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Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria,
offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession
comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic de-
posits originating from two paleo-landslide events are present. Multi-proxy analyses including sedi-
mentological and palynological investigations as well as radiocarbon and luminescence data record the
onset of the last glacial period (Würmian) at Unterangerberg at w120e110 ka. This first time period,
correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions,
with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events
occurred during this time interval. No record of the first Early Würmian interstadial (MIS 5c) is pre-
served. During the second Early Würmian interstadial (MIS 5a), the local vegetation was characterised by
a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the
vegetation is recorded by sediments dated to w70e60 ka (i.e. MIS 4), with very low pollen concentra-
tions and the potential presence of permafrost. Climatic conditions improved again between w55 and
45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegeta-
tion. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during
these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from
today’s alpine timberline. The Unterangerberg record ended at w45 ka and/or was truncated by ice
during the Last Glacial Maximum.

� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license. 
1. Introduction

Tracking Late Pleistocene climatic changes and their impact on
the environment and landscape evolution is a challenging task for
Quaternary science, aimed at a better understanding of the un-
derlying forcing and internal feedback processes. In this context,
mountain ranges are of particular interest as they are highly sen-
sitive to climate change such as the current warming trend
(Beniston, 2003; Huber et al., 2005).

The European Alps are one of the best studied mountain ranges
in the world. Here, the regional impact of global climatic changes,
expressed e.g. by fluctuations of the equilibrium line altitude, the
. Starnberger).
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tree line and lake levels, is well documented for the Late Glacial and
the Holocene (e.g., Nicolussi et al., 2005; Magny, 2007; Joerin et al.,
2008). However, the Last Glacial Maximum (LGM), the most dra-
matic interval of the Late Pleistocene, eradicated most of the older
sedimentary archives, especially inside of the Alps. Hence, paleo-
data for the pre-LGM are much less abundant than for the Late
Glacial and Holocene, and records are often truncated and difficult
to date. For up-to-date reviews of the Late Pleistocene history of the
Alps the reader is referred to van Husen (2004), Preusser (2004),
Schlüchter (2004), and Ivy-Ochs et al. (2008).

The start of the last glacial period in the Alps (Würm sensu
Chaline and Jerz, 1984) is best recorded by a steep decline in oxygen
isotope values of speleothems around 118 ka, indicating major at-
mospheric cooling (Spötl et al., 2007; Meyer et al., 2008). The
glacial inception thus occurred within dating uncertainties of the
transition from the Eemian into the first cold phase in Greenland,
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i.e. Greenland Stadial 26 (NGRIP project members, 2004). Whether
this first Early Würmian stadial) resulted in a large advance of
alpine glaciers is still a matter of debate (Ivy-Ochs et al., 2008).
While there are data suggesting such a major advance in the
Western Alps (Preusser et al., 2003; Preusser et al., 2007), obser-
vations from the Eastern Alps show that the main valleys remained
ice-free during this time (Reitner, 2005; Spötl and Mangini, 2006).
The Early Würmian was characterised by two prominent in-
terstadials (corresponding to MIS 5c and 5a) with conifer forests
and timber lines 100e300 m lower than today (Drescher-
Schneider, 2000). The timing of a third, forested interstadial
(Dürnten) is still controversial (see e.g. Preusser, 2004; Ivy-Ochs
et al., 2008). The equivalent of MIS 4 is poorly recorded in sedi-
mentary successions around the Alps. Data from the Western Alps
(e.g. Welten, 1982; Schlüchter, 1991; Preusser et al., 2003) again
suggest a major ice advance, while no such evidence has been
found so far in the Eastern Alps. Data from speleothems comple-
ment this latter picture and show a high degree of d18O synchro-
nicity between the Alps and the North Atlantic region during MIS 5
to 4 (Boch et al., 2011). The Middle Würmian (sensu Chaline and
Jerz, 1984) largely corresponds to MIS 3 and the period of the
most pronounced DansgaardeOeschger (DO) climatic events as
known e.g. from Greenland (Dansgaard et al., 1993). These rapid
climate changes are only rarely recorded by sediments in the Alps
and the northern alpine foreland (e.g., by speleothems, lake and
loess deposits; Haesaerts et al., 1996; Spötl et al., 2006; Anselmetti
et al., 2010; Thiel et al., 2011; Dehnert et al., 2012) and suggest a
long-term climatic deterioration towards the end of MIS 3 leading
eventually to maximum ice extent during the LGM (MIS 2).

In short, aeolian and fine-grain waterlain sediments, in
conjunction with cave deposits, permit the tracing of the general
outline of the climate evolution in the Alps during the Upper
Pleistocene and underscore the correspondence with the North
Atlantic climate. Major unknowns include the magnitude and
timing of pre-LGM ice advances and the response of the alpine
Fig. 1. Regional setting of the Unterangerberg terrace (inset B) in the northern Alps (inset A
other key sites: KL ¼ Kleegruben Cave; BK ¼ Baumkirchen; HOP ¼ Hopfgarten basin; SAM
environment to D-O events and their impact on the ecosystem. The
present study aims to fill part of this significant gap by providing an
inner-alpine perspective of climatic and environmental change
prior to the LGM from a newly studied and e thanks to a series of
fully cored drill holes e exceptionally well-characterized site in the
Austrian Alps. We employ a multi-proxy approach and use several
dating techniques to advance the understanding of Late Pleistocene
climate variability and its impact on the regional scale. This study
also provides new data on pre-LGM landslides which are currently
amongst the oldest dated mass movements in the Alps.

2. Regional setting

The Inn valley is one of the largest valleys in the Alps, charac-
terised by overdeepening due to repeated Pleistocene glaciations,
e.g. at Kramsach, (40 km northeast of Innsbruck), where a drill hole
reached the base of the Quaternary sediment fill 180 m below to-
day’s valley floor level (Preusser et al., 2010). Surrounded by
mountains with altitudes of up to 2500 m a.s.l., valley terraces are a
characteristic element of this landscape. Our study site, the terrace
of Unterangerberg, is located northwest of the city of Wörgl (Fig. 1).
The surface of this terrace lies approximately 150 m above the
valley floor, covering an area ofw34 km2 and bounded by the river
Inn in the southeast.

Field evidence shows that the basis of the terrace is formed by
partly lithified fluvial sediments of the Upper Oligocene Angerberg
Formation (e.g. Ampferer, 1922; Ortner and Stingl, 2001). These are
overlain by Pleistocene sediments first described by Penck and
Brückner (1909), and later by Ampferer and Ohnesorge (1909),
von Klebelsberg (1935) and Heissel (1951, 1955). LGM-lodgement
till tops the sequence. Additionally, cataclasite deposits origi-
nating from two individual landslide events are embedded in the
Pleistocene sediments. Although already described by Penck and
Brückner (1909), only one of these events has been investigated
in greater detail so far (Gruber et al., 2009).
) and their foreland; asterisks mark the Unterangerberg site (UA) as well as important
¼ Samerberg; MON ¼ Mondsee.
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Between 1995 and 2006, geophysical investigations and
numerous drillings were performed on the Unterangerberg terrace
under the supervision of the BrennereEisenbahneGesellschaft
(BEG) as part of a tunnel prospection campaign. These resulted in
a model of the bedrock topography in the subsurface of the terrace
(Fig. 2). Here, the main feature is a SW-NE striking depression filled
by up to 150 m of Pleistocene sediments. This depression is boun-
ded in the south and southeast by a series of small swells.

3. Materials and methods

3.1. Lithological description and lithofacies types

This study is based on the exclusive access to cores recovered
from the Unterangerberg terrace during drilling campaigns in 1998
and 2006 which provided unprecedented insights into this other-
wise poorly exposed terrain. In total, 17 cores with lengths between
w40 m and 200 m were available, offering insights into the Oligo-
and Pleistocene sediments filling of the terrace (Fig. 3). Description
of the cores was made based on the criteria described in Table 1.
However, this was hampered by the fact that drilling disturbed
parts of the cores, especially those containing coarse-grained and
poorly consolidated sediment. Sediment units were defined and
lithofacies codes were designated following Keller (1996), Benn and
Evans (1998), Krüger and Kjær (1999) and Tucker (2003). This led to
the genetic interpretation of different sediment facies types
(Table 1). Grain size analysis was performed using wet sieving for
coarse-grained, and laser diffraction using a Malvern Instruments
Mastersizer 2000 (Sperazza et al., 2004) for fine-grained samples.

3.2. Pollen analysis

For pollen analysis, sediment samples of w300 g each were
taken from the cores. Based on the lithological description, a first
sampling campaign concentrated on the organic-rich core sections
Fig. 2. Bedrock topography of the Unterangerberg terrace (solid line) underneath the Pleisto
level (Poscher et al., 2008).
A-KB 15/98 (16e20m), A-KB 16/98 (30e46m) and A-KB 17/98 (26e
46 m depth), with sampling increments of 20 cm for most parts. As
a next step, sampling was extended to other organic-bearing se-
quences identified in A-KB 14/98 (43.5e50.2) m and A-KB 15/98
(w52.5 m) depth. In order to investigate also core sections for
which expectations were low due to the lithological account, test
samples from A-KB 13/98 (31e51.5 m), A-KB 14/98 (62e82 m) and
A-KB 15/98 (79e143 m) were taken.

A total of 184 samples from cores A-KB 13/98, A-KB 14/98, A-KB
15/98, A-KB 16/98 and A-KB 17/98 was chemically treated using
HCl, HF, and acetolysis. Following Stockmarr (1971), marker spores
(Lycopodium) were added to 1e2 ml of sediment to allow the
calculation of pollen concentration. Of these, 140 samples were
palynologically investigated. Pollen concentrations ranged from
zero in some massive fine-grain (Fm) sections to w40,000 grains/
ml in organic-rich fine-grain samples and w270,000 grains/ml in
fine detrital gyttja samples. For statistically significant vegetation
reconstructions at least 500 pollen grains per sample should be
counted (Berglund and Ralska-Jasiewiczowa, 1986). In samples
with low pollen concentrations an entire slide (24 � 32 mm) was
analysed. For the determination of pollen types, the pollen key of
Beug (2004) and the private reference collections of R. Drescher-
Schneider were used. The identification of the non-pollen paly-
nomorphs (NPP) is based on Van Geel (1978) and Van Geel et al.
(1981, 1983, 1989). The determination of the Neorhabdocoela fol-
lows the description by Haas (1995). For calculation of percentages,
Cyperaceae, Pteridophytes, aquatics, pre-Quaternary sporomorphs,
and indeterminanda are excluded from the pollen sum (arboreal
(AP) and non arboreal pollen (NAP) ¼ 100%). The percentages of
Cyperaceae refer to the pollen sum including Cyperaceae. The
spores of ferns and mosses and the NPPs (includes algae, fungi,
mandibles of chironomids, and other remains of invertebrates) are
expressed referring to the pollen sum. The results are presented as
reduced percentage pollen diagrams (for the complete data set see
Appendix A). Local pollen zones (LPZ) are defined manually
cene sediment fill as derived from geophysical data. Elevations are given relative to sea



Fig. 3. Schematic cross-sections and simplified borehole lithologies across the Unterangerberg terrace including information from geophysical measurements (vertical exaggeration
is 1:6.25). Dotted lines represent the paleo-surface topography (see Table 1 for lithofacies code descriptions).
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according to Cushing (1964). Samples with a pollen sum<20 grains
per slidewere considered as pollen-free and aremarked by a dotted
line in the pollen diagram.

