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Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons.

However, their electric field profiles are markedly different, having additional extrema on the

wings of the standard bipolar structure. This new concept was recently pointed out in the literature

for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an

artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are

likely to occur in space plasmas. Further, a methodology is given to delineate their existence

domains in a systematic fashion by determining the specific limiting factors. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4775085]

I. INTRODUCTION AND MOTIVATION

Nonlinear solitary waves (often called solitons even if

the required mathematical conditions are not met) occur in

various physical contexts.1 Their first (historical) mathemati-

cal description showed that weakly nonlinear solitary waves

on shallow water preserved their shape through a balance

between nonlinear steepening and dispersion, and even

maintained their shape after mutual interactions (collisions),2

earning them later the name of “solitons,”3 to emphasize

their particle-like character.

Soliton research in plasmas is an old topic.4 Our work

will focus on fully nonlinear solitary electrostatic structures

in multifluid plasmas. Adopting a (by now widely used)

stationary-profile traveling coordinate transformation, fluid

plasma models were originally associated with fully nonlin-

ear electrostatic, acoustic-type solitons via Sagdeev’s semi-

nal work.5 This reduces the fluid equations, together with

Poisson’s equation, to a pseudomechanical energy-balance

equation, involving a pseudopotential SðuÞ, where u is the

electric potential. An equivalent fluid dynamical analysis has

also been used.6,7 Integration then leads to hump or dip soli-

ton profiles for the electric potential, and thus to bipolar

forms for the electric field, E. One may also obtain a kink in

u, known as a double layer. The soliton/double layer model

has been valuable when interpreting observations in both

space8–12 and the laboratory.13–15

This framework has recently been extended to embrace

a new development, namely, the concept of electrostatic

super solitary waves (or supersolitons for short). Considering

five-species plasmas, Dubinov and Kolotkov16,17 introduced

the nomenclature and presented examples of such structures.

Although, superficially, the potential profiles of supersolitons

might look like traditional solitons, there is a marked differ-

ence when their electric fields are plotted. The bipolar struc-

tures calculated in most standard scenarios and reported

in numerous space environments18,19 are now seen to be

“embroidered” with local extrema (“wiggles”). This is illus-

trated in Fig. 1 with an example of a standard soliton com-

pared to a supersoliton, and their associated electric fields,

more details of which will be given below. The presence of

subsidiary maxima on the wings of the bipolar structure pro-

vides a signature that should enable supersolitons to be iden-

tified in observations, depending on the level of resolution

obtainable. Citing Ref. 20, Dubinov and Kolotkov16 sug-

gested that a plasma of at least four species was required to

support pseudopotentials with the necessary wiggles to yield

supersolitons.

The present paper, first, provides evidence that such

supersolitons can occur in the less complicated scenario of

three-species plasmas. Second, we present a methodology to

delineate the existence domain of supersolitons in composi-

tional parameter and Mach number space for a typical case,

and draw attention to the limiting factors.

Supersolitons have a number of characteristics. As

shown below, their existence requires the presence, in the

FIG. 1. Upper panels: Example of a standard positive soliton and its associ-

ated electric field. Lower panels: A negative supersoliton and its associated

electric field.
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Sagdeev pseudopotential well, SðuÞ, of at least three local

extrema between u ¼ 0 and the soliton amplitude, um.16

Pseudopotentials of this type were found earlier,20–22 but the

associated electric field structures not recognized. Unlike

those of “normal” solitons, hodograph plots of E against u
for supersolitons are characterized by the presence of inac-

cessible regions,16,21 as we will illustrate below. Although,

for conventional solitons, double layers are often found to

represent the upper boundary of an existence region in pa-

rameter space, supersolitons typically occur for soliton

speeds that exceed the double layer Mach number, Mdl.
21

By establishing limiting conditions for the existence of

supersolitons, one can systematically find regions in parame-

ter space that may support supersolitons, rather than using a

haphazard, trial-and-error approach. A lower bound arises

from the existence of double layers. Other limits occur when

the requirement of three local extrema in SðuÞ is breached

through the merging of adjacent extrema, as illustrated in

Fig. 2. This gives an example of a pseudopotential yielding a

supersoliton (solid curve, with local extrema A, B, and C),

lying between two pseudopotentials having standard soliton

solutions. The latter arise from the coalescence of two local

extrema, A and B (dotted-dashed curve) or B and C (dashed

curve), respectively.

