler & Ubeyli (2007) DWT+lyapunov exponents SVM 99.3 500

Janjarasjitt (2010) Wavelet-Based Scale Variance k-means 97.6 300

Husain & Rao (2012) DWT-based features ANN 98.2 500

Fathima et al. (2011) DWT-based features Linear classifier 99.8 500

Chen (2014) DTCWF Nearest Neighbour 100 500

Übeyli (2010) Burg AR least squares SVM 99.56 200

Güneş (2007), and linear classifiers such as Gaussian Mixture Models (GMM)

Chua et al. (2011), SVM Direito et al. (2014) or k-means clustering Janjara-

sjitt (2010). Alternatively, other machine learning algorithms, such as Genetic90

Programming Bhardwaj et al. (2016) have also been proposed in this field.

However, these previous techniques have been evaluated in simple and rela-

tively small datasets such as the University of Bonn dataset in which only one

type of variation or activity modality is present, which explains the high accu-

racy rates achieved by simple and linear methods. Furthermore, the methods95

are retrained for each datataset and parameters have been manually tuned for

the testing set rather than using automatic optimisation techniques as in other

fields Valipour (2016); Valipour & Singh (2016); Yannopoulos et al. (2015); Va-

lipour (2012b,a). This results in overfitting to the specific dataset, which means

that a significant performance drop is expected when testing in a different da-100

taset or under more realistic and challenging scenarios with different activity

variations and noise presence.

Table 1 summarises a comparative analysis of the most relevant works of the

state of the art for automated EEG analysis for epilepsy diagnosis.
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1.2. Proposed system105

The present work proposes two systems for automatic epilepsy seizure de-

tection. Both systems are based on EEG analysis and inspired by non-linear

classifiers and the Bag-of-Words model Joachims (1997), which has been previ-

ously used in fields such as natural language understanding or computer vision

Cheng et al. (2010); Gilbert et al. (2009) to deal with multiple sources of noise110

and variation. The goal is to analyse the behaviour of both systems and study

their suitability and robustness using datasets with different characteristics in

terms of noise, signal attenuation, presence of artifacts, or the type of acti-

vity being recorded (ictal, inter-ictal, normal with artifacts, etc.). Furthermore,

cross-dataset testing will be employed to ensure that the results are representa-115

tive of the real expected performance. The accuracy of the results obtained by

the proposed system is compared to the performance of a linear classifier and the

state of the art. Our proposal outperforms the most representative and relevant

state-of-the-art works and its performance is stable across datasets. Moreover,

this proposal has been demonstrated to be computationally efficient.120

2. Background

2.1. Wavelet transforms

The analysis of EEG for seizure detection is mostly performed in the time

and frequency domains. The simplest and most straight-forward technique, as

performed by neurophysiologists, is the visual inspection of the EEG time series,125

which does not require any additional manipulation of the EEG data. Additional

information in the time domain can be obtained by means of simple calculations

on the time series, such as the average, median, and standard deviation values.

Nevertheless, it is generally more interesting to analyse transients and changes

in the EEG signals by means of calculating the rate of change, moving average,130

autocorrelations, and autoregressions.

The frequency content of the EEG signals provides very valuable informa-

tion, but it is difficult to extract from the visual analysis in the time domain.
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Moreover, certain manipulations and signal processing techniques, such as filte-

ring, convolution operations, and Fourier analysis, are better addressed in the135

frequency domain.

Wavelet transforms provide the most suitable tool for time-frequency ana-

lysis of non-stationary and transient signals. They can remove noise and reveal

trends, similarities, repeated patterns and discontinuities, to ultimately outline

the occurrence of certain events of interest. The wavelet transform, in contrast to140

Fourier analysis, consists of the decomposition of the original signal into scaled

(stretched or compressed) and shifted versions of the original wavelet waveform,

also known as the mother wavelet. The wavelet transform behaves as a fre-

quency microscope that provides detailed information about different frequency

bands as well as temporal information. Computationally efficient algorithms of145

the Discrete Wavelet Transform (DWT), based on the multi-resolution analy-

sis concept, provide the decomposition of the original signal into low-frequency

approximations and high-frequency detailed coefficients. Iterative decompositi-

ons of the resulting low-frequency approximations provide local detail in certain

frequency bands in the time-frequency domain. The DWT decomposition is150

illustrated in the following example (Figure 1), in which an EEG signal that

contains an epileptic seizure is analysed1. A fourth-order Daubechies with five

levels of decomposition is shown. The approximation A5 and different levels of

detail, from D1 to D5, show the frequency content of the different frequency

bands of interest.155

Figure 1: The 4th-order Daubechies 5-level de-

composition of an EEG signal that contains an

epileptic seizure

The Wavelet transform has been

employed in several previous studies

in the field of epilepsy analysis and

is used for the extraction of features

from EEG data. Table 2 compiles160

some of the references and the type

1This signal corresponds to one channel of the E Set of the University of Bonn dataset

that records epileptic seizure activity.
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Table 2: Wavelet transform implementations in previous studies

Reference Wavelet
Decomposition

levels

Omerhodzic 2010Omerhodzic et al. (2013) 4th order Daubechies 5

Janjarasjitt 2010Janjarasjitt (2010) 25th order Daubechies 5

Adeli 2003Adeli et al. (2003a) 4th order Daubechies Harmonic Wavelet 6

Fathima 2011Fathima et al. (2011) 2nd order Daubechies 4

Husain 2012Husain & Rao (2012) 4th order Daubechies 4

Ataee 2006Ataee et al. (2006) 4th order Daubechies 4−6

Orhan 2011Orhan et al. (2011) 2nd order Daubechies 6

Subasi 2007Subasi & Erelebi (2005) 4th order Daubechies 5

of Wavelet and number of decompo-

sition levels employed. The fourth-

order Daubechies Wavelet with 4 to

6 levels of decomposition is the most165

common choice found in the litera-

ture.

2.2. Bag of Words

The Bag-of-Words (BoW) model was originally proposed in the field of Na-

tural Language Understanding Joachims (1997). However, this field is not the170

only field in which this technique has succeeded. In contrast, it has also been

applied to the computer vision field, for image recognition, in which good per-

formance rates have been achieved Cheng et al. (2010); Gilbert et al. (2009).

