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Abstract. The non-thermal particle spectra responsible for the emission from
many astrophysical systems are thought to originate from shocks via a first
order Fermi process otherwise known as diffusive shock acceleration. The
same mechanism is also widely believed to be responsible for the production
of high energy cosmic rays. With the growing interest in collisionless shock
physics in laser produced plasmas, the possibility of reproducing and detecting
shock acceleration in controlled laboratory experiments should be considered.
The various experimental constraints that must be satisfied are reviewed. It
is demonstrated that several currently operating laser facilities may fulfil the
necessary criteria to confirm the occurrence of diffusive shock acceleration
of electrons at laser produced shocks. Successful reproduction of Fermi
acceleration in the laboratory could open a range of possibilities, providing
insight into the complex plasma processes that occur near astrophysical sources
of cosmic rays.
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1. Introduction

The theory of diffusive shock acceleration was independently put forward in four publications
in the late seventies [2, 4, 10, 27] as a mechanism to account for the non-thermal emission
from astrophysical shocks and also as a possible explanation for the origin of cosmic rays.
A particularly attractive feature of this process is that, in the simplest test-particle theory,
the accelerated particles naturally form power-law spectra consistent with those inferred from
multi-wavelength measurements. Despite the success of this theory in explaining observations
covering a broad range of astrophysical phenomena, from interplanetary and supernova remnant
shocks to radio galaxy hotspots and γ -ray bursts, a complete understanding of the mechanism
is still lacking. Theoretical models and numerical simulations have developed rapidly over the
last 30 years, however, the limited data provided by in situ satellite measurements at shocks in
our solar system make verification of these models difficult. The ability to successfully perform
experiments to study diffusive shock acceleration in controlled laboratory environments would
represent a major advance in the field.

Modern high-power laser facilities provide the means to generate strong shocks in the
laboratory. These facilities are already being used to perform experiments in a parameter range
where scaling relations may be used to apply results to plasma physics studies of astrophysical
relevance [19, 33, 44]. The conditions required to make comparisons with astrophysical shocks
has been the focus of several papers, e.g. [13, 36, 44]. While several laser–plasma experiments
have focused on the generation and analysis of collisionless shocks [12, 28, 29, 35], to date
there has been no report of a successful detection of shock acceleration. We review the
relevant results of the theory primarily in the context of laboratory laser-driven shocks. The
extension to other plasma experiments, such as on the plasma railgun device at the Los Alamos
National Laboratory [21] is straightforward. The constraints on plasma parameters necessary
to accelerate and more importantly, detect energetic particles are discussed in detail. It is
demonstrated that the required conditions can in principle be satisfied for several current laser
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facilities, and that experiments designed to detect accelerated particles could be carried out in
the very near future.

2. Shock acceleration

The acceleration of particles in a conducting fluid requires an electric field. For laboratory
plasmas, neglecting resistivity, a typical form for Ohm’s law is E = −ue × B − ∇ pe/nee, with
ue, pe and ne the electron fluid velocity, pressure and number density respectively. On length
scales L � v2

th,e/u0ωce, where vth,e and ωce are the electron thermal velocity and cyclotron
frequency respectively, and u0 a characteristic velocity of the background fluid, the pressure
gradient can be neglected, and the large-scale electric field vanishes in the local plasma
fluid frame. This is the situation usually considered in astrophysical plasmas. Since the fluid
velocity is seldom uniform on large scales, the electric field does not vanish globally, and,
as a consequence, a charged particle with sufficient momentum to decouple from the thermal
plasma associated with the local fluid motion, can sample the global electric field and accelerate
to higher energy. This is the underlying principle of Fermi acceleration [15]. While this process
is typically quite slow in the presence of small velocity fluctuations, at shock fronts, where the
incoming fluid is abruptly decelerated and compressed, the acceleration can be very rapid. The
process by which a distribution of particles repeatedly samples this velocity jump is known as
diffusive shock acceleration (for detailed reviews, see e.g. [9, 14]).