The organic sequences in core A-KB 17/98 (core depth 25.5e
27.0 m; 41.5e41.9 m) are strongly compressed fine-detritus
layers, mostly composed of Cyperaceae with scattered remains of
mosses and wood particles. These peat layers were fairly resistant
to chemical treatment, resulting in weak pollen enrichment and
low pollen sums in the diagram. Thus the actual pollen content in
the sediment is expected to be higher than counted.

3.3. Radiocarbon dating

A total of 34 wood and plant macro remain samples were
collected from the cores and dated using 14C (Table 3). Where
possible, plant macro remains such as mosses and seeds were used,
but most samples are wood fragments. Samples were prepared at
the 14CHRONO Centre, Queen’s University Belfast, and analysed
using acceleration mass spectrometry (AMS). MIS 7 kauri wood
provided by A. Hogg, University of Waikato, was used for the
background correction. Ages were calculated according to Stuiver
and Polach (1977) using the AMS measured 13C/12C which ac-
counts for both natural and machine isotope fractionation. Ages
younger than 47 ka BP were calibrated using the IntCal09 (Reimer
et al., 2009) calibration curve and the Calib 6.0 software (Stuiver
et al., 2005). Calibrated ages are reported with a one standard
deviation (1s).

3.4. Luminescence dating

3.4.1. Sample preparation and analytical facilities
Because the drill cores (10.2e12.7 cm diameter) had been stored

under normal daylight conditions for several years, only completely
intact sections of the cores were sampled, i.e. mostly fine-grain
sequences. All subsequent preparation and analysis steps were
made under subdued red-light conditions in the laboratory. First,
the outermost, light-exposed parts were gently removed by hand.
Then, carbonate and organic contents were removed using hydro-
chloric acid (10%) and hydrogen peroxide (10%). In between and
after these steps, samples were washed with distilled water. The
polymineral fine-grain 4e11 mm fractionwas extracted by repeated
washing and centrifuging following Frechen et al. (1996). Lumi-
nescence measurements were made using an automated Risø TL/
OSL DA-15 Reader equipped with a calibrated 90Sr/90Y beta source
(w0.08 Gys�1). For recording the feldspar signal from polymineral
samples, aliquots were stimulated using infrared light (870 nm)



Table 1
Lithologies, lithofacies types and genetic interpretation of Pleistocene sediments from Unterangerberg terrace.

Lithology Description Lithofacies code Genetic interpretation

Diamict Matrix-supported, organic remains Dmo Mass flow deposit
Matrix-supported, sterile Dm Glacial till

Gravel Clast-supported, sub- to well rounded, striated clasts Gc Glaciofluvial sediment (topset)
Clast-supported, monomictic, angular to sub-angular Gc-c Fluvial (re-deposited landslide cataclasite)

Sand Massive/organic content Sm/Smo Fluvial deposition (topset)
Laminated/organic content Sl/Slo Bottomset
Monomictic, angular medium sand Sc Landslide deposit

Fines (fine-sand/silt/clay) Massive Fm Distal delta foresets
Laminated Fl Bottomset
Organic remains (charcoal, plant detritus/mosses, pollen) Fo High aquatic and terrestrial productivity
Dropstones Fd Glaciolacustrine deposition

Cataclasite Angular limestone clasts, stones to boulders C Landslide deposit
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diodes and the signal was recorded using a Schott BG39/Corning
7-59 filter combination.

3.4.2. Measurement protocol
The infrared stimulated luminescence (IRSL) signal obtained

from polymineral fine-grain (4e11 mm) samples was measured
using a single-aliquot regenerative-dose (SAR) protocol (Wallinga
et al., 2000; Preusser, 2003) protocol. First, preheat plateau tests
for temperatures between 160 and 310 �C were made, showing a
plateau between 270 and 310 �C for all samples. Next, an additional
measurement step at an elevated temperature of 225 �C as first
introduced by Thomsen et al. (2008) was added in the SAR-protocol
(so-called post-IR IRSL225 or pIRIR225) (Table 2) following the IRSL50
measurement. This pIRIR signal is considered to have a high po-
tential for minimising the degree of anomalous fading of the
luminescence signal which is often reported from feldspar samples
and, if not corrected for, leads to substantial age underestimation
(cf. Aitken, 1998). For all samples, both the IRSL50/225 and pIRIR225
signal measurements yielded recycling ratios ranging between 0.9
and 1.1 and recuperation values <5%. To investigate the bleaching
characteristics of the IRSL50 and the pIRIR225 signals, i.e. the time
needed to reset the natural luminescence signal to zero under
natural daylight conditions, a bleaching experiment was set up.
Aliquots which received the same dose were exposed to direct
sunlight for varying time periods (between 60 s and 120 min) and
then measured using the protocol outlined above. The results
showed that the IRSL50/225 signal was bleached substantially faster
(<5% after 20 min) than the pIRIR225 signal (<5% after 120 min).
Therefore, dose recovery tests were performed on all samples
after sunlight exposure of minimum 2 h, with resulting values
close to unity for both the IRSL50/225 and the pIRIR225 signals.
Furthermore, in order to make clear whether the IRSL50/225 and
also the pIRIR225 signals are affected by anomalous fading or not,
Table 2
IRSL-SAR protocol used for recording of the feldspar signal from fine-grain poly-
mineral aliquots.

Step Treatment Observed

1 Give dosea

2 Preheat (290 �C for 60 s)
3 IR stimulation (50 �C for 300 s) Ln/Lx(IRSL50/225)
4 IR stimulation (225 �C for 300 s) Ln/Lx (pIRIR225)
5 Give test dose
6 Preheat (290 �C for 60 s)
7 IR stimulation (50 �C for 300 s) Tn/Tx(IRSL50/225)
8 IR stimulation (225 �C for 300 s) Tn/Tx(pIRIR225)
9 Return to 1

a For Ln this is 0.
fading tests were conducted on aliquots used for age calculations
following Auclair et al. (2003), with storage times ranging be-
tween 30 min (prompt measurement) and w7 days (delayed
measurements). Anomalous fading is expressed as the g-value,
representing the signal loss per decadce (Aitken, 1998) (for further
details on the experimental setups see Starnberger et al., submitted
for publication).

For investigating the saturation behaviour of luminescence
signals recorded, a single saturating exponential functionwas fitted
for every aliquot in order to calculate 2D0 values. These are
considered to represent the w85% saturation threshold above
which a dose is considered to be saturated and therefore should be
excluded from any age calculations (Wintle and Murray, 2006).
For calculating ages, equivalent dose (De) values from and IRSL50/225
Lx/Tx values were used. The number of aliquots was between three
and ten. Regeneration dose points were best fitted to a single
exponential plus linear (SEPL) function.

3.4.3. Dosimetry
The concentration of dose rate relevant elements was deter-

mined using inductively coupled plasma mass spectrometry (ICP-
MS; Preusser and Kasper, 2001). Alpha, beta, and gamma dose rate
conversion factors were taken from Adamiec and Aitken (1998).
Amean a-value of 0.07� 0.2 for the fine-grain polymineral samples
was used (Rees-Jones, 1995; Lang et al., 2003; Preusser, 2003).
Calculations of cosmic dose rate (DR) values were made after
Prescott and Stephan (1982). Due to the fact that the sediment in
the cores was completely desiccated, an estimated average water
content value of 27% was calculated from sporadic measurements
which were made during the drilling of the cores. To take past
changes of moisture into account, an uncertainty of 10% was used
for all samples.
4. Results and interpretation

4.1. Core description and lithofacies types

The analysis of the cores was hampered by the fact that some
parts were disturbed during drilling: this was especially the case for
gravel and sand units which e except for some fine sand units e

were completely disturbed because drilling was performedwithout
liners. Nevertheless, it was possible to define lithofacies types as a
basis for genetic interpretations of the individual sediment types
(see Table 1).

Each of the 17 cores studied in this work has an individual
lithostratigrahpy, with great variation from core to core (Fig. 3),
highlighting the complex stratigraphic pattern in the subsurface of



R. Starnberger et al. / Quaternary Science Reviews 68 (2013) 17e4222
the Unterangerberg terrace. In the following, the most important
lithofacies types as identified in the cores and illustrated in Fig. 3
are briefly described, starting with the pre-Quaternary base of
the terrace.

The Tertiary bedrockwas reached in several drillings (see Fig. 3).
Among these, core A-KB 18/98 contains the longest Oligocene
sequence, with 155.8 m of grey, middle- to fine-grained sandstone
with intercalated greyish/brownish, silty to sandy marl as well as
fine-grained mudstone. The same lithology is also present in other
cores containing bedrock sequences (A-KB 11/98, A-KB 17/98; A-KB
23/06; A-KB 24/06; P-KB 04/06; P-KB 06/06; Q-KB 02/06).

On top of the bedrock, overconsolidated diamict was encoun-
tered in some of the drill holes (A-KB 11/98, A-KB 17/98, A-KB 18/
98, A-KB 23/06, A-KB 24/06, P-KB 04/06, P-KB 06/06, Q-KB 02/06 e

see Fig. 3). This sediment is massive, matrix-supported and un-
sorted or poorly sorted, with polymodal grain sizes ranging from
fine silt to boulders. The roundness of the larger clasts ranges from
angular to rounded; bullet-shaped and striated clasts are common.
The clast spectrum comprises sedimentary (e.g. limestone, sand-
stone, marl) and metamorphic (e.g. quartzite, amphibolite, phyllite,
gneiss) rock types. Some cores also retrieved diamict with sand-
stone, marl and mudstone clasts, probably derived from Tertiary
rocks beneath.