Image recognition is not very different from the pattern recognition tasks that

are required for seizure detection based on EEG signal analysis and, in fact, this175

technique has been explored for biomedical time series classification Wang et al.

(2013). They are both digital signals in which the salient points of the signal

serve to identify a sought-after pattern.

The working hypothesis of this study is, therefore, that with some adjust-

ment, the same approach that is applied to Natural Language Understanding180

and Computer Vision can be applied to epilepsy seizure detection. The good
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results obtained in these fields of knowledge can also be reproduced in the field

of EEG analysis for seizure detection. To prove this working hypothesis, a

BoW-inspired system must be implemented and tested to determine whether

the obtained accuracy rates improve on the state-of-the-art results.185

Essentially, the first step of the BoW model consists of calculating an attribute-

value representation, in which each word that appears in the document has an

associated value that reflects the number of times the word appeared in the text.

In the context of EEG analysis, each word is considered to be a feature, and each

document is represented by means of a feature vector. A document is therefore190

described by means of the word distribution, which is used to characterise the

type of content of that document.

The required adjustments are intended to adapt the original approach, in

which words are considered to be representation units, to the approach proposed

here, in which EEG signal segments, or epochs, are equivalent to words in a195

document. Similar to the role that word order plays in documents, the epoch

order can also be considered to be irrelevant and is therefore overlooked.

3. Methods

This section describes the characteristics of the EEG non-linear classifiers

proposed here. Figure 2 outlines the stages that are involved in the process of200

signal characterisation and categorisation for both systems: an SVM classifi-

cation framework and a BoW-inspired methodology that extends the previous

pipeline. Both methods have most of their stages in common. The difference

between the SVM method and the BoW-inspired one is that the codebook gene-

ration stage is omitted for the SVM. The classifier is therefore trained with the205

feature vector set computed after applying the wavelet transform decomposition.

From the seizure detection viewpoint, the process of codebook generation

consists in identifying the different codewords appearing in the different EEG

channels of a given record. Therefore, codewords are the different clusters in

which the feature vectors characterising EEG channels can be grouped in. After210
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(a) using an SVM classifier method and (b) implementing a BoW-inspired method

Figure 2: Proposed EEG classification frameworks

having generated the codebook, the next step consists in obtaining the histo-

gram that characterises the EEG signal channel. In order to do so, the proposal

made here resorts to clustering the feature vector in the optimum number of

clusters in which these data can be grouped in, and then, measuring the distance

to each of the computed clusters. The next step consists in training the classi-215

fier using examples, with segments corresponding to normal activity and those

others corresponding to epileptic activity. The adopted learning strategy uses

a Support Vector Machine (SVM) classifier to compute the final classification

model.

For both systems, different non-linear classifier kernels have been applied to220

compute their accuracy rates. The different kernels are also described in section

3.3.1. Several stages are common to both processes and both systems, as seen

from Figure 2, such as the signal segmentation, the wavelet transform stages

and the adopted learning strategy based on Support Vector Machine (SVM)

classifiers. The stages represented in the figure are discussed in detail in the225

following subsections.

These different stages are grouped into two major processes: training and

testing. First, a learned model is trained using examples of segments that

correspond to both normal and seizure activity. This model is then used in the

testing phase to classify a new, unseen signal.230
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Figure 3: Signal segmentation into 3 second

epochs

In this framework, it is important

to note that each individual signal

channel is considered in isolation and

is split into 3-second epochs, with a

window overlap of one second bet-235

ween epochs (see Figure 3). The accu-

racy rate therefore refers to the num-

ber of epochs that can be correctly identified. This approach is the typical

strategy used in the literature Fathima et al. (2011); Janjarasjitt (2010).

3.1. Feature extraction240

Even though using the raw EEG signal channels as input for the classifier

is possible, the use of these full segments is a poor representation of the input

data. This drawback is due to the large amount of redundant information that

is contained in an epoch and its high dimensionality, which make the learning

and classification task more difficult. It is therefore necessary to find a better245

representation. Feature vector computation is the process of identifying the sa-

lient features of a signal segment and translating them into a quantitative set of

features that characterise that segment. The process of computing these quan-

titative values is not unique; moreover, the performance and accuracy rate of

the process can be greatly affected by the method by which these characterising250

values are selected and obtained.

This work proposes the use of a wavelet decomposition approach to minimise

the amount of information that is required to characterise a segment as well as

to magnify those signal aspects, or features, that are related to the presence of

epileptiform activity.255

Among the different wavelet transform types and decomposition level con-

figurations, this work made use of the Daubechies wavelet Omerhodzic et al.

(2013)]. The clinically and physiologically relevant activity of the brain is fra-

med in the frequency range of 0.3 to 30 Hz. More specifically, brain activity

can be categorised into a set of typical wave types, each of which lies within a260
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Table 3: Decomposition levels and frequency bands

Decomposed signal Frequency bands Decomposition Level

D1 43.4 - 86.8 1 (noises)

D2 21.7 - 43.4 2 (gama)

D3 10.8 - 21.7 3 (beta)

D4 5.40 - 10.8 4 (alpha)

D5 2.70 - 5.40 5 (theta)

A5 0.00 - 2.70 5 (delta)

predetermined frequency band.

The theoretical foundation for identifying those frequency bands out of the

different decomposition levels is derived from Nyquist’s theorem. The frequency

bands of each decomposition level are comprised in the range stated by [fm/2 :

fm], such that fm = fs/2
l+1, where fs is the sampling rate frequency and l is265

the level of decomposition Omerhodzic et al. (2013).

Figure 4: Signal decomposition using the DWT

and feature extraction

Given the dominant frequency

components of the brain signal, the

number of decomposition levels is set

to five Adeli et al. (2003b). The Dau-270

bechies 4 (db4) wavelet transform is

applied, decomposing the signal into

details D1-D5 plus one final approxi-

mation A5, as listed in Table 3.