The efficacy of the acceleration hinges on a particle’s ability to cross the shock surface
many times, since the increase in energy on each crossing is relatively small. For a shock
velocity ush and particle velocity v (� ush), the fractional increase in energy on each crossing
is of order ush/v. Acceleration to high energies relies on a number of conditions. Firstly, as
mentioned above, the particle must have a sufficiently large initial momentum to escape from the
thermal pool and overtake the shock. This is the so-called injection problem, and remains a topic
of ongoing investigation (see [1, 26, 34] and references therein). Secondly, the scattering must be
sufficiently frequent to maintain near isotropic particle distributions. For acceleration to proceed
these scatterings must be mediated by quasi-elastic interactions with magnetic fluctuations, as
opposed to inelastic Coulomb collisions with other particles. The scattering fluctuations in a
laboratory setting can be produced for example via Weibel instability in the shock layer [25, 37],
or hydromagnetic waves excited by shock reflected or accelerated particles [5, 6]. If a small
fraction of the particles crossing the shock are heated to super-thermal velocities, provided these
particles are maintained approximately isotropic, the probability of a particle interacting with
the shock multiple times is high.

2.1. Acceleration time

Assuming the above mentioned conditions can be satisfied, at an idealized shock, the resulting
acceleration timescale is [14]

tacc =
3

uu − ud

(
Du

uu
+

Dd

ud

)
, (1)

where uu,d are the upstream and downstream flow velocities as measured in the shock rest
frame, and Du,d the corresponding energy dependent diffusion coefficient in the direction normal
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to the shock surface. The diffusion coefficient can vary quite significantly depending on the
inclination of the shock normal with respect to the local magnetic field. From scaling arguments,
it is clear that fast shocks with small diffusion coefficients are more rapid accelerators. Since
cross–field diffusion is much less effective than diffusion along magnetic field lines (D⊥ � D‖),
perpendicular shocks, i.e. shocks for which the incoming magnetic field is in a direction
perpendicular to the direction of the shock’s motion, can have considerably shorter acceleration
times [24]. From an experimental perspective, minimizing the acceleration time is crucial, since
as we will show in section 3.1, the time window for making detections is narrow even in the
most optimistic scenario. In addition, the acceleration rate is always competing with Coulomb
collisions at low energies. We therefore focus on the acceleration of particles at perpendicular
shocks.

In the quasi-linear approximation [23], the diffusion can be separated into two orthogonal
components, parallel and perpendicular to the mean field:

D‖ =
DB

ξ
and D⊥ =

ξ DB

1 + ξ 2
,

where ξ = (ωgτB)−1 < 1 is the ratio of the effective collision rate, τ−1
B , to the gyrofrequency,

and

DB =
mcv2

3eB
(2)

is the (non-relativistic) Bohm diffusion limit, corresponding to roughly one scattering per
gyroperiod. Here τB is the mean time between collisions on magnetic fluctuations, not to be
confused with Coulomb interactions. The value of ξ will depend on the value of the background
field and also the level and scale of magnetic fluctuations. A typical scale for fluctuations in
the plasma is the electron collisionless skindepth, although magnetized shock experiments have
shown evidence for structures on the scale of the hot electrons’ gyroradius [12]. For typical
laboratory conditions, e.g. B = 1 T, n = 1016 cm−3, these scales are comparable at electron
temperatures of 400 eV (see section 3.4).

For perpendicular shocks, it is the details of the magnetic fluctuations in the immediate
vicinity of the shock that determines the acceleration. If scattering is too weak (ωgτB � 1),
particles are tied to the field lines and are advected downstream preventing further interaction
with the shock, and thus are not accelerated efficiently [7]. If the scattering is too strong,
(ωgτB → 1), the diffusion is approximately isotropic. In this case the direction of the magnetic
field becomes insignificant, particles can make long excursions both upstream and downstream
before returning to the shock, and the acceleration time correspondingly increases. The optimal
value for acceleration at a perpendicular shock is ωgτB = v/ush [24] although in practice it may
be less than this. We will adopt the optimal value for most of the calculations that follow, since
at high energies, provided ωgτB � 1, geometry plays the limiting role, while at low energies
v/ush is not very large and any correction is likely to be of order unity.