Previous examples of three-component plasmas that

support appropriate pseudopotentials may be found in Refs.

21 and 22. The former considered ion-acoustic solitary

waves in a plasma of two-temperature Boltzmann electrons

and cold ions,21 the latter, dust-acoustic solitons in a system

of negative dust and two-temperature Boltzmann and non-

thermal (“Cairns”23) positive ions.22 We note that both of

these models have wider applicability. Allowing for a sign

reversal, Ref. 21 could describe dust-acoustic solitons in a

plasma of two positive ion species and inertial negative dust,

while Ref. 22 is also a model for Boltzmann and Cairns elec-

trons, and inertial positive ions.

Both the above systems involve a single inertial species

and two species that are effectively massless. To emphasize

the wide range of three-component plasmas admitting super-

solitons, we will consider here ion-acoustic solitons in a

qualitatively different model with two inertial species of op-
posite polarity, comprising cold positive and negative ions,

and nonthermal23 electrons. Recently, Ref. 24 studied soli-

tons in such a plasma but did not investigate supersolitons.

Inter alia, heavy negative ions are relevant in the iono-

sphere25 and cometary regions,26 as well as the laboratory.13

Together with Refs. 21 and 22, and possibly other mod-

els, our investigations below show that supersolitons are not

an artefact of exotic, complicated models, but refer to struc-

tures, whose electric field signatures should be observable in

available or future space observations, where three-species

plasmas are commonly found.

II. MODEL ANALYSIS

In our plasma model, the fraction of negative charge

residing on the negative ions is f ¼ nn0=n0 and on the elec-

trons 1� f ¼ ne0=n0, where n0 is the positive ion density.

For ease of presentation, the two ion species have been

assumed singly charged, but that is not an essential restric-

tion. The Cairns distribution,23 commonly used in space

plasma studies, models a Maxwellian with an enhanced non-

thermal tail, which may be characterized by a parameter b.27

Integration over velocity space yields the electron density,28

neðuÞ ¼ ð1� f Þð1� buþ bu2ÞexpðuÞ; (1)

where u is normalized to Te=e, with Te the kinetic tempera-

ture (measured in energy units) the electrons would have in

the absence of nonthermal effects, i.e., for b ¼ 0.

The cold ions are described by the continuity and mo-

mentum equations, in variables27 normalized to a typical

speed, denoted by Cia ¼ ðTe=mpÞ1=2
, and shielding length

ðe0Te=n0e2Þ1=2
. Although we write the normalizing speed as

Cia, we emphasize that it is not the true acoustic speed in the

present three-species plasma, but, as the ion-acoustic speed

in a simple plasma composed of cold ions and Boltzmann

electrons (i.e., for f ¼ b ¼ 0), it is a useful measure of speed.

While in principle one is free to use any consistent set of

scaling quantities to nondimensionalize the equations, we

have chosen to leave parameters like f, b and l explicitly

outside the normalization, so as to be able to investigate the

effect of variations in those parameters. Otherwise, some of

the variations would be hidden in a changing normalization.

The true ion-acoustic velocity for the plasma composition

under consideration will be determined later, in Eq. (6).

Using the positive ion mass mp in the normalization

leads to a dimensionless mass ratio l ¼ mn=mp. Should one

wish to include arbitrary ion charge numbers, rather than sin-

gly ionized ions, l could represent not just such a simple

mass ratio, but the ratio of charge-to-mass ratios of the two

ion species, together with a suitably-modified form for Cia.

In a frame where the nonlinear structure is stationary

(@=@t ¼ 0) and all variables tend to their undisturbed values

at x! �1, in particular u! 0, one can integrate the ion

equations with respect to x and find normalized ion densities,

np ¼ 1� 2u
M2

� ��1
2

;

nn ¼ f 1þ 2u
lM2

� ��1
2

:

(2)FIG. 2. Examples of pseudopotentials yielding a supersoliton (solid curve,

with local extrema A, B and C), that lies between two standard solitons.