However, the number of values275

that correspond to these coefficients is

still too large for the purposes of a fe-

ature extraction process, which could

be affected by the curse of dimensionality. For that reason, rather than using all

of the coefficient values, the coefficient set dimensionality is reduced by selecting280

a small number of values that is believed to be the most characteristic set. Ba-
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sed on Kandaswamy et al. (2004); Gotman (1990), four statistical operations

are performed over the original coefficient value set, and the following values

are selected: the maximum value; the minimum value; the mean value; and the

standard deviation value.285

The complete feature extraction process is visually depicted in Figure 4.

First, the Daubechies wavelet transform is used to decompose a given segment

of the original signal into the 6 frequency subbands D1-D5,A5. Then, for each

band, 4 statistical values are generated form all the coefficients comprised in

each band, i.e. maximum, minimum, mean and standard deviation. The re-290

sulting feature vector xi ∈ <24 is composed of 24 values, with four statistical

values for each of the six wavelet coefficient sets that correspond to the different

decomposition bands.

3.2. Bag-of-Words feature representation

BoW is proposed in this paper as one of the main novelties in the EEG295

analysis field. BoW has shown its excellent properties in the fields of computer

vision and text analysis to automatically learn and extract discriminative featu-

res in complex data, where manual feature selection or manually design features

are not possible or provide little discriminative properties. This is largely the

case of EEG where the interesting neural activity can be difficult to describe,300

may appear in many different varying shapes or may be largely hidden by noise.

Features extracted from the EEG signals in the literature are largely based on

simple statistics, being wavelet features one of the most advance techniques. In

this sense, BoW can provide a relevant framework to the field to improve the

current state of the art.305

This subsection describes the processes of clustering and codebook genera-

tion that are involved in the BoW-inspired system. From the BoW perspective,

EEG signals play the role of a text document in which each signal segment,

quantised as a feature vector, can be characterised as a set of words in a specific

configuration. The aim of this new feature representation is to better address310

the non-linear nature of the data by mapping to a new representation or space

13



where the classifier can be better applied. The BoW representation can be

therefore understood as a non-linear transformation function.

3.2.1. Codebook generation

The first step is the generation of words to be used to represent the initial315

signal. This process is called codebook generation and consists of identifying

the most common and repetitive patterns, or words, that appear in a set of

signals, or document. Thus, each word represents a frequent and characteristic

spectro-temporal feature that can be used to codify our signal, to obtain the

most representative groups. Under this definition, words are the different cluster320

centers ck in which the feature vectors of the EEG segments can be grouped,

and the codebook C, or vocabulary, is the entire set of words that can appear

in the whole dataset.

Clustering

Clustering the feature vectors according to their common features allows us325

to obtain those representative words that repeat over the dataset. This cluste-

ring also removes undesired feature value variations due to noise in the signal

because each group will allow a certain variability or deviation from the cluster

center. At the same time, the outlier segments that are not very representative

will be filtered because they will not have sufficient critical mass to compose330

their own cluster. This process can be considered equivalent to the elimination

of the typos from the text.

Two different clustering techniques were tested in this paper, and an empiri-

cal comparison is presented in the results section. No assumption regarding the

number of clusters, their allowed variability or the memberships of the feature335

vectors to the hypothetical words was made.

The first clustering approach used in this work is k-means clustering Ka-

nungo et al. (2002). In this algorithm, initial seeds for each of the K clusters

are initialised to a random sample in the dataset. Then, an iterative process is

applied to refine their positions and characteristics until convergence is achieved.340

At each iteration, each sample, defined by its feature vector xi∀i ∈ dataset, is

14



assigned to the closest cluster, and the cluster center ck is recalculated as the

average of all of the samples assigned to it.

ck =
1

nk

nk∑
i=1

xi (1)

where nk is the number of data samples that correspond to cluster k.

In contrast to previous work Gotman (1990), in our implementation, the345

number K of clusters is not predetermined beforehand but is calculated for each

new training set under consideration. The implemented approach is intended

to maximise the distances among the clusters, the inter-class distance, while

minimising the distance between the elements that are inside a cluster, the

intra-class distance:350

Interclass(K) =

K∑
k=1

K∑
i=1,i6=k

‖ ci − ck ‖2 (2)

Intraclass(K) =

K∑
k=1

1

nk

nk∑
i=1

‖ xi − ck ‖2 (3)

To accomplish this goal, we predefine a maximum number of clusters, which

ranges from 1 to 8 clusters, and we evaluate the optimisation function for each

of the considered numbers of clusters:

arg max
x

{
Interclass(K)− Intraclass(K)

max(Interclass(K), Intraclass(K)

}
(4)

However, although k-means works well with isolated and compact clusters

Jain et al. (1999), its performance decreases for a more complex clustering space.355

In addition, another disadvantage of the k-means algorithm is its stochastic ini-

tialisation, which results in a high sensitivity to the selection of the initial seed.

As a result, the clustering can converge to a local minimum of the optimisation

function if the initial partition is not properly chosen Jain et al. (1999).

To obtain a more robust grouping, a second clustering algorithm has been360

implemented and tested, based on the expectation−maximization (EM) algo-

rithm McLachlan & Krishnan (2007). EM is an iterative methodology that
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allows finding the most likely estimates of parameters in statistical models. An

EM iteration alternates between performing an expectation (E) step, which cre-

ates a function for the expectation of the log-likelihood as evaluated using the365

current estimate of the parameter k, and a maximisation (M) step, which re-

computes the parameter k that maximises the expected log-likelihood found in

the E step. This framework allows us to estimate and fit a Mixture of Gaussian

(MoG) φ to our data x and calculate the associated parameters, the mean and

covariance ck,
∑

k, while minimising the error. The minimisation of the error is370

equivalent to maximising the probability of expressing our data as a function of

the MoG.

p(x|φk) ∝ e−(x−ck)
T ·

∑−1
k ·(x−ck) (5)

This equation 5 defines a probability that decreases exponentially with the

Mahalanobis distance of a given data point x to a Gaussian φk, where

φk = N(ck,
∑
k

) (6)

being N() a Gaussian or Normal distribution.