2.2. Maximum energy

In the absence of radiative (synchrotron, bremsstrahlung etc) or adiabatic cooling, the maximum
energy to which a particle can be accelerated is limited either by time or geometry. For
acceleration at perpendicular shocks, we can demonstrate that the acceleration time is shorter
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than the hydrodynamic time, and thus the geometry plays the key role. In astrophysics, this limit
is commonly referred to as the Hillas criterion [20], and corresponds to the maximum potential
difference a particle can experience in a system of fixed size

Tmax ≈ eE Rsh ≈ e|B|(ush/c)Rsh ≈ B4 ush,7 Rsh keV, (3)

where B = B4 × 104 G is the strength of the magnetic field, ush = ush,7 × 107 cm s−1 is the shock
velocity and Rsh is the shock radius in cm. The same subscript notation is used throughout
the paper. For perpendicular shocks, inserting (3) into (1) gives ush,7tacc(Tmax) ≈ ξ Rsh, such
that our assumption on geometry limited acceleration is consistent (since ξ < 1). To make
an unambiguous detection of shock accelerated particles, we require as large a separation as
possible between Tmax and the injection energy. This is discussed further in the next section.

3. Practical considerations

Most astrophysical shocks of interest are highly collisionless systems. Such shocks are generally
believed to be excellent particle accelerators. Achieving similar collisionless conditions in
the laboratory however is not straightforward, and places stringent limitations on experiments
designed to reproduce shock acceleration. While the total energy will depend on the maximum
laser energy that a given system can provide, the external conditions must also satisfy a number
of criteria. As outlined in the previous section, a mean field is necessary to prevent particles
escaping far upstream. There have been a number of experiments designed to study collisionless
magnetized shocks [12, 44], using conditions relevant for scaling to supernova shocks. An
interesting outcome of these experiments of vital importance here was the observation that very
little penetration of the magnetic field into the shocked plasma occurred. Compression of the
magnetic field is almost certainly required to accelerate rapidly to high energies (see figure 1).

Since the focus here is not to produce scaled versions of supernovae, but rather to study
acceleration from first principles, and to help the magnetic field lines penetrate the plasma,
we consider an alternative experimental set-up to that of [12, 44] based on the previous
experimental design of [19]. In this design, the laser or lasers are focused onto a central target
in a neutral-gas filled chamber, driving a quasi-spherical shock into the ambient gas. Since the
magnetic field already penetrates the ambient gas before the shock arrives, provided the gas is
ionized sufficiently far upstream of the shock, there should be no issue with the magnetic field
penetrating the plasma or preventing it from being advected downstream.

We now discuss in detail the constraints on density and magnetic field strength for a given
laser energy in the context of shock acceleration.

3.1. Energy budget

The total energy available to the expanding shock is the principal limiting factor for any shock
acceleration experiment, as already evident from equation (3). For a spherical explosion, the
shock undergoes a short-lived ballistic expansion before evolving to a Sedov–Taylor expansion
Rsh ∝ t2/5. In this phase, the shock is already decelerating ush ∝ t−3/5

∝ R−3/2
sh . Inserting this

scaling into equation (3), for a constant magnetic field, the maximum energy decreases with
time ∝ t−1/5. Thus, once the expansion velocity is determined, the maximum energy at a given
distance can be inferred from equation (3).
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Figure 1. Left: edge on view, showing spherical shock wave in uniform
magnetic field. In the absence of magnetic diffusion, the tangential component
of the magnetic field is compressed at a strong shock by a factor r = (γ + 1)/

(γ − 1). Right: side view of a small section of the shock where field is purely
perpendicular. Electrons experience a grad B drift along the surface of the shock
as a result of the magnetic field compression. In this example, we have assumed
no scattering, and the particles are accelerated by the shock drift mechanism [43].
Small angle scattering on magnetic fluctuations allow some particles to ‘hug’ the
shock surface for a hydrodynamic timescale (see section 2.1). The preferred
direction of the accelerating electrons can be used to detect the presence of shock
acceleration.