In core A-KB 15/98, a complex series of different diamict layers
at w147e145.5 m and between w64 and 22 m depth was
encountered. At 147e145.5 m depth, the components are sub-
rounded to rounded, with carbonate clasts embedded in a
brownish matrix. This diamict is intercalated in between thick fine-
grained silt layers. Between 78.0 and 74.0 m depth in the core, a
similar diamict layer was found, with a strong organic smell re-
ported during drilling. This layer is deposited on top of a long
sequence of silt and topped byw10 m of matrix-supported diamict
with mixed limestone and crystalline clasts. Between w64 and
22 m, there is a complex series of matrix-supported and clast-
supported diamict layers with a matrix-supported layer of silty
fine sand with subangular to subrounded clasts between 40 and
w35m depth (565e560 m a.s.l.). Betweenw35 and 22 m, there are
subangular to rounded limestone and crystalline clasts. It is inter-
esting to note in this core organic detritus was present at 147.5e
147.0 m and 631.5e613.5 m. At 40.0 m and 38.1 m depths, pieces
of wood were found.

Organic-bearing diamict is also present in core A-KB 17/98 be-
tween 40 and w34 m depth: here, a matrix-supported diamict
layer with subrounded to rounded and (partly) striated clasts
contains pollen, wood and other plant macro-remains. In the same
core, another such layer is present between 51.4 and w44.0 m
depth (i.e. 585.63e578.23 m a.s.l.): in the upper part, until
w46.3 m, it is matrix-supported with a brownish fine-grain sedi-
ment and some low pollen content; the subrounded to rounded,
mostly crystalline clasts with diameters of up to w20 cm show
strong weathering features. Between w 51.4 and 46.3 m, the dia-
mict is sterile and contains clasts derived from the Oligocene
Angerberg Formation. A breccia composed of Angerberg Formation
is present at the bottom of the core.

In core A-KB 23/06 (47e51 m depth/614.87e610.87 m a.s.l.)
diamict with a brownish matrix was encountered which contained
a wood fragment at 47.2 m.

Gravel is mostly clast-supported with a bimodal grain size dis-
tribution (sand and gravel). Clasts show different degrees of
roundness ranging from subrounded to well-rounded. They are
often striated (likely due to the drilling process) and poorly to well
sorted, with diameters of up to w30 cm. The lithological compo-
sition shows a mix of limestone and crystalline rocks. These gravels
typically occur between w580 and 630 m a.s.l., just below the final
diamict layer that tops all sequences. In core A-KB 16/98, between
45.4 and 43.4 m (599.25e597.25 m a.s.l.), there is a monomictic
layer of subrounded/rounded carbonate clasts. The sediment is
clast-supported and contains fine-grain particles. Clast size is
relatively homogenuous, with diameters ranging from w2 to 5 cm.

Long fine-grain sequences were encountered in several drill
holes. In cores A-KB 15/98 and P-KB 01/06 fine-grain sequences
were penetrated at 450 and 428 m a.s.l., respectively. These are the
lowest elevations reached by any of the cores, 150 (A-KB 15/98) and
202 m (P-KB 01/06) below the surface, or 50 and 72 m below the
modern level of the Inn River, respectively. The lower sediments are
greyish and dominated by fine sand to silt. The longest of these
fine-grain sequences are found in the cores A-KB 14/98 and A-KB
15/98, where they are composed of massive, clayey to fine-sandy
silt in the lower parts (A-KB 14/98: 85.0e62.5 m; A-KB 15/98:
145.5e78 m and 150.0e147.0 m depth) and of organic-rich, partly
laminated silt in the upper parts (between w583 and 577 m a.s.l.).
The latter is further characterised by mollusc shell fragments, plant
organic detritus and the presence of Characeae (stoneworts) re-
mains (oospores and organic carbonate), with organic carbon
content values between 1 and 10% (biogenic carbonate not
included). Very similar organic-rich fine-sequences are also found
in cores A-KB 13/98, A-KB 14/98, A-KB 16/98 and A-KB 17/98. In
core A-KB 17/98, a sequence of a fine detritus gyttja (w44 and
43m) and a calcareous gyttja (w43e42m) topped by a lignite layer
(w42.0e41.5 m) is present, overlying a diamict layer with some
organic content (w46.5e44 m).

Organic-free, massive silt sequences with angular to sub-
rounded dropstones are present in core P-KB 01/06 (198.8 and
194.8 m); subrounded to rounded dropstones were found in the
massive fine-sandy silt section of core A-KB 15/98, between 74.0
and 64.10 m depth (535.48e525.58 m a.s.l.). Core P-KB 04/06
comprises several dropstone-rich units.

Long sequences of cataclasite dominate the lithology of the cores
A-KB 12/98, A-KB 13/98 and P-KB 01/06. In core A-KB 13/98, the
uppermost w1.3 m of the cataclasite contains weathered clasts.
Additionally, there is a w2.5 m-thick layer of monomictic and
cataclastic dolomite debris between 31.90 and 29.35 m depth
(605.46e601.91 m a.s.l.) in core A-KB 21/06, with grain sizes
ranging from coarse sand to boulders (the latter exceeding the drill
core of the drill core). A mix of dolomitic cataclasite and diamict as
described above is present in core A-KB 22/06, between w616 and
608 m a.s.l.

4.1.1. Interpretation of lithofacies
Diamict covering most of the Angerberg terrace is interpreted as

LGM lodgement till as it shares characteristics of other till occur-
rences in the Inn valley region (Penck and Brückner, 1909; von
Klebelsberg, 1935). The gravels below are typical glaciofluvial sed-
iments deposited in front of the advancing glacier during the LGM.

The diamict at the base of the fine-grain sequences in core A-KB
17/98 is also interpreted as till, but its stratigraphic position sug-
gests a pre-LGM age.

Diamict containing plant macro remains or even larger amounts
of pollen is a common lithofacies typewhich is interpreted as till re-
deposited as debris flows on the slopes containing a mixture of
unweathered till (possibly of MIS 6 age), soil and vegetation. One
largemass flow or a series of mass flows is probably reflected in the
long diamict sequence of core A-KB 15/98. At this depth also the
organic-free sections are interpreted as localizedmud flowdeposits
since they cannot be traced across to the neighbouring core A-KB
14/98.

The different fine-grain sediments are interpreted as lacustrine
deposits. The lower, massive deposits which locally contain small
amounts of dropstones, probably formed during intervals of
high sedimentation rates. In contrast to this, the laminated and
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organic-rich sequences found in the upper parts of a number of
cores point at rather slow sedimentation rates. The presence of
Characeae macro remains (A-KB 1498,w49.0e43.5 m; A-KB 15/98,
w22e18 m; A-KB 17/98, w34e29 m, A-KB 16/98, w40.8e33.7 m)
indicates sedimentation in an oligo- to mesotrophic lake. The fine
detritus gyttjae calcareous gyttjae lignite layere sequence in core
A-KB 17/98 (44e41.5 m depth) reflects the changing water level in
the lake.

The long cataclastic sequences present in some cores are inter-
preted as deposits from two separate landslides as there is no
sedimentary connection between the two depositional areas
(Gruber, 2008). Both landslide deposits, however, are covered by till
of the LGM (Penck and Brückner, 1909; Gruber, 2008; Gruber et al.,
2009), thus providing a constraint on their minimum age. The
western landslide deposit (referred to as Butterbichl landslide) is
composed of cataclastically deformed dolomite (Upper Triassic
Hauptdolomite Formation) from the mountain immediately north
of the terrace (Gruber et al., 2009). It is dominated by a mixture of
angular sand, stones and boulders, with sand dominating at the
basis. While there is evidence from core P-KB 01/06 that this
landslide entered a paleolake (Gruber et al., 2009), the base of the
eastern landslide (Mariastein landslide) was not reached during
coring. However, there is field evidence suggesting that also
Mariastein went into a paleolake (Gruber, 2008). At Mariastein, the
cataclastic facies is dominated by limestone and dolomite clasts
from the Wetterstein Formation of the mountain to the north
(Gruber et al., 2009). Short intervals of cataclastic dolomite are also
present in cores A-KB 21/06 and A-KB 22/06 (see Fig. 3) and may be
connected with the Butterbichl event. Further, the monomictic
Table 3
Radiocarbon ages obtained from plantmacro remains found in cores from the Unterangerb
ages are given with one sigma uncertainty range.

Drill core Depth (m) UBA no. Material

A-KB 14/98 45.7 UBA-18228 pd
A-KB 15/98 38.1 UBA-10869 w

UBA-10870 w
40 UBA-18232 w

A-KB 16/98 29.8 UBA-11690 w
29.9 UBA-10872 w
32.2 UBA-15795 w
37 UBA-14420 w
40.8 UBA-17190 m
41.5 UBA-14421 w
45.0 UBA-14422 w
45.2 UBA-14423 w
45.5 UBA-14424 w
46 UBA-14425 w

A-KB 17/98 25.9 UBA-10874 w
26 UBA-11845 w
26.4 UBA-11846 w

UBA-10873 w
31.4 UBA-15796 pd
31.6 UBA-11684 pd
31.9 UBA-15797 w
37.9 UBA-14426 w
38.1 UBA-18230 w

UBA-11685 w
38.7 UBA-17608 s
39.9 UBA-18231 m

UBA-20031 m
UBA-20032 m

41.8 UBA-11686 w
42.5 UBA-11687 w
43.65 UBA-11688 w
46.1 UBA-11689 w

A-KB 23/06 47.2 UBA-10875 w
UBA-10876 w
gravel layer in the lower part of core A-KB 16/98 is interpreted as a
re-deposited landslide deposit because of its clast composition and
deposition at ca 600 m a.s.l. This allows correlation with the But-
terbichl cataclasite.

4.2. Radiocarbon dating

28 samples of plant macro remains from cores A-KB 14/98, A-KB
15/98, A-KB 16/98 and A-KB 17/98 were radiocarbon dated. Several
samples from the older parts of the cores and from diamictic
debris-flow deposits yielded infinite dates (Table 3). The data from
the uppermost organic-rich lacustrine layer of core A-KB 17/98
(25.9e26.4 m) show age differences as large as w15 ka within
50 cm. Different ages are also present deeper down in the same
core, between 31.9 and 31.4 m.

4.2.1. Interpretation of radiocarbon data
Sampling explicitly concentrated on fossil wood and moss

fragments as well as on seeds. Therefore, the effect of “dead carbon”
incorporated in water plants during growth which may lead to
erroneously old ages, is excluded. As a consequence, we regard the
younger ages within a section as more reliable, as well as radio-
carbon ages produced on mosses and seeds which are (i) un-
doubtedly of terrestrial (rather than aquatic) origin, and (ii) rule out
possible re-deposition of older material as they are highly fragile.