In our approach, the number of clusters k is automatically learned during the

clustering process by applying the Figueiredo-Jain GMM automatic estimation375

Figueiredo & Jain (2002).

The strength of EM is that it can derive elliptical clusters (Gaussians) instead

of spherical clusters that are estimated by k-means, and thus, it is more general

and versatile when adapting to complex clustering spaces. Moreover, by inte-

grating the automatic estimation of the number of clusters K in an iterative380

process, not only the computational cost is reduced by avoiding repetitions of

the clustering process a number of times but also the sensitivity to the stochastic

initialisation is removed.

The resulting vocabulary C will be the set of cluster centers that result from

clustering the training set:385

C = {ck}k∈K (7)
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in the case of k-means clustering, or by their centroids and their covariances:

C = {ck,
∑
k

}k∈K (8)

in the case of the EM algorithm.

3.2.2. Bag-of-Words representation

Once the vocabulary has been defined, the next step consists of redefining

the feature vectors, which are originally composed of statistical values derived390

from the wavelet decomposition coefficients, as a function of our vocabulary.

This codification or quantisation process generates a new descriptor, which is

composed of words or bag of words and is finally fed into the classifier.

The new chosen descriptors represent the feature vector in terms of its dis-

tance to each of the words or cluster centroids. Since clusters are characterised395

differently depending on the applied clustering technique, two different distances

were used: Euclidean distance for k-means clusters and Mahalanobis distance,

for the EM clusters.

After the generation of the descriptor, the aforementioned feature vector of

24 values is now reduced to a new vector whose dimensionality depends on the400

optimum number of clusters for that specific signal. This arrangement can be

seen as a non-linear transformation of the data.

3.3. Classification

Finally, the chosen feature representation, either the statistical values that

result from wavelet decomposition or the BoW representation, are fed into a405

classifier that distinguishes among the different classes of samples. In our sei-

zure detection problem, this classification is performed to distinguish normal and

seizure EEG signals, and thus, a binary classifier is used (normal/epileptic). In

our implementation, an SVM paradigm has been used Vapnik (1995); Janjara-

sjitt (2010); Kıymık et al. (2005). The choice of SVM in comparison with more410

traditional approaches, such as regression, neural networks and discriminant

analysis (DA) Ripley & Hjort (1995), is supported by the reported advantages
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of the SVM Auria & Moro (2008): it does not require regularity in the data and

thus can be applied to data that follow an unknown distribution; it delivers a

unique solution because the optimality problem is convex in contrast to neural415

networks; it can be easily extended to non-linear non-parametric problems by

replacing the linear kernel; it scales relatively well to high-dimensional data;

and the trade-off between the classifier complexity and error can be controlled

explicitly.

To classify a new test descriptor, the SVM should be already trained in420

a supervised mode with a training set that is composed of both positive and

negative examples of normal and epileptic EEG. As an output of the training

phase, an hyperplane that is capable of separating the two classes with the

maximum margin, called the maximum-margin hyperplane, is obtained. The

position of a new test descriptor with regard to this hyperplane will be the425

criterion for assigning it an identity as normal or epileptic.

3.3.1. Non-linear classification

For linear data, a hyperplane can be used to split the data. However, the

assumption of linearity is often wrong (see Figure 5). In these cases, the dataset

is inseparable in a linear space, and the classification fails. Although the deci-430

sion of taking a linear classifier is supported by the literature Gotman (1990);

Orhan et al. (2011), where little attention has been paid to the classification

technique to be applied, and linear classifiers have reported excellent results in

EEG analysis, our working hypothesis about the non-linearity of the data will

be evaluated by proposing the usage of non-linear SVM.435

An extension of SVM was developed Husain & Rao (2012) to solve non-

linear problems by the “kernel trick”. Given a training set F = {f{xi}, y(xi) ∈

{−1, 1}}i∈dataset, where f is the BoW descriptor that corresponds to the training

sample i and y is its class, this methodology applies a kernel function K to the

descriptors, which maps them into a higher dimensional non-linear space by440
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means of a non-linear function ϕ.

f(x), f(x′)← K (f(x), f(x′) = ϕ (f(x)) , ϕ (f(x′))) (9)

In this new space, the data are linearly separable, and the SVM framework

can be applied. This process is illustrated in Figure 5.

Figure 5: Non-linearly separable data (left) and its mapping into a linearly separable space

through a non-linear kernel (right)

Different kernel functions can be applied to obtain the best possible transfor-

mation, and even a function that is personalised to the data can be used. Among445

the most common transformations are Cristianini & Shawe-Taylor (2000).

Polynomial of order d:

K (f(x), f(x′)) = (f(x) · f(x′))
d

(10)

K (f(x), f(x′)) = (f(x) · f(x′) + 1)
d

(11)

Gaussian Radial Basis Functions (RBF):

K (f(x), f(x′)) = exp

(
−‖f(x)− f(x′)‖2

2σ2

)
(12)
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Perceptron multi-layer:

K (f(x), f(x′)) = tanh (τ · f(x) · f(x′) + c) (13)

4. Results

This section describes the results that were obtained from testing the propo-

sed system in three different datasets, which encompass situations with artifacts,

different noise levels, highly attenuated signals and different activity variations.450

This section is intended to evaluate both types of systems under different cir-

cumstances, to determine the system that better suits the characteristics of a

real scenario, and to compare it against the state of the art.

The proposed system has been implemented in Matlab, using the gmmbayestb-

v1.02 for automatically learning the number of clusters based on the Figueiredo-455

Jain GMM automatic estimation Figueiredo & Jain (2002). Additionally, we

have employed the Matlab support for the SVM classifier and its different ker-

nels.