For a given experiment, the total deposited laser energy is divided up into the production
of radiation, ionization of the external medium, magnetic energy, thermal energy and shock
accelerated particles, if present. For low Z gases such as helium at densities n � 1018 cm−3,
the radiative cooling is dominated by bremsstrahlung, however, for the experimental set-up we
consider here, the cooling time is much longer than the dynamical time [36]. At low densities,
the ionization potential is typically smaller than the thermal energy density, and so can be
neglected. Hence, to a good approximation we can assume a typical Sedov–Taylor solution

Rsh = C0

(
E0t2

ρext

)1/5

, (4)

where E0 is the total energy in the blast-wave, ρext the gas density in the target chamber and
for helium gas, the numerical constant is C0 ≈ 1.15. For laser plasma interactions, while a large
fraction of the laser energy is absorbed by the target, the fraction of this energy that goes into the
blast-wave is uncertain. Comparing with similar spherical blast-wave experiments such as those
carried out in [19], E0 = 0.01Elaser provides an excellent fit to the data, however, careful target
design may increase this number. We parameterize the fraction of the laser energy transferred
to the blast-wave as E0 = 10−2η−2 Elaser and leave η−2 as a free parameter. The shock velocity at
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distance Rsh is therefore

ush,7 ≈ 6
η

1/2
−2 E1/2

kJ

n1/2
16 R3/2

sh

, (5)

where EkJ is the total laser energy in kilo Joules and n16 the external gas number density in
units 1016 cm−3. Combining with equation (3), and assuming a helium filled target chamber, the
maximum energy as a function of distance is

Tmax ≈ 6 η
1/2
−2 B4 E1/2

kJ n−1/2
16 R−1/2

sh keV. (6)

As pointed out by Drake [13], a slowly diverging plasma expansion such as the ‘laser-
driven rocket’, can drive a shock at high velocity over a longer distance. However, we note
that the gain in time is nearly balanced by the reduction in Tmax, since the maximum energy is
determined by the lateral extent of the shock. Alternatively a hemispherical blast-wave could be
generated, although the maximum energy would only change by a factor of ∼

√
2.

3.2. Magnetic field

Following the discussion in section 2.1, it is clear that having a strong magnetic field is
advantageous. It increases both the acceleration rate and the maximum energy. However, even in
the presence of efficient scattering, there is a limit on the maximum magnetic field that permits
acceleration. This additional constraint on the external medium, is that the magnetic pressure
B2/4π , should not exceed the shock ram pressure ρextu2

sh. This is equivalent to saying that the
shock is super-Alfvénic, MA > 1. Inserting numerical quantities, the necessary condition is

n1/2
16 ush,7 B−1

4 > 1. (7)

Since the expected density and magnetic field are approximately constant in the
experiment, this condition will ultimately be violated when the shock has decelerated
appreciably.

3.3. Collisions and magnetic diffusivity

A prerequisite for shock acceleration is that the particles approximately conserve energy
between shock crossings. For this to occur, Coulomb collisions must be negligible for the
accelerating particles. For rapid acceleration at perpendicular shocks the pathlength on either
side of the shock is on the order of its gyroradius. The ratio of the Coulomb mean free path,
λmfp, of an electron to its gyroradius is, assuming a Coulomb logarithm ln3 ∼ 10 [22],

λmfp

rg
≈ 0.6 B4 n−1

16 T 3/2
e , (8)

where Te is the electron temperature in eV. Since this ratio grows rapidly with electron
energy, it is sufficient to demonstrate that collisions are negligible at the injection energy. The
equivalent ratio for protons is approximately

√
me/mp times smaller, making the acceleration

of protons far more difficult. To achieve acceleration, we require the associated acceleration
time at the injection energy be shorter than the inverse of the Coulomb scattering frequency.
Adopting the previously discussed optimal scattering rate ξ = ush/v, the necessary condition
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for Coulomb scattering to be unimportant can be expressed as λmfp/rg � v/ush, which together
with equation (8) gives2

B4 n−1
16 Te ush,7 � 0.1. (9)

If the scattering rate is closer to unity, the acceleration rate decreases, and the minimum
injection energy must increase accordingly. In the other extreme, where cross field diffusion
becomes negligible (ξ � ush/v), acceleration can not occur. In this scenario, seeding of electric
and magnetic fluctuations may be achieved using fast electrons (see the next section).