Taken together, the radiocarbon data indicate deposition of
the youngest lacustrine sediments between w55 and 45 cal ka BP.
The youngest radiocarbon ages in core A-KB 16/98 are from a fine-
sand layer that may have been deposited outside the lacustrine
erg terrace, w¼wood, pd¼ plant detritus (indet.), m¼mosses, s¼ seeds. Calibrated

d13C (&)VPDB 14C age yrs BP Error cal ka BP (1s)

�15.3 41,098 1107 45.6e44.0
�21.8 >52,148
�22.6 >53,634
�20.8 >52,165

�25.4 35,319 374 41.1e40.1
�27.8 35,466 486 41e40.1
�28.3 42,301 1013 46.3e44.8
�30.7 >49,579
�24.7 >47,636
�29.8 >51,778
�28.0 >55,414
�29.4 >51,778
�30.0 >51,778
�32.5 >51,778

�29.4 40,193 824 44.7e43.4
�26.7 40,512 698 44.9e43.8
�27.5 49,153 2232 e

�29.4 50,598 1716 e

�29.8 >50,028 e

�28.8 43,679 1169 48.1e45.7
�28.3 51,386 3233 e

�28.6 >53,800
�27.6 >52,165
�27.1 >54,229
�32.5 47,459 3794 e

�19.4 32,518 409 37.6e36.6
�25.7 44,031 1840 46.9e43.8
�25.9 44,518 1943 47.4e44.2
�25.0 >54,394
�26.4 >58,136
�23.7 >58,136
�25.8 >54,322

23.8 >53,634
28.9 >53,634



Fig. 5. Plot of storage time versus sensitivity-corrected IRLS Lx/Tx values obtained from
an aliquot from core sample A-KB 15/98 (152.0 m) illustrating the absence of anom-
alous fading.
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environment. The anomalously young age at A-KB 17/98 at 39.9 m
is considered the result of contamination.

4.3. Luminescence dating

While environmental dose rates are relatively low for samples
from the upper lacustrine sequences deposited betweenw600 and
580 m a.s.l. (w2e3 Gy/ka), higher values are obtained from the
fine-grain sections deposited at depths of w565 m a.s.l. and below
(w4-5 Gy/ka). While other studies on alpine and pre-alpine de-
posits report dose rates range between w2 and 4 Gy/ka for fine-
grain loess (e.g. Preusser and Fiebig, 2009; Thiel et al., 2011) and
lake sediment samples (e.g. Dehnert et al., 2012), values of up to
w7 Gy/ka were determined for some inner-alpine sites (e.g. Klasen
et al., 2007; Lukas et al., 2012). This general observation of relatively
high dose rate values in the alpine realm can be explained by the
strong influence of the (mostly crystalline) rocks from the Central
Alps. A representative regeneration dose growth curve for one of
the oldest samples (core A-KB 15/98,152.0 m) fromUnterangerberg
is shown in Fig. 4, along with a decay curve (inlet) of the natural
signal.

Anomalous fading tests conducted on both the IRSL50/225 and the
pIRIR225 signals resulted in minor (i.e. average g-values of w1.5% or
below) or no fading for the pIRIR225, but also for the IRSL50/225 signal
(Fig. 5). The pIRIR225 equivalent doses and calculated ages, however,
are distinctively larger than those from the IRSL50/225 signal.
Considering the low fading rates which make anomalous fading of
the IRSL50/225 unlikely to explain this observation, the pIRIR225
seems to be affected by residual doses. Considering the results of the
bleaching experiment as outlined in Section 3.4.2, this is not sur-
prising as the experiment shows that the pIRIR225 signal is distinc-
tively harder to bleach than the IRSL50/225 signal. Therefore, the
IRSL50/225 signal was used for age calculations.

The luminescence ages from all samples range between w115
and w45 ka and are generally stratigraphically consistent within
their uncertainties, i.e. there are no age inversions in any of the
cores. Generally, 2D0 values vary between 500 and 600 Gy, and De
Fig. 4. Dose response curve generated from regeneration doses of up to 1150 Gy for
core sample P-KB 01/06 (198.65 m).
values used for dating range from w125 to slightly below 500 Gy.
Equivalent dose values of all samples and calculated ages are listed
together with dosimetry data in Table 4 and are illustrated in Fig. 6.

4.3.1. Interpretation of luminescence data
The IRSL ages from the Unterangerberg cores form three clusters

which help to define three different lake phases (Fig. 6). Consid-
ering the uncertainty rages of the data, the first lake phase was
deposited between w125 and 90 ka. These oldest sediments are
present in the lowest parts of cores A-KB 14/98, A-KB 15/98 and P-
KB 01/06 which are all located at elevations ofw540e430m a.s.l. in
the central and deepest part of the paleobasin (see Fig. 3). The
sediment consists of massive, organic-free silt with relatively high
deposition rates indicated by the luminescence ages. At drill site
A-KB 15/98, w70 m of sediment were deposited between w150
and 80 m depth, with luminescence data showing no clear trend of
increasing age from top to bottom, which leads to the assumption
of high depositional rates.

Evidence of a second lacustrine phase is present in cores A-KB
13/98 and A-KB 14/98, dated atw70e60 ka, and possibly in core A-
KB 12/98 at the same elevation, but no IRSL dates could be obtained
from the sand layer in this core. The gap between w100 ka at
62.5 m and 65 ka at ca 55 m depth in core A-KB 14/98 coincides
with a rather sharp lithological transition from clayey to fine-sandy
silt at w60 m depth. In core A-KB 13/98, silt dated to w70e60 ka
was deposited on top of cataclasite from the Mariastein landslide
event, with a potential paleosol suggested by weathering of the
clasts in the top w4 m. The sediment of this second lake phase,
which coincides with the MIS 4, again suggests cold climatic con-
ditions due to high deposition rates and the absence of organic
material. No evidence of the presence of direct glacial influence
during this time period was found in the sediments. This is in
agreement with information from Samerberg (Grüger, 1979) and
Mondsee (Drescher-Schneider, 2000; Krenmayr, 2000), two key
sites at the northern margin of the Eastern Alps, which also lack
evidence for a MIS 4 lowland glaciation. Such a glaciation, however,
has been reported for the Western Alps (e.g. Welten, 1982;



Table 4
Summary of luminescence and dosimetry data used for OSL-dating of fine-grain sediments from cores at the Unterangerberg terrace, with core names, sample depths,
concentrations of dose rate relevant elements (U, Th, K), dose rate (DR), equivalent dose (De) and resulting ages.

Sample Depth (m) U [ppm] Th [ppm] K [%] DR De Age (ka)

A-KB13/98 38.7 3.00 � 0.30 9.90 � 0.99 1.83 � 0.18 3.21 � 0.22 199.4 � 14.6 62 � 7
43.1 4.00 � 0.40 9.40 � 0.94 1.66 � 0.17 3.36 � 0.24 217.5 � 6.1 65 � 5
50.2 3.50 � 0.40 10.60 � 1.10 2.4 � 3.84 3.84 � 0.25 260.0 � 23.1 68 � 8

A-KB 14/98 54.85 4.10 � 0.41 15.00 � 1.50 2.51 � 0.25 4.51 � 0.29 293.3 � 7.9 65 � 5
62 4.10 � 0.41 12.70 � 1.27 3.10 � 0.31 4.77 � 0.32 504.1 � 49.9 106 � 13
70 4.00 � 0.40 12.50 � 1.25 2.62 � 0.26 4.35 � 0.28 429.6 � 31.2 99 � 10
74 4 � 0.40 12.50 � 1.30 2.9 � 0.30 4.63 � 0.29 482.2 � 44.5 104 � 12
78 3.6 � 0.36 13.60 � 1.36 3.20 � 0.32 4.77 � 0.30 527.3 � 56.1 111 � 14
82 3.6 � 0.36 13.60 � 1.36 2.62 � 0.26 4.84 � 0.30 507.7 � 34.4 106 � 8

A-KB 15/98 17.4 2.60 � 0.23 11.00 � 1.10 2.65 � 0.26 3.82 � 0.25 167.5 � 12.8 44 � 4
21.7 3.70 � 0.37 11.20 � 1.12 2.84 � 0.28 4.28 � 0.28 234.3 � 11.7 55 � 5
66.7 4 � 0.40 12.60 � 1.26 2.48 � 0.25 4.25 � 0.28 390.5 � 23.4 92 � 8
69.85 3.5 � 0.35 11.60 � 1.16 2.67 � 0.27 4.16 � 0.27 492.0 � 35.5 118 � 12
79.15 3.7 � 0.37 12.90 � 1.29 2.6 � 0.26 4.28 � 0.28 486.4 � 31.4 114 � 10

117 3.8 � 0.38 11.50 � 1.15 2.72 � 0.27 4.29 � 0.28 461.4 � 34.1 108 � 11
143 3.5 � 0.35 11.30 � 1.13 2.81 � 0.28 4.24 � 0.27 476.4 � 35.2 112 � 11
152 4.2 � 0.42 13.30 � 1.33 2.73 � 0.27 4.57 � 0.18 499.8 � 54.8 110 � 13

A-KB16/98 32.2 3.00 � 0.30 7.90 � 0.79 2.70 � 0.27 3.70 � 0.25 172.3 � 9.3 48 � 4
37 3.70 � 0.37 9.10 � 0.91 2.64 � 0.26 3.98 � 0.26 172.0 � 5.2 41 � 3
38.3 4.60 � 0.46 12.00 � 1.20 2.85 � 0.29 4.67 � 0.29 223.1 � 0.5 45 � 4
40.8 3.8 � 0.38 8.60 � 0.86 2.26 � 0.23 3.68 � 0.25 162.8 � 7.1 42 � 3
45.6 3.70 � 0.37 7.40 � 0.74 2.32 � 0.23 3.61 � 0.24 194.3 � 8.4 54 � 4

A-KB17/98 30.2 3.00 � 0.30 8.50 � 0.85 1.64 � 0.16 2.59 � 0.21 139.1 � 6.3 54 � 5
31.6 3.80 � 0.38 6.00 � 0.60 1.66 � 0.17 2.98 � 0.22 138.6 � 6.9 47 � 4
34.2 2.60 � 0.26 10.70 � 1.07 2.03 � 0.20 3.31 � 0.23 171.7 � 13.4 52 � 5
42.5 2.92 � 0.29 7.58 � 0.76 1.37 � 0.14 2.65 � 0.17 131.3 � 5.1 50 � 4
42.8 2.67 � 027 8.12 � 0.81 1.42 � 0.14 2.66 � 0.22 141.4 � 2.6 53 � 4

P-KB 01/06 198.65 3.6 � 0.36 11.3 � 1.13 2.58 � 0.26 4.07 � 0.27 462.1 � 16.2 114 � 8
201.9 3.5 � 0.35 11.1 � 1.11 2.42 � 0.24 4.02 � 0.26 460.2 � 17.4 115 � 9
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Schlüchter, 1991; Keller and Krayss, 1998; Link and Preusser, 2005;
Preusser et al., 2007).