4.1. EEG Data

Different datasets have been used in this work for training and testing pur-460

poses. First, the system was trained using the data described in Andrzejak

et al. (2001), which is an open-access dataset made available by the University

of Bonn. This dataset comprises a series of clean EEG signal channels that were

recorded from both healthy and epileptic patients during ictal and inter-ictal pe-

riods. It is organised into five different sets, which are labeled from A to E. The465

A set records eyes opened and healthy patient activity, and the B set records

the activity with eyes closed and healthy patients; the C set records inter-ictal

activity from the healthy part of the brain, the D set records also inter-ictal

activity but from the epileptic hemisphere of the brain, and finally, the E set

records epileptic seizure activity. This work concentrates on sets A and E for470

2http://www.it.lut.fi/project/gmmbayes/doc/gmmbayestb-v1.0/gmmbayestb-v1.0/
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learning by example, following a similar procedure as in other approaches in the

literature Janjarasjitt (2010); Fathima et al. (2011). Each set contains 100 indi-

vidual channels of 23.6 seconds, at a sample rate of 173.6 Hz. This dataset is an

artifact-free dataset, which was recorded with a 128-channel amplifier system.

Each dataset records the activity of 5 different patients. In total, sets A and E475

contain a total of 1200 segment each, considering here 3-second segments. Half

of these segments, randomly chosen, has been used for the codebook generation

as well as for the SVM classifier model training.

Initially, the same University of Bonn dataset was used for testing using the

remaining 50%. In addition, to obtain accurate results that are closer to a real480

scenario, where the system cannot be retrained for each new environment or

patient, two other datasets are used as cross-dataset evaluation. The testing

stage is extended to additional datasets that were not considered during the

training stage or adapted to them. This allows us to obtain a more reliable

evaluation of the real performance of the method. Moreover, it is expected that485

these datasets contain different variations, noise and artifacts from the ones used

for training.

This work therefore resorts to a second only-testing dataset, which was made

available by the Epilepsy Center of the University Hospital of Freiburg, Germany

Winterhalder et al. (2003). This dataset records data from 21 patients who490

suffer from medically intractable focal epilepsy. The data are labeled according

to the type of activity they record, which conforms to our set of labels I and

J. Moreover, each labeled activity is stored in a single file in which the signal

channels are differentiated. For each patient, this dataset provides records of

2-5 hours of ictal activity, sampled at a frequency rate of 256 Hz. We have495

employed a reduced version of the dataset that records 3693,2 seconds of ictal

activity. It should be highlighted that this dataset contains artifact-free data

that were recorded from intracranial sensors.

Finally, a third dataset is also used for testing exclusively. The purpose of

this third only-testing dataset is to consider real EEG data that was recorded500

from non-ideal environments in which there were numerous artifacts and at-
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tenuated signals. Such factors are missing in the two previous datasets. This

last source of EEG data used in this work comes from the Hospital Regional

Universitario Carlos Haya (HRUCH) Malaga, Spain. EEG data were recorded

with XLTEK Neuroworks at a sampling rate of 512 Hz, although the signals are505

band-pass filtered in the range of 2 to 200 Hz. This dataset is comprised of four

sets, labeled F, G, H, and K (to continue with the University of Bonn nomencla-

ture). The F set records the activity of a healthy patient, although with many

artifacts (due to cable disturbances and blinking). The G set records inter-ictal

activity, also with many blinking artifacts. These two sets are sampled at a fre-510

quency of 511.99 Hz. The H set records a partial seizure, recording from both

the healthy and the epileptic part of the brain. The seizure takes place at the

left temporal lobe of the brain. The data were sampled at a frequency of 200

Hz. The K set records a tonic-clonic general seizure, also downsampled at 200

Hz. These three sets sum to a total of 277,71 seconds of recording.515

Because of the many artifacts and attenuated signals, the HRUCH dataset

can be considered to be the most complex dataset, and it can provide a clear

idea of how good is the performance of the proposed system outside of the lab, in

a real environment. The data, as provided by the HRUCH dataset, are the type

of data that a framework for seizure detection will be required to address. Table520

4 summarises the most relevant features of the sets used for testing purposes.

In summary, out of the 21728 segments of 3 seconds used in this work, 600

have been used for training purposes (half of the A and E sets). For those used

for testing, 10374 segments correspond to normal activity and 10154 segments to

epileptic activity. The system performance has been tested with a total amount525

of 4065,31 seconds, 215,81 seconds of normal activity (label 1) and 3849,5 of

seizure activity (label 2). No additional filters have been applied to any of the

datasets, apart from the anti-aliasing filter applied by the equipment used to

record the University of Bonn and HRUCH datasets. To address the different

frequency rates that range from 173.6 to 511.99 Hz, all of the datasets are530

automatically resampled at 173.6 Hz, the frequency of the training set.
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Table 4: Datasets used in this work

Set label Source Number of segments Time in seconds Label

A University of Bonn 600 11,8 1

B University of Bonn 1200 23,6 1

C University of Bonn 1200 23,6 1

D University of Bonn 1200 23,6 1

E University of Bonn 600 11,8 2

F HRUCH 345 7,61 1

G HRUCH 5829 125,60 1

H HRUCH 894 39,5 2

I Freiburg 4431 3600 2

J Freiburg 1920 93,2 2

K HRUCH 2309 105 2

4.2. Qualitative analysis of the data

PCA projections of the data are computed and represented in Figure 6 to

graphically demonstrate that the data from different datasets (i.e., the different

modalities present in the data, in different colours) are not linearly separable.535

This can be noticed in Figure 6b, where the data and modalities seem hard to

separate with linear and simple classifiers in this original space, while non-linear

separation using kernels may give better results.

By displaying the same PCA representation of the data space but this time

after BoW has been applied (see Figure 6d), a more linear space can be obser-540

ved where modalities are less mixed. Therefore, it can be inferred that BoW

helps to linearise the space, simplifying the separation process performed by the

classifier.

Similar conclusion can be extracted by comparing Figures 7a and 7b, which

show the same projections but now differentiating the healthy and epileptic545

samples by class rather than every single modality.

Please note that, although these figures are only indicative because no PCA
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is actually performed by the classifier, it gives an indication of the distribution

of both the input feature space and the BoW transformed feature space. Only

two dimensions are represented to facilitate human visual interpretation of the550

data.