For a strong shock, the downstream temperature of the shocked ions, in this case helium,
is, according to the Rankine–Hugoniot relations, Ti ≈ 75u2

sh,7 eV. The downstream electron
temperature may be as much as me/mp times smaller than this, although there is considerable
observational evidence that in collisionless shocks, this ratio (Te/Ti) is closer to 0.1 [39, 41]. In
addition, it seems likely that even for mildly collisional shocks, a small fraction of the electrons
can still be heated to considerably higher energies due to the collective processes in the shock
layer, and satisfying (9).

The role of collisions and the resulting magnetic diffusivity may also be important. If the
magnetic Reynolds number is not appreciably greater than unity, the ability of the flow to distort
and compress the magnetic field is severely limited. This can dramatically reduce the efficiency
of shock acceleration. Examination of (8) reveals however, that even modest temperatures of a
few eV are sufficient to magnetize the electrons. Electron temperatures similar and considerably
larger than this have already been produced in previous experiments [19, 32], and this is unlikely
to present a serious limitation.

3.4. Particle injection

In both astrophysical and laboratory shocks, perhaps the biggest uncertainty in the theory of
shock acceleration is how and in what quantity particles are lifted from the thermal background
and injected into the acceleration process [26]. If the shock is indeed collisionless, we can put
some estimates on critical length and energy scales of the problem. For collisionless shock
experiments, a crucial parameter is the collisionless skin-depth

λSD =
c

ωpe
≈ 50 n−1/2

16 µm. (10)

With the gyroradius of an electron in such an experiment rg ≈ 75T 1/2
keV/B4 µm, it follows that

electrons with energy Te ∼ 400B4/n16 eV will interact resonantly with structures on this scale,
and it might be expected for a collisionless shock, a fraction of particles will be naturally heated
to such temperatures. For perpendicular shocks, there are a number of collective mechanisms
believed to preheat the electrons, e.g. lower hybrid waves [8, 31], whistler waves [1, 34] or
indeed the collective processes mediating the shock itself [37]. Recent kinetic simulations are
advancing our knowledge of different electron injection mechanisms at collisionless shocks
[1, 17, 34], however, a complete theory is still lacking. Nevertheless, there is a great deal of
observational evidence supporting the fact that the bulk electron temperature downstream can be
on the order of 10% that of the ions, which may be sufficient for electrons to escape upstream.

2 Repeating the same calculation for protons, we require B4n−1
16 Tpush,7 � 100. While this condition can be satisfied

at a fast shock, any accelerated protons will be indistinguishable from simply shock heated protons.
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In practice, we only require a small fraction of the incoming electrons to achieve such high
energies.

The uncertainty associated with injection is evident, and cannot be relied upon. This clearly
emphasizes the need to have an alternative mechanism in place should it be needed. One such
possibility is to inject a population of energetic electrons at early times. While this may be
experimentally challenging and entails a certain amount of fine tuning, it should be possible.
The generation of fast electrons using an external source is easily achieved by irradiating an
additional target. The mean kinetic energy and total flux of fast electrons are also straightforward
to calibrate [3, 18]. However, fast electrons are known to produce their own electric and
magnetic fields as they propagate, potentially influencing the acceleration of particles. Provided
the fields produced saturate with total energy density less than that of the ambient magnetic field,
the acceleration will still be dominated by the zeroth order field. This effect can be calibrated
with control shots in the absence of a shock. However, the enhanced turbulence level may also
increase the cross-field diffusion, thus reducing the acceleration rate. The magnitude of this
effect is entirely model specific, but is not entirely unjustified in an astrophysical context. Most
astrophysical shocks are known to excite instabilities upstream of the shock due to cosmic-
ray or shock reflected ion currents. While this is an interesting and topical area in cosmic-ray
acceleration research, if the aim is to study the acceleration mechanism in its simplest test-
particle form, the fast electron flux should be calibrated, so as to minimize this effect. The fast
electrons should also be timed to intersect with the shock as early as possible, subject to the
condition rg < Rsh.