The youngest, IRSL-dated lake phase at Unterangerberg
occurred during MIS 3, as indicated by luminescence and calibrated
radiocarbon data which are in stratigraphic agreement with each
Fig. 6. Time vs. elevation plot of the IRSL results obtained from fine-grain lacustrine
sequences at Unterangerberg, illustrating three lake phases and elevation levels.
other. At this time the basin was already filled with Pleistocene
deposits up to w575 m a.s.l. IRSL dates range between w52 and
43 ka and are in general agreement with early MIS 3 IRSL ages from
other lacustrine (e.g. Link and Preusser, 2005; Klasen et al., 2007;
Preusser and Degering, 2007; Anselmetti et al., 2010; Dehnert et al.,
2012; Lowick et al., 2012) and loess (e.g. Preusser and Fiebig, 2009;
Thiel et al., 2010, 2011) deposits in and north of the Alps. Sediments
of this third paleolake are preserved in cores A-KB 13/98, A-KB 14-
98, A-KB 15/98, A-KB 16/98 and A-KB 17/98, indicating that this lake
had probably a larger extent than the two previous ones. Abundant
zoological and botanical remains found in the mostly laminated silt
indicate a rich aquatic ecosystem under interstadial conditions.
4.4. Pollen record

The palynological investigations yielded a detailed picture of
changing environmental conditions as reflected in the vegetation
composition, ranging from dense coniferous forests to open grass
tundra. In the following, local pollen zones (LPZ) are described for
each core along an EeW-transect.

4.4.1. A-KB 13/98
Three of five samples from this core were pollen free. The

remaining samples rendered analysis difficult due to the presence
of HF-resistant minerals such as zircon. The lowermost samples at
51.51 and 46.05 m have low pollen sums and concentration values,
with arboreal percentages of 17 and 26%, respectively. Pinus is the
dominant species of 8.3 and 10.0%, respectively. The non-arboreal
pollen spectrum is dominated by grasses (Poaceae) and sedges
(Cyperaceae). Due to these results and the rather homogenous li-
thology of the fine-grain sections of this core, no further samples
were analysed.
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4.4.2. A-KB 14/98
Four samples were investigated, with the uppermost sample

(43.5 m core depth) being pollen-free. The two lowermost samples
at 50.20 and 48.35 m show a dominance of Pinus (28 and 41%,
respectively), with the arboreal pollen percentage of 58% in sample
48.35 m being only slightly below the threshold of 60% for forest
vegetation. The sample from 46.30 m has arboreal values of 31%,
dominated by Betula with 22% followed by Pinus with 6%.

4.4.3. A-KB 15/98 (Fig. 7a and b)
The sandy/silty lacustrine sequence between 15.5 m and 22.0 m

as well as the organic-free, massive silt between w79 and 152 m
depth were analysed. The samples of the upper part of this core
(19.4e16.0 m) yielded generally low pollen concentration values
ranging between w1000 grains/ml (17.2 m) to w40,000 grains/ml
(19.0m), whereas the pollen concentration reached values between
15,000 (20.3 m) and 280,000 grains/ml (20.0 m) in the middle part.
Some sections, however, are pollen-free (at 21.2, 21.6, 38.5, 52.7,
66.7, 79.1, 117.0, 143.0 and 152.0 m).

4.4.3.1. LPZ KB 15-1 (52.7 m): Picea- zone with Osmunda. This
pollen zone consists of one sample collected in an organic-rich
section of a thick diamictic layer. The total arboreal pollen con-
tent of >90% indicates a dense forest vegetation with 60% of Picea
pollen. This dominance of spruce, along with low percentages of
thermophilous tree species as well as spores of Osmunda, allows to
correlation of this sample with pollen zone PZ KB 17-2 (see below).
The diamictic material above and below this sample contains no
organic material.

4.4.3.2. LPZ KB 15-2 (20.4e19.55 m, 9 samples): BetulaePinus
cembraeJuniperus zone. This zone is characterised by high pollen
concentration values. The arboreal pollen contribution is as high as
w80%, with a dominance of Betula (up to 60%) and an almost
continuous presence of low Pinus cembra (Swiss Pine) values.
Further arboreal species are Pinus, Picea, Alnus, Larix, Hippophaë,
Juniperus and Ephedra. Small amounts of Quercus and Tilia are
considered to represent long-term transport or reworking of older
sediment. The herb spectrum is diverse, with Apiaceae, Cichor-
ioideae, Helianthemum, Ranunculaceae, Caryophyllaceae and
others. Among the zoological micro-remains, oocysts of Neo-
rhabdocoela (flatworm order) such as Microdalyellia armigera and
the rare findings of Gyratrix hermaphroditus and Strongylostama
radiatum are noteworthy.

4.4.3.3. LPZ KB 15-3 (19.55e16.60 m, 8 samples): herb zone. At
w19.5m there is a drop in the arboreal pollen percentages to values
<40% and in the overlying 20 cm to <20%. The remaining parts of
this pollen zone show high non-arboreal pollen percentages
dominated by grasses (Poaceae) and sedges (Cyperaceae) and
Artemisia. Other herbs including Chenopodiaceae, Thalictrum, Hel-
ianthemum, and Cichorioideae contribute to this moderately
diverse vegetation spectrum. The rare presence of Glomus, a fungus
growing on bare soil, and pre-Quaternary sporomorphs like Pina-
ceae, trilet spores, and Hystrichospaeridae indicate high input of
allochthonous material due to sparse vegetation cover.

4.4.4. A-KB 16/98 (Fig. 8a and b)
In this core, the sequence between 41.5 and 30 m was contin-

uously sampled at 0.1e0.4 m intervals. Further samples were
collected at 45.6, 43.2, 42.8, 42.5 and 42.2 m. The pollen concen-
tration in this sediment is distinctively lower than for instance, in
A-KB 15/98, ranging between w400 and 9000 grains/ml. However,
these values vary widely throughout cored section, from zero to
>90,000 pollen grains/ml.
4.4.4.1. LPZ KB 16-1 (41.5e40.9 m): PinusePicea zone with Betula,
Salix and Cyperaceae. Arboreal pollen percentages in this zone
range between 30 and 60%, with Pinus, Picea, Betula and Salix. High
proportions of grasses (Poaceae) and sedges (Cyperaceae) were
observed, next to a relatively diverse herbal flora. Moss fragments
and Gaeumannomyces, a fungal parasite living on Carex, indicate a
lakeshore habitat.

4.4.4.2. LPZ KB 16-2 (40.9e38.0 m): treeless zone with partly very
low pollen concentrations. Arboreal pollen percentages are low and
the herbal pollen spectrum is dominated by Poaceae and Artemisia.
In the upper part of the zone, at w39e38 m depth, the pollen
concentration increases slightly and a rich aquatic fauna and flora
appears, indicating improving ecological conditions. A high amount
of butterfly wing scales in the sample at 39.5 m depth, which is
pollen-free, is noteworthy.

4.4.4.3. LPZ KB 16-3 (38.0e36.5 m): BetulaeJuniperusePinus cembra
zone. In this zone high pollen concentration values of up to
80,000 grains/ml were observed. Low birch values are accompanied
by Pinus, Juniperus and Pinus cembra. Picea is almost entirely absent.
Herbal and aquatic species are abundant. However, compared to
the previous pollen zone, Artemisia values are low.

4.4.4.4. LPZ KB 16-4 (36.5e33.0 m): PinuseBetula zone with
Cichorioideae. In this zone arboreal pollen values remain low,
ranging at values between w15 and 30%, thus indicating an open
landscape with little presence of trees and conditions remaining in
favour of a relative diverse herbal flora and aquatic organisms.
However, pre-Quaternary sporomorphs increased indicating a
slowly shrinking vegetation cover.

4.4.4.5. LPZ KB 16-5 (33.0e31.4 m): PinuseBetula zone with Cichor-
ioideae. Compared to the previous zone, arboreal values slightly
increase in this zone, with w40% at 32.5 m. The tree species
spectrum is reduced to Pinus and Betula. Picea, Pinus cembra and
Salix disappeared. The herbal diversity is very poor, and so is the
diversity of aquatic organisms. Remarkably, high amounts of pre-
Quaternary sporomorphs which clearly outnumber the concen-
tration of the pollen grains indicate increasing sedimentation of
allochtonous material as a consequence of a decreasing vegetation
cover due to less favourable environmental conditions.

4.4.4.6. LPZ KB 16-6 (31.4e30.2 m): zone with herbs and moss re-
mains. Arboreal pollen values decrease again to w30% and Pinus
and Betula are accompanied by very small percentages of Picea. The
herbal flora, however, recovered its diversity slightly, as well as the
aquatic taxa. The number of pre-Quaternary sporomorphs remains
high. In this zone, relatively high amounts of moss leaves were
found. Pollen concentration values reach a minimum in this zone
but show large changes: the samples between 28.3 and 29.5 m
contain no pollen, while the sample from directly below, at 29.7 m,
contains w22,000 grains/ml. At 29.9 m, the concentration drops
again to 383 grains/ml.

4.4.5. A-KB 17/98 (Fig. 9a and b)
This core offers probably the most complete pollen sequence. 63

samples were analysed between 25.95 and 46.2 m depth, with a
gap from 26.42 to 30.10 m due to core loss during drilling.