These arise from the coalescence of two local extrema, A and B (dotted-

dashed curve), and B and C (dashed curve), respectively.
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These contain a kind of Mach number, M ¼ V=Cia, arising

from ion inertial effects. It follows from these density

expressions that limits on u occur at u‘n ¼ �lM2=2 (for the

negative ions) and at u‘p ¼ M2=2 (for the positive ions),

beyond which the ion densities are no longer defined, as they

reach infinite compression for u! u‘n or u‘p. For l > 1

one notes that u‘p < ju‘nj. The larger existence range of the

negative ion density suggests the possibility that enough

wiggles might occur in SðuÞ for the existence of negative

supersolitons. We shall consider such a case below.

The densities are substituted into Poisson’s equation,

d2u
dx2
þ np � nn � ne ¼ 0: (3)

After integration, this gives an energy-like integral,

1

2

du
dx

� �2

þ SðuÞ ¼ 0; (4)

to be analyzed in terms of the Sagdeev pseudopotential

SðuÞ ¼ M2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2u

M2

r !
þ flM2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u

lM2

s !

þð1� f Þ½1þ 3b� ð1þ 3b� 3buþ bu2ÞexpðuÞ�:
(5)

An important feature that follows immediately from Eq. (4)

is that a local extremum in SðuÞ implies a local extremum in

the electric field, which thus provides the link between the

wiggles in SðuÞ and those in the bipolar structure of Fig. 1.

By assumption, Sð0Þ ¼ S0ð0Þ ¼ 0, but S00ð0Þ � 0 is

required for the origin to be a (local) unstable maximum, at

least on one side. Here, primes denote derivatives of SðuÞ
with respect to u. The convexity condition, S00ð0Þ � 0, yields

M2 � M2
s ¼

f þ l
lð1� bÞð1� f Þ ; (6)

where Ms is the true normalized acoustic speed in the three-

species plasma. Thus, in physical terms, the nonlinear struc-

tures are (super)acoustic. Single nonzero roots of SðuÞ give

positive or negative potential solitons, whereas for double

roots u changes from one value at �1 to another at þ1,

typical for potential kinks (double layers).

III. DISCUSSION

We now focus in a systematic way on where supersoli-

tons may be found, by determining the limits in parameter

space for their occurrence.

As we know from our work20–22 and that of Ref. 16,

supersoliton pseudopotentials include two local potential

wells on one or the other side of u ¼ 0. We shall consider

the case of negative potential supersolitons, and thus require

at least three local extrema for u < 0, as presented schemati-

cally by the solid curve in Fig. 2.

An important analytical tool in structuring the discussion

is the generic property that @S=@M < 0,29 which involves

only the inertial species. Hence, for a fixed plasma composi-

tion and a chosen u, one can obtain neighboring pseudopo-

tentials by varying M, but these can never cross one another.

Decreasing M increases the local maximum at B. A possible

outcome of this process is that SðuÞ at B becomes zero and a

double layer solution is obtained, for M ¼ Mdl. A further

decrease in M would push the maximum above zero, and the

well lose its subsidiary extrema. Thus, the soliton speed at

which a double layer solution occurs is clearly one of the

lower limits on M for the existence of supersolitons.

Changing M might also lead to coalescence of two adja-

cent local extrema, either A and B or B and C. The two local

“sub-wells” then merge into one, destroying the internal sep-

aratrix that is one of the characteristics of a supersoliton,16

thus introducing other limits. In Fig. 2, we illustrate these

possibilities for pseudopotentials with a supersoliton (solid

curve) that lies between two standard solitons, when M is

increased from the dotted-dashed (AB coalescence) to the

dashed curve (BC coalescence).

We can now investigate some detailed examples, in

order to extract the region in parameter space where superso-

litons occur. This will be done for b ¼ 0:3 and l ¼ 10. It is

well-known27 that for b > 4=7 the Cairns distribution func-

tion is not single-humped, and thus potentially linearly unsta-

ble. Thus, given that the physically acceptable range is

0 � b < 4=7; b ¼ 0:3 is an appropriate intermediate choice.

The mass ratio, l ¼ mn=mp ¼ 10 is an average value to

cover several space applications. One can show (although

not included here) that variations in l over a rather wide

range do not produce qualitative differences in regard to the

existence and interpretation of the supersoliton phenomenon.