(a) PCA projection of all of the training

and testing samples for the wavelet feature

representation

(b) Zoomed area in the green circle

(c) PCA projection of all of the training

and testing samples for the BoW feature

representation

(d) Zoomed area in the green circle

Figure 6: PCA projection of all of the training and testing samples into the 2 most significant

PCA dimensions for the (a,b) wavelet feature and (c,d) BoW feature representation. The right

column shows a zoom of the area in the green circle. Colour-dataset correspondence legend:

red dot=A, green=E, blue=F, black=G, cyan=H, yellow=I, magenta=J, red cross=K

4.3. Clustering evaluation

The first implementation decision to be evaluated is the clustering metho-

dology to be applied to generate the codebook. Both k-means and EM were

evaluated on the 3 testing sets (Bonn, Freiburg and HRUCH). The empirical555
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(a) (b)

Figure 7: PCA projection of all of the training and testing samples (zoom versions in Figure

6) into the 2 most significant PCA dimensions for the a) wavelet feature and b) BoW feature

representation. Blue indicates healthy samples, while red indicates seizure samples

results confirm clearly the theoretical advantage of using EM instead of k-means

(see Figure 8).

Figure 8: Average accuracy rate obtained by BoW over the whole testing set (A to K) by

using K-means and EM clustering

Since EM relies on a stochastic process to initialise the clustering process, an

experiment was performed to evaluate the impact that the selected initial cluster

might have in the overall performance of the system. Quantitative experiments560

in section 4.5 were repeated 10 times for the BoW approach (SVM-only appro-
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Table 5: Standard deviation for accuracy results after 10 iterations

STD for BoW

A SET E SET

No D1 band 0,0002635 0,00932274

Quadratic kernel 0 0,00811947

Polynomial kernel 0,00035136 0,00403399

RBF kernel 0,00035136 0,00901815

Perceptron kernel 0,0002635 0,01237935

aches do not use the clustering) for sets A and E and the standard deviation

(STD) between experiments was measured (see Table 5). The average stan-

dard deviation (STD) is 0.0044 for BoW, which represents an almost negligible

influence of this initialisation on the final performance of the system.565

4.4. Window size evaluation

Another parameter that must be verified is the size of the signal segment or

epochs into which the EEG channels have been split. The 3-seconds window size

has been empirically demonstrated by analyzing the performance of the system

under different window sizes. The following graphics summarise the variations570

in the accuracy rate, which were experienced by varying the size of the sliding

window, from two-second windows to five-second windows. For the purpose

of conciseness, only the SVM and BoW implementation of the RBF kernel is

presented in this paper. Because it will be justified later, on average, the RBF

kernel provides better results than any of the other implementations, and for575

that reason, only its value is represented here.

Figure 9 summarises the accuracy rates that are obtained by systems testing

the different sets considered here. Although the results are not totally conclu-

sive, it can be observed that the maximums are normally achieved in 3 or 4

seconds. This timing is especially notable for sets A and E, where a maximum580

accuracy rate of 100% is achieved.
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Figure 9: Classification accuracy evolution with the sliding window size, for tested size values

of 2, 3, 4 and 5 seconds. The solid blue line represents the SVM-only system results, and the

dashed green line represents the BoW+SVM system results
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Table 6: Accuracy results for the different experiments that were conducted

System BoW(%) BoW (%) BoW (%) BoW (%) BoW(%) SVM(%) SVM (%) SVM (%) SVM (%) SVM (%)

Set Kernel
Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

A 100,00% 100,00% 100,00% 100,00% 82,00% 100,00% 100,00% 100,00% 100,00% 82,00%

B 93,00% 93,00% 89,00% 93,00% 98,00% 79,00% 78,00% 78,00% 77,00% 98,00%

C 99,00% 98,00% 98,00% 98,00% 71,00% 90,00% 91,00% 92,00% 92,00% 71,00%

D 86,00% 79,00% 84,00% 86,00% 75,00% 78,00% 50,00% 80,00% 80,00% 75,00%

E 95,00% 96,00% 100,00% 97,00% 79,00% 100,00% 100,00% 100,00% 100,00% 79,00%

F 70,00% 73,00% 77,00% 73,00% 78,00% 75,00% 73,00% 72,00% 72,00% 78,00%

G 93,00% 59,00% 66,00% 58,00% 82,00% 22,00% 30,00% 36,00% 44,00% 82,00%

H 84,00% 80,00% 27,00% 84,00% 24,00% 46,00% 31,00% 42,00% 87,00% 24,00%

I 100,00% 93,00% 29,00% 100,00% 100,00% 100,00% 88,00% 87,00% 100,00% 88,00%

J 99,00% 91,00% 33,00% 100,00% 100,00% 98,00% 47,00% 99,00% 100,00% 100,00%

K 73,00% 77,00% 26,00% 81,00% 31,00% 41,00% 41,00% 19,00% 80,00% 31,00%

Mean 90,21% 85,35% 66,26% 88,15% 74,57% 75,35% 66,10% 73,12% 84,72% 73,46%

4.5. Quantitative results

An exhaustive evaluation of each of the proposed methods -with and without

BoW, with and without different non-linear kernels- was performed. The accu-

racies of the classification results obtained for different experiments are depicted585

in Table 6. Since the models are trained using half of the A and E datasets,

first and fifth lines in the table can be considered intra-dataset while all others

are cross-dataset experiments. Parameters are kept the same for all datasets.

5. Discussion

Several conclusions can be observed from Table 6. First, we can see how BoW590

drastically improves the accuracy of the system, on average and for each set,

with regard to the equivalent model of SVM. This improvement is because the

BoW strategy creates a more discriminative space in which the classification can

be performed, while focusing on the key features. This arrangement is shown in

Figure 6, where all of the positive and negative samples of all (A to K) datasets595

are projected into the 2 most significant dimensions of a PCA space.

Second, a similar accuracy to BoW can be obtained with a more conventional

approach and a careful selection of non-linear classifiers in the same feature

space. This approach gives lower, but similar, accuracy on average and provides
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some of the best possible accuracies on the individual sets (E, J, H). The good600

performance of the RBF kernels, especially in the SVM version, is supported

theoretically because of the fact that if the kernel used is a Gaussian RBF, then

the resulting feature space is a Hilbert space that has an infinite dimension.