4.4.5.1. LPZ KB 17-1 (46.2e44.65 m): forest with Pinus cembra, Pinus
and Betula. This zone shows arboreal pollen percentages of almost
90%, with forest vegetation mostly composed of Pinus (generally
>60%) and Pinus cembra (up to 35%). Pinus stomata are abundant, as
well as pits of Pincaceae and charcoal. Picea is present with values



a

Fig. 7. a: Reduced pollen diagram of core A-KB 15/98 with the most important trees, shrubs, and upland herbs and selected dates. The thin black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are
excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages. b: Reduced pollen diagram of core A-KB 15/98 with the most important Pteridophyta and NPP and selected dates. The thin
black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages.
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Fig. 8. a: Reduced pollen diagram of core A-KB 16/98 with the most important trees, shrubs and upland herbs and selected dates. The thin black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are
excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages. b: Reduced pollen diagram of core A-KB 16/98 with the most important Pteridophyta and NPP and selected dates. The thin
black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages.
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Fig. 9. a: Reduced pollen diagram of core A-KB 17/98 with the most important trees, shrubs and upland herbs and selected dates. The thin black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are
excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages. b: Reduced pollen diagram of core A-KB 17/98 with the most important Pteridophyta and NPP and selected dates. The thin
black lines represent the pollen percentages (10� exaggerated). Taxa shown as gray curves are excluded from the pollen sum. Dates indicated as ka are OSL-dates, those indicated as BP are radiocarbon ages.
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between 4 and 40%. The Picea-peak (at 45.6 m), along with some
thermophilous taxa (Quercus, Ulmus, Tilia) could be the result of
redeposition. A small Betula-peak at the end of this zone is
accompanied by Fraxinus, Acer, Corylus and Fagus.

4.4.5.2. LPZ KB 17-2 (44.65e42.20 m): PiceaeAlnus-forest with
Osmunda. This pollen zone is dominated by Picea, with percent-
ages of up to w70%. The zone can be divided into two subzones: in
LPZ KB 17-2a (44.65e43.40 m) Picea (50e60%) is accompanied by
Alnus (up to w15%) and a low presence of thermophilous trees
(Quercus, Ulmus, Tilia and Corlylus). The numerous scalariform
perforation plates indicate the presence of decomposed Alnus-
wood. Pinus values remain low throughout this entire zone and
range betweenw15 and 35%. The values of monolete spores and of
Lycopodium annotinum (44.60 m) are very high in this phase, and
there is a high presence of Osmunda with up to 35% of the total
pollen sum. In LPZ KB 17-2b (43.40e42.20 m), Alnus and Osmunda
retreat, while Picea keeps expanding. This is also expressed by an
increasing number of stomata findings. While the conditions for
Picea growth seem to improve, the more thermophilous trees
disappear.

4.4.5.3. LPZ KB 17-3 (42.20e41.15 m) BetulaePinusePicea zone with
Cyperaceae. The pollen presence in these sediments is very low,
caused by a very high density of indestructible organic remains. The
onset of the subzone KB 17-3a (42.20e41.80 m) shows a dramatic
drop in tree pollen from w80 to 5% within w20 cm of sediment,
mainly caused by the rapid decline of Picea. At the same time,
Cyperaceae and Poaceae values reach >80%. Herbs increase in
species number and percentage. Arthrinium puccinioides, a sapro-
phyte on different species of Cyperaceae and Poaceae (Scheuer,
1996), underlines the importance of a vegetation cover rich in
sedges and grasses. In subzone KB 17-3b (41.80e41.15 m) the open
land vegetation is replaced first by a simultaneous expansion of
Betula and Pinus, followed by a strong increase of Picea. This
sequence may reflect a short re-expansion of forest vegetation.

4.4.5.4. LPZ KB 17-4 (41.15e39.7 m): Cyperaceae zone with mosses.
With exception of willow (Salix), trees seem to have disappeared
during this zone. The NAP is dominated by Cyperaceae and Poaceae,
accompanied by a variety of different herb types, by Selaginella
selaginoides, Gaeumannomyces, moss leafs and a high presence of
Glomus and pre-Quaternary sporomorphs.

4.4.5.5. LPZ KB 17-5 (39.7e35.2 m): Cyperaceae zone with very low
pollen sums. This zone is situated in debris-flow deposits. Very low
pollen concentrations and a reduced diversity of the pollen spec-
trum were found in all samples analysed from this zone.

4.4.5.6. LPZ KB 17-6 (35.2e32.6 m): BetulaePinusePicea zone.
The pollen concentration remains very low, but the pollen sums
increase due to a higher pollen density. There are representatives of
a modest shrub flora, including Ephedra, Hippophaë, Juniperus and
Salix, as well as some low values of Betula, Pinus, Picea and Alnus.
However, these might be the result of reworking of older sediment,
as suggested by individual findings of Quercus, Fraxinus, Corylus and
Fagus pollen. Reworking is also indicated by an increased number of
pre-Quaternary sporomorphs.

4.4.5.7. LPZ KB 17-7 (35.6e30.1 m): Herb-zone. In this zone the
trees and shrubs retreat in favour of grasses (Poaceae) and helio-
philous herbs such as Artemisia, Helianthemum and Thalictrum.
Reworking of sediment continues, as indicated by pre-Quaternary
sporomorphes which, however, is less abundant than in the pre-
vious zone.
4.4.5.8. LPZ KB 17-8 (26.42e25.95 m): PinusePicea zone with
Apiaceae. After a gap between 30.0 and 26.42 m due to core loss,
this uppermost zone occurs below the erosional gap beneath the
overlying gravel. The sediment is peat, with both moderate pollen
concentrations and pollen sums. Arboreal pollen values range from
w10 to 40%, with Pinus and Picea as dominating species. The herbal
flora is rich, with remarkably high values of Apiaceae (carrot
family).

4.4.6. Interpretation of the pollen data
Large portions of the cores A-KB 13/98, A-KB 14/98 and A-KB 15/

98 contain no or only very few pollen grains. In core A-KB 13/98,
three of five samples are pollen-free whilst the other two show
extremely low pollen concentrations. The highest tree pollen per-
centages are due to Pinus, with 8% (51.51 m) and 10% (46.05 m).
Among the herbs, grasses (Poaceae) and sedges (Cyperaceae) are
dominant. Altogether, the results from core A-KB 13/98 indicate a
relatively cool interstadial climate, and an open unforested
landscape.

Local pollen zones with low concentrations (LPZ KB 15-3; KB 16-
5, 16-6; KB 17-5, 17-6, 17-7) are characterised by arboreal pollen
percentages not exceeding 40% and low diversity of herb species
indicating open vegetation with scattered individual trees or small
tree stands. The presence of some pollen grains of thermophilous
trees such as Quercus, Fagus, Fraxinus, and Corylus (see LPZ KB 17-6),
together with an increased frequency of pre-Quaternary spor-
omorphs are indicators of re-worked older sediment (Pini et al.
2009; Dehnert et al., 2012).

A nearly complete interstadial is preserved in the lower part of
core A-KB 17/98, i.e. LPZ KB17-1 and KB 17-2. It starts with a
reforestation phase (LPZ KB 17-1) with Pinus sp. P. cembra, Betula
and Salix, but reworked pollen grains (Quercus, Ulmus, Tilia, etc. as
well as Lycopodium annotinum) are also present. The presence of
P. cembra is remarkable, because today P. cembra grows near the
timberline, especially in the Central Alps. In older periods this
species is recorded as a pioneer tree at the transition from stadials
or glacials to interstadials or late glacial environments (e.g.
Drescher-Schneider, 2000; Wick, 2006; Kaltenrieder et al., 2006)
indicating rather continental climatic conditions (Körner, 2003).

In this pollen record the forest succession continues with a
rather weak birch (Betula) development (end of LPZ KB 17-1) and
the rapid spreading of spruce (Picea) at the transition from LPZ KB
17-1 to LPZ KB 17-2a. This rise is accompanied by thermophilous
taxa like Quercus, Ulmus, Tilia, Osmunda and Alnus, indicating that
the warmest phase of the interstadial was during its early part. The
sediment in this period is a fine grained gyttja. Later, the sediment
changes towards a calcareous gyttja (including oogonia of Char-
aceae). At the same time, warm-demanding species decrease or
totally disappear in LPZ KB 17-2b and the forest vegetation is almost
entirely dominated by spruce and some pine. The presence of
Lycopodium annotinum spores in both subzones indicates humid as
well as acidic coniferous forest habitats during the interstadial
forest phase. The single findings of Fagus are interpreted as long-
term transport.

The presence of Osmunda in this pollen profile, especially in the
interstadial as reflected in LPZ KB 17-2a, is remarkable, as it offers
chronological constraints. Late Pleistocene findings of Osmunda
spores are also reported from the northern alpine foreland at
Mondsee (Drescher-Schneider, 2000), Samerberg (Grüger, 1979),
Füramoos (Müller et al., 2003), and Niederweningen (Anselmetti
et al., 2010; Dehnert et al., 2012). At these sites, a dense forest
vegetation dominated by spruce and the presence of Osmunda as
well as the absence of Abies characterised the climatic conditions
during the second Early Würmian interstadial. A comparison of
the Unterangerberg interstadial with the second Würmian
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interstadial e.g. at Mondsee and Samerberg (the latter being only
w30 km away from Unterangerberg) reveals striking similarities
and leads to the conclusion that the second Early Würmian
interstadial is preserved in the Unterangerberg record. Müller
(2000) and Müller and Sánchez Goñi (2007) correlated the sec-
ond early Würmian interstadial (related to the Odderade inter-
stadial in northern Europe) to the MIS 5a which is dated to
between w81.5 and 73 ka.

The diamictic layer in core A-KB 15/98 contains an organic-rich
sediment horizon at 52.6 m depth (LPZ KB 15-1) which has a pollen
assemblage nearly identical to the one found in PZ 17-2a. Together
with the observation that the samples above and below this hori-
zon are pollen-free this indicates further that the material is likely
reworked.

The sediment of LPZ KB 17-3a is rich in organic matter near the
basis (LPZ KB 17-3 and 4), with seeds (undetermined) together with
a large amount of charcoal particles. The pollen content of this
lignite layer reflects the onset of a stadial/interstadial sequence
with open vegetation, dominated by grasses and sedges infected
with the fungal species Arthrinium puccinioides and Gaeumanno-
myces. In the overlying, massive and organic-bearing lake sediment
layer, the succeeding development to a scattered birch-pine forest
and finally a spruce forest (LPZ KB 17-3b) is represented. The
following organic-rich section (A-KB 17/98, 41e39.8m) is the lower
portion of a diamict layer classified as mudflow deposit. It contains
pollen from possibly cold stadial climatic conditions, with grass-
land and weak shrub vegetation with willow (LPZ KB 17-4). The
interstadial in KB 17-3b might be correlated with LPZ KB 16-1. The
upper part of this diamict layer (up to 35 m core depth) (LPZ KB 17-
5), is almost free of pollen, with a spectrum indicating stadial
conditions. The top of the layer (35.2e24.0 m) has again a very low
pollen concentration. However, the pollen spectrum here, however,
seems to reflect slightly improved environmental conditions. Due
to the fact that the lithology of this diamict is rather homogenous
and only the organic macro- and micro-remains are present espe-
cially near the basis, allow this sediment to be related to a debris-
flow. It is the presence of macro-remains such as seeds and
mosses that render a glacial origin of the deposit highly unlikely,
because these remains are too fragile to be preserved in a glacial
environment.