To start the quantitative discussion, we first pick f¼ 0.3,

but hasten to add that this suitable choice will be seen not to be

just based on a trial-and-error approach. In Fig. 3 four pseudo-

potentials are shown in the upper panel: at M=Ms ¼ 1:023

(dotted curve) for a “normal” soliton, then at M=Ms ¼ 1:027

(solid curve) for a double layer, and beyond that, e.g., at

M=Ms ¼ 1:030 (dashed curve) for a supersoliton and at

M=Ms ¼ 1:035 (dotted-dashed curve) for what is again a nor-

mal soliton, albeit a large one. These unusual values of M have

been carefully chosen to illustrate neatly the supersoliton phe-

nomenon. In much of the discussion and in the ordinate of Fig.

5 the quantity M=Ms appears. This is the true Mach number,

since the normalizing velocity disappears from this ratio.

The top (dotted) curve represents a normal soliton,

found here for a solitary wave speed that is a little smaller

than Mdl. Increasing M=Ms to 1.027 yields the solid curve,

which clearly represents a double layer at M ¼ Mdl. A fur-

ther small increase in M generates a Sagdeev pseudopotential

with three subsidiary extrema, as shown by the dashed curve.

This is an example of a supersoliton, with wiggles in SðuÞ
which, as discussed below, will be reflected in associated

wiggles in the electric field signature. Importantly, it is seen

that the amplitudes exhibit a discrete jump as M is increased

past Mdl, opening up a new range beyond the inaccessible

root of the solid curve. This phenomenon was reported previ-

ously.21 Hence, this shows that, for parameter values for

which double layers are supported, supersolitons can only

exist as part of a set of solitons for M > Mdl.
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Other boundaries of the parameter range in which super-

soliton may exist arise from the merging or disappearance of

some of the local extrema. An example of this is seen in Fig.

3, where the dotted-dashed curve, for a slightly higher value

of M, represents a normal soliton. As a result of a BC coales-

cence it has only a single well, and thus lies beyond the exis-

tence limit for supersolitons.

In addition to the negative roots discussed so far, the fig-

ure shows that there are also positive single roots, but these

yield standard solitons only.

In Fig. 3, the lower panel presents the hodographs for

these four values of M=Ms, with the same curve coding. The

thinner parts of the dotted and solid curves in gray indicate

ranges of the curves for the two lowest values of M, which are

not accessible from the undisturbed conditions. A hodograph

of this form is a prerequisite to encounter supersolitons.16 The

difference between the standard and the supersolitons is now

very clear.

This difference is even more strongly accentuated when

the negative supersoliton profile and its associated electric

field are plotted, as shown in the lower panels of Fig. 1,

which are not, in fact simply schematic, but were deduced

from the dashed curve in Fig. 3. On the other hand, the upper

panels in Fig. 1 illustrate the positive standard soliton associ-

ated with the positive potential part of the same dashed curve

in Fig. 3. Note that our hodographs do not focus on the inter-

nal separatrices for a specific supersoliton, as in Ref. 16, but

present the whole spread of pseudopotentials.

From Fig. 3 it becomes clear that when a double layer

acts as lower limit for supersolitons, only a BC coalescence

is possible and will act as the upper limit as M=Ms is

increased, so that supersolitons occur for Mdl < M < MBC at

given f. So the first question is: for which values of f are

there double layers? One can easily check that both the dou-

ble layer amplitude (in absolute value) and Mdl increase/

decrease as f is increased/decreased, while the inaccessible

third root decreases/increases. Lower limits in f are obtained

when Mdl ¼ Ms which is found numerically to occur for

f¼ 0.239, as M < Ms does not yield solitons or double

layers.

A negative double layer represents a double root, and as

we see from the solid curve in Fig. 3, there are then three

negative roots. If f is increased enough, the three negative

roots will coalesce, as illustrated by the solid curve

(M=Ms ¼ 1:046) in Fig. 4. This triple root is found numeri-

cally to occur for f¼ 0.332, and these values of f and M sig-

nal the upper limits for which SðuÞ can have three negative

roots. Together, this methodology provides a systematic

determination of f for the existence of negative double

layers. This indeed shows that our earlier choice of f¼ 0.3

for Fig. 2 is appropriate, as it clearly lies within the range in

which double layers will exist and form the lower limit for

the occurrence of supersolitons.

However, this is not the end of the supersoliton exis-

tence range, as, in the absence of double layers, other limits,

such as the coalescence of local extrema, come into play. An

example where such limits occur was used to generate Fig.