In this space, our maximum margin classifiers are well regularised and large

or even infinite dimensions do not spoil the results, which mitigates the curse605

of dimensionality. However, it is important to note that there is a drop in

SVM-RBF performance with respect to some of the noisiest datasets (G). This

drop could suggest the convenience of the BoW approach for addressing the

(considerably) more difficult conditions.

Moreover, the use of non-linear classifiers for BoW methods is revealed to610

be unnecessary because similar results are obtained for all of the possible ker-

nels, except for the 3rd-order polynomial approach, in which overfitting to the

training seems to have happened. This redundancy occurs because BoW has

already reduced significantly the dimensionality and non-linearity of the feature

space as shown in Figure 7b and makes the use of non-linear kernels in the615

classifier redundant. This is a significant advantage since selecting a suitable

kernel is not trivial and relies largely on empirical tuning as shown in Burges

(1998) and in our own exhaustive experiments.

In the overall and considering all datasets and the cross-dataset setup, com-

prising different variations and artifacts, it can be observed how the BoW met-620

hod combined with an SVM classifier with a linear kernel yields a mean accu-

racy of 90,21%. BoW implementation provides the best results on average when

compared to the equivalent linear or non-linear SVM implementation. This is

justified by the success of BoW in creating a more discriminative and linear

space in which the classification of the EEG data can be better performed. The625

use of BoW also avoids the non-trivial selection of a kernel and parameter tuning

that is required in the SVM classifier.
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Table 7: Accuracy means for A and E sets

System BoW(%) BoW (%) BoW (%) BoW (%) BoW(%) SVM(%) SVM (%) SVM (%) SVM (%) SVM (%)

Set
Kernel Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Linear

(dot product)
Quadratic

Polynomial

order 3
RBF Perceptron

Mean A and

E sets 97,59% 98,09% 99,84% 98,38% 80,60% 99,84% 100,00% 100,00% 100,00% 80,60%

5.1. Comparison with the state of the art

Two different comparisons with state-of-art methods were performed. In the

first comparison, results reported by state-of-art methods on the public A and E630

dataset are compared against or best performing methods. These dataset are the

most widely used in the literature and for that reason they are commonly used as

reference framework Chen (2014). Our best performing methods were chosen by

selecting a BoW and a non-linear SVM systems from Table 7, which summarises

the accuracy rates obtained for the different techniques when applied only to635

sets A and E.

Table 8 compares the accuracy results that are obtained from state-of-the-art

methods with the ones in Table 7 for sets A and E (normal and ictal activity)

according to the reported results in their corresponding papers. Different ap-

proaches are implemented by the studies listed in this table, such as Neural640

Networks, Wavelet analysis, or a different implementation of the BoW model

Wang et al. (2012). From the observed data, it can be concluded that the current

implementation using both systems, BoW and SVM, achieves state-of-the-art

performance.

Although these results are important as a reference against the state of the645

art, there are some limitations in this comparison. First, different authors used

different experimental setups and training/testing splits, which makes those

numbers not directly comparable. In this regard, in order to measure the im-

pact that both the training/testing split and the particular subset selected for

training may have in the final results, an additional experiment was carried out,650

in which the training and testing configuration is modified. A leaving-10%-out

cross validation approach was implemented in which the experiment was run
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Table 8: Comparative analysis with previous work using the University of Bonn Dataset (CV:

cross validation)

Reference Accuracy (%) Training/testing Setup

Polat and Gulness Polat & Güneş (2007) 98.72 5 and 10 fold CV

Guo et al. Guo et al. (2009) 99.6 50-50

Wang et al. Wang et al. (2012) 99.5 10 fold CV

Janjarasjitt et al. Janjarasjitt (2010) 97.6 66-33

Husain et al. Husain & Rao (2012) 98.2 60-40

Fathima et al. Fathima et al. (2011) 99.8 66-33

Chen et al. Chen (2014) 100 50-50

Übeyli Übeyli (2010) 99.56 50-50

This work:

BoW + SVM

Non-linear SVM (RBF kernel)

99.85

100
50-50

10 times. With the obtained accuracy, the STD was calculated, obtaining a

mean value of 7.3483e-04 (±0.07%) for the BoW and 2.2631e-04 (±0.02%) for

the SVM. This variation may imply a crucial difference between being the best655

performing method or not.

As a second limitation, this single dataset only contains a type of variation

in the epileptic activity, which implies a simple problem and explains the high

accuracy rates obtained. Finally, since authors only report results on these

datasets or retrain for each dataset, there is a risk of overfitting which means660

that the reported result may be artificially high and not a true reflection of

the real performance. Very little discussion, if any, is provided on those papers

regarding the required tuning of these methods and their parameters to reach

those results. This issue also arises in the adjustment of our proposed methods,

since by selecting the best methods for A and E datasets in Table 7 we are not665

necessarily taking the best overall method 6, and their performance will drop

when evaluated under more challenging conditions: BoW+Polynomial kernel
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drops from 99.84% to 66.26% and the SVM-RBF drops for 100% to 84.72%.

In order to provide a better and more reliable comparison, a new set of ex-

periments were performed in which some representative and up-to-date works670

of the state of the art have been implemented and evaluated in the same ex-

perimental setup, including cross-dataset evaluation, and in more complex and

realistic datasets with the presence of noise and artifacts. For instance, our data-

sets consists of intracranial data that is characterised by high-amplitude signals

with low noise, and a different dataset was obtained from a real scenario, in675

which the EEG signals that were recorded from the scalps were considerably

attenuated. No other state-of-the-art methods have been tested under those

conditions, and few have followed our approach of training with a completely

different dataset from the testing one. This testing strategy proves the robus-

tness of our methods against different patients, capturing device-related and680

environmental changes.

Evaluation was performed focusing on cross-dataset experiments, in which

the system is trained on the standard public set and evaluated in the other

without adaptation or tuning. Thus, training was performed using half of the

segments in A and E datasets, whereas testing was carried out on all other685

segments and datasets. The main reason is to demonstrate that accurate results

were not dependent on which dataset was used to train the system and the

reported results are a better reflection of the performance in realistic scenarios.