Another well-developed interstadial is identified in PZ16-3, PZ
15-2 and potentially in A-KB 14/98 (46.3 m), characterised by
relatively high values of Betula and the presence of Pinus cembra.
This interstadial could also be present in PZ 17-6 and A-KB 14/98
(50.2 and 46.05 m).

PZ 16-3 and PZ 15-2 are followed by zones with decreasing
arboreal pollen values (PZ 16-4, PZ 15-3) indicating absence and/or
very low abundance of trees and the existence of a relatively
diverse herbal flora and aquatic life. While core A-KB 15/98 ends
with this zone due to erosion, core A-KB 16/98 contains another
pollen zone following this cool interstadial, with slightly higher
arboreal pollen percentages but still a very limited herbal spectrum
and some indications of pre-Quaternary elements (PZ 16-5). The
interpretation of this zone is difficult as it is likely that also at least
some arboreal pollen are re-deposited during cold conditions with
poor vegetation cover. However, the pre-Quaternary sporomorphs
increase to large numbers during the following PZ 16-6, indicating
an ongoing climatic deterioration. A similar picture is given by PZ
17-7.

In core A-KB 17/98 there is a last organic-rich layer below the
gravel layer which underlies the LGM till. This PZ 17-8 has again a
relatively high pollen concentration, with arboreal pollen indi-
cating scattered patches of coniferous tress (Pinus and Picea). The
rich herbal flora points to climatic conditions that are found at the
present-day timberline.
5. Discussion

The drill cores provide unique insights into the sedimentation
history of the terrace of Unterangerberg and preserve a rare inner-
alpine record of the Upper Pleistocene (Figs. 10a, b and 11). The
paleo-topography is strikingly different from themodern landscape
of this terrace, with up to ca 200 m of Pleistocene sediments
deposited in a depression. Lithological, palynological and chro-
nostratigraphical data provide a means to correlate between indi-
vidual cores along a NE-SW transect (Fig. 10a).

5.1. Unit I: oldest glacial till

Oligocene conglomerates and marls form the base of the Qua-
ternary in the study area. In the southwest of the terrace where the
bedrock is at its highest elevation (w630 m a.s.l.), it is directly
overlain by LGM till (e.g. core A-KB 18/98). Among the cores
penetrating pre-LGM lacustrine sequences only A-KB 17/98
reached the base of the Pleistocene fill, with a thick till at the base.
Given the Late Pleistocene age of the overlying deposits, this till is
possibly from the penultimate (Riss) glaciation. This glaciation was
slightly more extensive than the LGM in the Eastern Alps (e.g.
Ehlers and Gibbard, 2004; Doppler et al., 2011; van Husen and
Reitner, 2011) and likely contributed to the sculpturing of the
paleo-topography at Unterangerberg which then formed the
framework for all subsequent sedimentation processes.

5.2. Unit II: Early Würmian lake phase 1 (early MIS 5d)

The oldest fine-grained sediments are found at the base of P-KB
01/06 and in the lower parts of cores A-KB 14/98 and A-KB 15/98.
The luminescence ages indicate a latest Eemian (MIS 5e) to earliest
last glacial (MIS 5d) deposition, however, the high sedimentation
rates and the absence of organic remains argue for a MIS 5d
deposition. After the demise of the Eemian this first stadial was a
phase of dramatic climate deterioration leading to collapse of for-
ests in the northern alpine foreland (Grüger, 1979; Drescher-
Schneider, 2000; Müller, 2000; Müller et al., 2003) and the onset
of loess deposition (Zöller et al., 1994; Thiel et al., 2011). In the
Western Alps there is evidence for a pronounced glacier advance
into lowland altitudes at that time (e.g. Preusser et al., 2003), while
in the Eastern Alps only strong fluvial aggradation is documented
(Reitner, 2005; Reitner et al., 2010).

5.3. Unit III: Butterbichl paleo-landslide (early MIS 5d)

Core P-KB 01/06 comprises the complete stratigraphy of the
landslide deposits as well as their lacustrine base and the overlying
LGM till. The latter offers a maximum age of the event which has
been known since the first investigations of Penck and Brückner
(1909). The two luminescence ages at the bottom of the core
yield values of w114 and 113 ka which e considering the age un-
certainties e again indicates MIS 5e or MIS 5d deposition. As for
unit II, deposition under stadial (i.e. MIS 5d) conditions is pre-
sumed, although part of the lacustrine sequence may have been
eroded during the emplacement of the landslide (Gruber et al.,
2009).

The MIS 5d luminescence ages are in fairly good agreement with
data obtained from Entrische Kirche and Spannagel caves, both
within 40e50 km of Unterangerberg. At these sites, U-series dated
speleothems show a major drop in d18O values at w119e117 ka
reflecting strong cooling at the end of the Eemian interglacial
(Spötl et al., 2006; Meyer et al., 2008). The Butterbichl landslide
with its estimated total volume of w300 Mio m3 is one of the
largest mass movements known in the Eastern Alps (Gruber et al.,



a

Fig. 10. a: Schematic overview of cores along a NEeSWeNW profile across the Unterangerberg terrace, with core lithologies, absolute ages (combined radiocarbon and luminescence data), pollen samples (black bars right to core depth
scale), and chronostratigraphical units (I to IX, see text for details). b: Overview of core lithologies and comparison of radiocarbon (cal ka BP, black numbers) and luminescence (ka, red dots and red numbers) dating results for
Unterangerberg cores A-KB 14/98, A-KB 15/98, A-KB 16/98 and A-KB 17/98. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2009). Its deposition at the onset of the last glacial period could
have been climatically triggered, although earthquakes should also
be considered as a cause given the neotectonic activity of the
nearby Inntal Fault.

5.4. Unit IV: Mariastein paleo-landslide (Early MIS 5d)

The second landslide at Unterangerberg occurred onlyw7 kmW
of the Butterbichl, near the village of Mariastein. First mentioned by
Penck and Brückner (1909), this event is less well studied than the
Butterbichl landslide (Ampferer, 1922; Heissel, 1951). The recon-
struction of the escarpment leads to the conclusion that this event
was of a similar dimension as the Butterbichl landslide (Gruber,
2008). Unfortunately, none of the cores penetrated the landslide
cataclasite. Field evidence, however, indicates deposition of the
Mariastein landslide onto Pleistocene fine grain lacustrine sedi-
ments (Heissel, 1951; Gruber, 2008). Lake sediments were then
deposited on top of the cataclasite (core A-KB 13/98) and dated to
w68e62 ka, i.e. MIS 4. Further, strongly weathered clasts in the
upper part of the cataclasite might be relics of paleosol. In this case,
the landslide event was followed by a period without sedimenta-
tion, possibly under interstadial conditions, before the area was
floodedbya lake. Consequently, theMIS 4 ages should be considered
as minimum ages. The strong similarities between the Butterbichl
and theMariastein landslide events point at a synchronicity of these
two events (Gruber, 2008), although this cannot be verified using
present chronological techniques.

5.5. Unit V: Early Würmian lake phase 2 (Late MIS 5d)

After the two landslide events lacustrine deposition continued
under stadial conditions untilw100 ka (cores A-KB 14/98 and A-KB
15/98). In contrast to evidence for a lowland glacier advance in
northern Switzerland at w103 ka (Preusser et al., 2003; Preusser
and Schlüchter, 2004), the character of the lake sediments at
Unterangerberg argues against ice in the lower Inn valley during
MIS 5d.

5.6. Unit VI: 2nd Early Würmian Interstadial (EWI) (MIS 5a)

This unit is characterised by a succession of organic-rich
lacustrine layers between w583 and 589 m a.s.l. in core A-KB
17/98, with a paleosol-peat-lake sediment-peat sequence between
w46 and 40 m depth and a till at its base attributed to MIS 6. Unit
VI comprises a long forest interstadial (pollen zones 17-1 and 17-2)
followed by a stadial with open vegetation (PZ 17-3). Between 44
and 40 m, changes in the organic carbon content coincide with
changes in vegetation composition as shown by pollen zones 17-1
and 17-2 (Fig. 9a and b). The vegetation of this interstadial was
very similar to what is known from the second Early Würmian
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Interstadial, e.g. from Mondsee (Drescher-Schneider, 2000) and
Samerberg (Grüger, 1979), correlated to MIS 5a and dated at
w81.5e73 ka (Müller and Sánchez Goñi, 2007). However, there are
two OSL ages (core A-KB 17/98, at 42.5 and 41.8 m depth) from the
lacustrine sequence of this forested interstadial at Unterangerberg
indicating deposition of the sediment between w57 and 46 ka, i.e.
early MIS 3. This, however, is in conflict with the palynological
account and therefore requires closer investigation: high-
resolution gamma spectrometry of samples close to these two
luminescence-dated samples ages, shows that age estimation due
to radioactive equilibrium in the U-decay series of these two
samples can be excluded (F. Preusser, pers. com. 2011). No
anomalous fading of the luminescence signal was detected, as
outlined in Section 1.1.2 showed. Furthermore, in order to yield a
signal loss that would account for an age underestimation of
w30 ka as in this case, a rather high g-value of w4.5% would be
needed. We also rule out an underestimation of water content as a
cause for these young ages. In order to obtain a depositional age in
agreement with the palynological age, i.e. MIS 5a, an unrealisti-
cally high paleo-water content of 80e90% would be required. This,
together with the facts that the respective luminescence ages are
in agreement with the other luminescence data from this core and
that the calibrated radiocarbon data are in general agreement with
these other luminescence ages, leaves little doubt about the val-
idity of the data. On the other hand, dated wood pieces from the
two organic layers in core A-KB 17/98 (44e40 m) and the under-
lying possible fossil soil (A_KB 17/98, 46.1 m, see Table 3) resulted
in infinite ages >w58e54 ka, indicating at a deposit prior to this
time.

In fact, MIS 3 interstadials comparable in their paleovegetation
toMIS 5a or 5c are completely unknown from any other alpine sites
so far. For instance, studies at Gossau (Swiss northern alpine fore-
land) indicate mean July temperatures of w10e13 �C (Jost-Stauffer
et al., 2005; Coope, 2007) and a forest tundra vegetation with
typically no more than w20e40% arboreal pollen at w50e45 ka
(Burga, 2006; Drescher-Schneider et al., 2007; Dehnert et al.,
2012). An interstadial with an open Picea-forest at w45 ka is
documented from the mammoth site of Niederweningen, w40 km
NWof Gossau (Drescher-Schneider et al., 2007; Hajdas et al., 2007;
Preusser and Degering, 2007). The comparison of these data with
those from our newwork at Unterangerberg leads to the conclusion
that the warm forest interstadial in this unit represents MIS 5a
rather than MIS 3 as suggested by two IRSL dates. The apparent
contradiction between the luminescence and the palynological
data remains unsolved.