2, for which the value f¼ 0.34 was chosen. As we saw there,

the lower and upper limits for the existence of supersolitons

in such a plasma composition are governed by the AB and

BC coalescences, respectively. Further increases in f narrow

the range in M where supersolitons are encountered, until,

FIG. 3. Upper panel: Graphs of SðuÞ for b ¼ 0:3; l ¼ 10, f¼ 0.3 and M=Ms

¼ 1:023 (dotted curve), M=Ms ¼ 1:027 (solid curve), M=Ms ¼ 1:030 (dashed

curve) and M=Ms ¼ 1:035 (dotted-dashed curve). Lower panel: Here the

hodographs are presented, with the same curve coding. Thin dotted and solid

curves in gray indicate ranges which are not accessible from the undisturbed

conditions and thus physically irrelevant.

FIG. 4. Upper panel: Graphs of SðuÞ for b ¼ 0:3; l ¼ 10, f¼ 0.332 and

M=Ms ¼ 1:040 (dotted curve), M=Ms ¼ 1:046 (solid curve) and M=Ms

¼ 1:051 (dashed curve). The deep well on the positive side has been cut for

graphical clarity. Lower panel: Here the hodographs are presented, with the

same curve coding.
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finally, at f¼ 0.371 that possibility is lost, because then all

three local extrema on the negative side merge into one, in

what may be termed an ABC coalescence.

Hence, these considerations lead us in a methodical way

to the existence diagram for supersolitons, in ff ;M=Msg
space, given in Fig. 5. The upper limit on M follows purely

from encountering a BC coalescence of two extrema in the

pseudopotential curve SðuÞ. Indeed, an AB coalescence is

not possible as long as there are double layers, and, as Fig. 2

shows, MAB � MBC.

There are, however, three possible lower limits for

supersolitons in our case study with b ¼ 0:3 and l ¼ 10.

First, there is a tiny range at the true acoustic speed, M ¼ Ms

(between f¼ 0.235 and 0.239), before negative double layers

can occur. Next, the dotted-dashed double layer curve is the

limit, up to the triple root at f¼ 0.332. The last stretch is an

AB-type coalescence, up to f¼ 0.371, shown by the solid

curve. Again, we stress that these limits can be determined in

a systematic way: double layers by solving SðuÞ ¼ S0ðuÞ ¼
0 for common values of u;M, for a given composition, and

similarly, for the coalescence of negative extrema, by solv-

ing S0ðuÞ ¼ S00ðuÞ ¼ 0. For the plasma composition under

consideration, with b ¼ 0:3 and l ¼ 10, there are, of course,

no positive supersolitons.

The gray graph in Fig. 5 represents the existence domain

for a plasma involving O�2
25 and illustrates that the change

of mass ratio l from the indicative value of 10 to l ¼ 32

does not have a qualitative effect but merely pushes the exis-

tence domains to higher values of f and M.

IV. SUMMARY AND OUTLOOK

To conclude, we have considered the existence of

“supersoliton” structures in plasmas from first principles. We

have shown that supersolitons are not an artefact of rather

exceptional or complicated plasma models, but that they can

exist in various three-component plasmas. Moreover, the exis-

tence regime in parameter space is detailed in a methodical

fashion, by determining the specific limiting factors. Although

we have dealt here with b ¼ 0:3 and l ¼ 10, we have also

carried out computations for other values of these parameters.

Considering a wide range of plasma configurational parame-

ters, we have shown that supersolitons may occur in specific

regions (“islands”), delimited by boundaries which can be

found numerically in a systematic manner.

Based on our findings, it appears that electrostatic super-

solitons cannot exist in two-species plasmas, at least not for

the traditional fluid models of cool and hot species. Finally, it

is proposed that the telltale electric field signatures of super-

solitons should be sought in available or future space or labo-

ratory observations in three-species plasmas. One example

can be seen in Cluster data,18 where their Figure 1(b) clearly

shows a supersoliton electric field wedged between two regu-

lar bipolar structures. In the laboratory, these should appear

as “distorted” bipolar electric field forms, which may be

resolved, e.g., via proton imaging,14 among other techniques.

The subtlety in the latter case would be in the preparation of

the multi-ion plasmas, along with technical challenges, e.g.,

in probing and diagnostics, that might make detecting super-

solitons feasible, but not an easy task.30 We see this as an in-

triguing direction of future research.
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