We have selected four of the most representative works of the state of the

art. The method “DTCWT+SVM” Chen (2014) proposed the use of a novel690

approach based on the use of a dual-tree complex wavelets (DTCWT) combi-

ned with an SVM classifier. The method labelled PE+SVM Li et al. (2014)

employs permutation entropy and an SVM classifier to explore changes in the

EEG. The method labelled as DWT+KNN Guo et al. (2011) applies genetic

programming to a reduced dimension feature vector obtained after a discrete695

wavelet transform (DWT) with the purpose of improving the discriminative per-

formance of K-nearest neighbour (KNN) classifier. Finally, the method labelled

as DWT+ANN Tzallas et al. (2007, 2009) proposes the use of time-frequency
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Table 9: Comparative analysis with previous work using the complete dataset space employed

in this work

A-E sets (University of Bonn dataset) FGHK sets (HRUCH dataset) IJ sets (Freiburg dataset)

Method

Set
Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1

BoW+SVM 94,68% 70,06% 94,00% 80,29% 81,64% 79,24% 74,49% 76,79% 99,12% 100,00% 99,38% 99,69%

DTCWT+SVM Chen (2014) 83,60% 57,26% 71,00% 63,39% 60,37% 100,00% 20,78% 34,41% 42,14% 100,00% 41,18% 58,33%

PE+SVM Li et al. (2014) 70,93% 11,36% 14,33% 12,68% 40,26% 45,81% 64,99% 53,74% 8,41% 100,00% 6,42% 12,07%

DWT+KNN Guo et al. (2011) 91,00% 52,91% 100,00% 69,20% 68,02% 82,89% 52,40% 64,21% 100,00% 100,00% 100,00% 100,00%

DWT+ANN Tzallas et al. (2007) 90,55% 51,68% 100,00% 68,14% 72,34% 96,59% 44,23% 60,68% 98,65% 100,00% 99,17% 99,58%

distributions with an artificial neural network (ANN) classifier. Since no im-

plementation was provided by the authors, we implemented them keeping their700

parameter setting and configuration as closed as possible to their specificati-

ons. Whenever there were missing details regarding the implementation, the

configuration details of our system were adopted to ensure a fair comparison.

Similarly, the experimental setup and training/testing split used is identical for

all compared methods.705

Table 9 presents the obtained results for all the datasets used in this work,

including our private datasets. Accuracy (Acc), precision (Prec), recall and F-

measure (F1) are used as evaluation metrics. Table 10 summarises the mean

F1-measure obtained for each of the evaluated methods across the three different

datasets.710

From the obtained results, it can be concluded that our method outperforms

the other methods in almost all cases, with the exception of the Freiburg dataset,

in which the results obtained are very similar to the best result reported in

literature. However, the excellent performance of all methods when using the

Freiburg dataset, which only contains intracrannial ictal (positive) segments,715

may indicate the simplicity of this set and/or the particularities of intracrannial

ictal cases. By considering all dataset together (see Table 10), we can conclude

that our method is more reliable and robust since it does not depend on the

characteristics of the signal to be classified (intracrannial or scalp, noisy or

noise-free and with artifacts or artifact-free).720

5.2. Computational efficiency
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Table 10: Mean F1-measure for the evaluated methods

Method Mean F1-measure Standard Deviation

BoW+SVM (Ours) 85,59 % 12,33 %

DTCWT+SVM Chen (2014) 52,04% 15,47 %

PE+SVM Li et al. (2014) 26% 23,88 %

DWT+KNN Guo et al. (2011) 77,80% 19,38 %

DWT+ANN Tzallas et al. (2007) 76,13% 20,64 %

Figure 10: Training time of BoW+LinearSVM

(blue) and SVM-RBF (red) systems and their

trend with the number of training samples

As additional advantage regarding

the computational cost (see Figure

10), BoW reduces the feature vector

dimension. This reduction makes ea-725

sier the convergence of the classifier,

which results in a lower training com-

putational cost, having a more notice-

able effect when the number of availa-

ble samples increases. Both proposed730

systems have equivalent testing costs.

6. Conclusions

This work presents two systems

for the automatic analysis of EEG recordings, which aim toward epilepsy sei-

zure detection. As the first contribution, one of the proposed systems consists735

of a non-linear implementation of a Support Vector Machine (SVM) classifier

that makes use of well-known techniques and non-linear kernels to optimise the

feature extraction and learned classification model. The second contribution is

inspired by a successful model for Natural Language Understanding and Com-

puter Vision, known as Bag-of-Words (BoW), which is adapted to the field and740

added into the framework.

The proposed systems were validated in a wide spectrum of data, including
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public standard datasets and complex private datasets, in which different type

of activities, noise and artifacts appear. Our proposed system performs at state-

of-art level when evaluated in standard datasets under an intra-dataset setup.745

More importantly, cross-dataset experiments have been used to evaluate the

performance of the proposed BoW approach against some of the most relevant

and representative state-of-the-art methods for all the datasets considered in

this work.

The main advantage of the proposed solution consists in its robustness to750

real-environmental conditions, as demonstrated by the performance results. In

terms of computational cost and, without having carried out any optimisation

works, we can also highlight as an additional advantage the reduction of the

feature vector dimension carried out by the BoW. This reduction makes easier

the convergence of the classifier, which results in a lower training computational755

cost, having a more noticeable effect when the number of available samples

increases.

The results prove, as main advantage, the robustness of our method to real-

environmental conditions without having carried out any optimisation works.

The robust performance of the BoW implementation when facing these types760

of realistic EEG signals suggests the suitability of this model for deployment in

real hospital environments to reduce the bottleneck of EEG analysis in epilepsy

diagnosis stage.

As future work we aim to evaluate our system for automatic analysis of long

EEG test, such as those of sleep deprivation, which currently relies on specialists765

supervising the testing results. This will require the introduction of time-series

modeling in the BoW representation since our current implementation of BoW

fails to represent the underlying temporal and causal information that is inherent

to time series such as EEG signals and that may be needed to detect more

complex and subtle neural activity. Additionally, due to the computational770

efficiency of the proposed method, we will work on the implementation of a

hardware-specific version of the algorithm for FPGAs.
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