5.7. Unit VII: Early Middle Würmian (MIS 4) stadial conditions

In core A-KB 14/98 the MIS 5d clayey-silty sediments are topped
by a sequence of sandy silt up to w583 m a.s.l., with an abrupt
transition at 564.47 m. In the upper part, this layer shows occa-
sional lamination. An IRSL age of w65 ka indicates deposition
during the Early Middle Würmian (MIS 4), i.e. the sharp boundary
represents a hiatus ofw40 ka. In the neighbouring core A-KB 13/98
there is a similar layer which has a base situated at the same
elevation. Here, however, the lake sediment was deposited on top
of the Mariastein landslide deposit and is overlain by fine sand of
unknown age. The sediments from these two cores indicate a lake
during MIS 4 and a strongly reduced vegetation cover as indicated
by the pollen. The thick diamict layer in core A-KB 15/98 is in the
upper part at the same elevation as the Early Middle Würmian
lacustrine sequence. This diamict is interpreted as a debris-flow
event during MIS 4, because (i) it eroded and redeposited an
organic layer of the 2nd EWI, and (ii) it contains wood that is dated
to >60 ka.
In summary, Unit VII recorded very poorly developed vegetation
and enhanced surface processes during MIS 4. There is no evidence
for a glaciation during this time.

5.8. Unit VIII: Middle Würm (MIS 3) stadial/interstadial conditions

The youngest lake phase at Unterangerberg is the best preserved
one and was identified in five cores. It is also the phase of the
highest lake level (slightly over 600m a.s.l.) (see Fig. 11). On basis of
the cores and the chronology, the highest and youngest point with
lake sediments is situated at 604 m a.s.l. (A-KB 17/98) where the
deposition of a fine grained gyttja indicates a littoral position. The
deepest MIS 3 lake deposits are situated at w578 m a.s.l. (A-KB 15/
98). The sequence continues up to w582 m a.s.l., where the sedi-
ment has roughly the same age as the above-mentioned gyttja.
Regardless of the erosional impact of the following LGM glaciation
which certainly removed MIS 3 sediments to some extent, a water
depth ofw20 m is deduced from these observations (by comparing
the elevations of the topmost lake sediments in the cores A-KB 17/
98 and 15/98). Whether this represents the maximum depth of the
lake at that time remains unknown. However, due to the previous
sedimentary filling of the basin (two landslides, aggradation during
MIS 5a) a much deeper MIS 3 lake seems highly unlikely.

Luminescence and calibrated radiocarbon ages of w55e45 ka
indicate a Middle Würm (MIS 3) age of this unit. The plant re-
mains point to a high productivity of the lake, with abundant
Characeae. Pollen data indicate open vegetation dominated by
grasses and herbs during stadial conditions. Tree pollen values
range between 10 and 20%, with Pinus and Betula and low values of
Picea. Interstadials were characterised by open forests (w30e50%
AP) and were dominated by Pinus. Although the available chrono-
logical data do not allow the unequivocal correlation of this warm
phase identified in A-KB 15/98 (PZ 15-2) and A-KB 16/98 (PZ 16-2)
to a particular interstadial in Greenland. GI 14, however, is the most
likely candidate for this warm phase. This interstadial started
54.2 ka ago and was the longest one in MIS 3 (until 49.5 ka;
Svensson et al., 2008). GI 14 is also recorded in the oxygen isotopic
composition of stalagmites from Kleegruben Cave, located 55 km
SW of the study area (Spötl and Mangini, 2002; Spötl et al., 2006).

Middle Würmian vegetation records are only poorly preserved
in previously studied sites in the northern Alpine foreland, such as
Samerberg (Grüger, 1979), Mondsee (Drescher-Schneider, 2000),
Jammertal (Müller, 2000) and Füramoos (Müller et al., 2003) and
none of these sites has an independent chronology. In the Swiss
alpine foreland MIS 3 paleovegetation records are more common,
including at Niederweningen and Gossau. At the mammoth site in
Niederweningen arboreal pollen percentages of 20e40% suggest
open grassland vegetation w50e45 ka ago. Similar to Unter-
angerberg, the interstadial forest vegetation was characterised by
Pinus, Betula and Picea (Drescher-Schneider et al., 2007; Hajdas
et al., 2007; Preusser and Degering, 2007). Near Gossau, south-
east of Zurich, a sequence of organic-rich sediments deposited on
top of delta foresets contains an interstadial complex ranging from
tundra to woodland (Preusser et al., 2003). While the two upper
lignite layers, dated at w48e32 ka, suggest tundra to steppe
vegetation, the lower lignite layer (w50 ka) was characterised by a
forest dominated by Picea and Pinus (Welten, 1982; Schlüchter
et al., 1987; Preusser, 1999; Preusser et al., 2003). Fossil beetle as-
semblages indicate mean July temperatures ofw13 �C for the lower
lignite (Jost-Stauffer et al., 2005), ca 5 �C lower than today.

5.9. Unit IX: Proglacial and glacial deposits (LGM)

Today’s surface of the Unterangerberg terrace is mainly
composed of glacial till of the LGM. This till overlies glaciofluvial
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gravel which is attributed to strong aggradation of the Inn River as a
result of progressive glacier advance from the tributaries into the
main valleys. Radiocarbon ages of w41e40 cal ka BP (A-KB 16/98;
29.8 and 29.9 m) represent a maximum age for the onset of this
phase. The transition from the Middle to the Upper Würmian, i.e.
from MIS 3 to 2 in the Alps, was defined at Baumkirchen, w35 ka
SW of Unterangerberg. At this location, a coarsening-up sequence
of laminated silt, sand, gravel and till is exposed, with radiocarbon
ages of w31e26 cal ka BP obtained from the lacustrine silt (Fliri,
1973). At Unterangerberg, the amount of erosion of pre-LGM sed-
iments by the advancing ice is unknown but was probably only
minor on the terrace compared to the central Inn valley.

The Unterangerberg record presented in this study contributes
an inner-alpine perspective to the Early to Mid Late Pleistocene
palaeoclimate reconstructions in Europe. The glacial inception at
w115e105 ka at Unterangerberg coincided with a drop in oxygen
isotope values in Greenland ice (Svensson et al., 2008; Wolff et al.,
2010) and in stalagmites from the Alps (Spötl and Mangini, 2006;
Meyer et al. 2008; Boch et al., 2011) and southern Europe (e.g.
Drysdale et al., 2005, 2007). For this first Late Pleistocene stadial
decreasing temperatures and precipitation sums, steep NeS vege-
tation gradients and a retreat of the forest line to south-central
Europe (e.g. Caspers and Freund, 2001; Sánchez Goñi et al., 2005;
Müller and Sánchez Goñi, 2007; Brewer et al., 2008), as well as
loess deposition in Eastern European sites (e.g. Gerasimenko, 2006)
are reported. During the following MIS 5 interstadials (i.e. MIS 5c
and MIS 5a) forests re-established throughout Europe, however,
under increasingly continental climatic conditions (e.g.
Emontspohl, 1995; Caspers and Freund, 2001; Kühl et al., 2007).

MIS 4 (w70e60 ka) was a generally cold period in Europe, with
forests only remaining in the southern and south-easternmargin of
the continent (Fletcher et al., 2010) and extensive loess accumu-
lation under permafrost conditions (Frechen et al., 2003; Rousseau
et al., 2007). Evidence for a major Alpine lowland glaciation is
emerging in the Western Alps (Preusser, 2004; Preusser and
Schlüchter, 2004; Preusser et al., 2007) but is absent in the
Eastern Alps. At Unterangerberg, a lakewas present during the time
period w70e60 ka, recording a sparsely vegetated environment
characterised by enhanced down-wasting processes.

During MIS 3, changing stadial/interstadial conditions
continued to dominate the climate in Europe. These large swings
are reflected in synchronous changes of the stable isotope com-
positions in Greenland (Svensson et al., 2008) and e as docu-
mented for the prominent interstadial 14 e in the Alps (Spötl and
Mangini, 2006). D/O-cycles had a drastic impact on the European
vegetation (Vandenberghe et al., 2004; Fletcher et al., 2010;
Harrison and Sánchez Goñi, 2010; Van Meerbeeck et al., 2011) with
strongly reduced vegetation and extensive loess deposition under
stadial conditions (Fletcher et al., 2010). Interstadials gave rise to
grassland, shrub tundra and extensive forest-tundra in northern
and NW Europe, open boreal forest in W Europe and north of the
Alps and open temperate deciduous forests in southern Europe
(Caspers and Freund, 2001; Tzedakis 2005; Fletcher et al., 2010).
MIS 3 interstadial temperature reconstructions indicate very cold
winters and relatively warm summers, with reconstructed mean
temperatures of the warmest month ranging between w8 and
16 �C (e.g. Huijzer and Vandenberghe, 1998; Kasse et al., 1998;
Jost-Stauffer et al., 2005; Coope, 2007; Engels et al., 2008a). Some
studies, however, reported present-day Early MIS 3 summer tem-
peratures e.g. from NW Europe (Coope, 2002) and north Scandi-
navia (Engels et al., 2008b; Helmens and Engels, 2010; Helmens
et al., 2012). At Unterangerberg, MIS 3 (w55e45 ka) interstadial
conditions were characterised by a mix of open conifer forests and
grassland, similar to the vegetation at the present-day alpine
timberline.
6. Conclusions

The investigations carried out at the terrace of Unterangerberg
result in the first detailed Late Pleistocene record of sedimentation
and paleoenvironments inside the Alps for the time period w118e
40 ka, with a hiatus between w100 and 80 ka. Three lake phases
could be identified, reflecting both stadial and interstadial climatic
and environmental conditions throughout the early and middle
Würmian. The warmest interstadial found in our record was
characterized by conifer forests and based on pollen data is corre-
lated with the second early Würmian Interstadial (MIS 5a). In-
terstadials of the first half of the MiddleWürmian (w55e45 ka) are
chronometrically well constrained, with open forests and mixed
grassland vegetation. Stadials were generally characterised by high
sedimentation rates, loworganic deposition and cold-adapted open
(tundra) vegetation. For the entire period represented by these
sediments there is no evidence of ice in the lower Inn valley,
consistent with the results of a previous study from nearby valleys
(Reitner, 2005).
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