4. Necessary conditions for detection

The necessary requirements to achieve shock acceleration have been detailed in the previous
section. However, as has been regularly emphasized, the key objective is to produce an
unambiguous detection. The main requirements are contained in equations (6), (7) and (9).
Supplementing these conditions with the assumption that some fraction of the electrons
are heated to an energy Tinj approximately 10% that of the shocked ions, Tinj = 0.1αTi =

7.5αu2
sh,7 eV and shock velocity

ush,7 = 6
η

1/2
−2 E1/2

kJ

n1/2
16 R3/2

sh

,

the velocity can be eliminated from the above conditions, and the most relevant dimensionless
quantities are

MA = 6
η

1/2
−2 E1/2

kJ

B4 R3/2
sh

;
tcoll

tacc

∣∣∣∣
Tinj

= 245α
B4η

3/2
−2 E3/2

kJ

n5/2
16 R9/2

sh

;
Tmax

Tinj
= 20

B4n1/2
16 R5/2

sh

αη
1/2
−2 E1/2

kJ

.

Taking reasonably conservative minimal requirements, the experimental parameters must
satisfy the following inequalities.

(i) Super-Alfvénic (MA > 4)

Rsh < 1.3
η

1/3
−2 E1/3

kJ

B2/3
4

cm.
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(ii) Injected electrons are collisionless (tcoll > 10tacc)

Rsh < 2
α2/9η

1/3
−2 E1/3

kJ B2/9
4

n5/9
16

cm.

(iii) Significant gain (Tmax > 10Tinj)

Rsh > 0.75
α2/5η

1/5
−2 E1/5

kJ

B2/5
4 n1/5

16

cm.

As can clearly be seen, detecting electron acceleration using a kilo-Joule facility has a
small window for success, since a clear distinction between background and thermal particles
sets a lower bound on the shock position, while the remaining conditions set upper bounds. As
an example, consider an experiment where we achieve the conditions such that all normalized
quantities (EkJ, B4 etc) are unity. The above inequalities are satisfied for 0.75 cm < Rsh <

1.3 cm. Increasing the laser energy to values relevant for facilities such as Omega, and in
particular the National Ignition Facility (NIF), increases the available time window, although
the weak dependence of the upper and lower bounds on laser energy (to the 1/3 and 1/5 power
respectively) imply only a marginal increase.

5. Diagnostics

While the necessary conditions for detection have been outlined, a method for measuring the
presence of accelerated particles has so far not been discussed. To this end, accurate diagnostics
of the plasma parameters are essential. The plasma density, temperature and magnetic field
strength can be probed using standard techniques such as interferometry, Thomson scattering
and Faraday rotation. In addition, Schlieren imaging can be used to determine the shock
velocities.

Determining the presence of the non-thermal particles is more challenging. The electrons
should be detected in the range of Rsh determined in the previous section, since at large radii
the adiabatic losses of the particles in the expanding plasma is important. Taking conditions (ii)
and (iii) in the previous section, the maximum energy electrons are expected in the range

3.8
η

1/3
−2 E1/3

kJ B8/9
4

n2/9
16

< Tmax(keV) < 7
η

2/5
−2 E2/5

kJ B6/5
4

α1/5n2/5
16

with the shock heated electrons Tinj, also by condition (iii), an order of magnitude smaller. The
maximum energy electrons are expected to fall in the range where it is possible to make use of
the radiative Auger effect [11]. A high Z metal witness plate placed at the appropriate location
can thus be used as a probe of the accelerated electrons, as shown in left image of figure 1.
Alternatively, the target chamber plasma could be doped with high Z gas such as argon (with
nAr/n16 = f ∼ 0.01) that could show enhancement of inner shell emission near the shock. Both
these approaches may be quite sensitive to injection efficiency. Assuming an injection efficiency
of χ ∼ 10−4, i.e. 10−4 of the upstream electrons crossing the shock per unit time are injected into
the acceleration process, and assuming the test-particle solution for diffusive shock accelerated
particles: dN (T ) ∝ T −2 dT , the number of electrons at Tmax is

N (Tmax) ≈ 1012χ−4n16

(
Tmax

Tinj

)−2

∼ 1010χ−4n16,

New Journal of Physics 15 (2013) 015015 (http://www.njp.org/)

http://www.njp.org/


11

where we have again taken Tmax = 10Tinj. The Ar inner shell ionization cross section peaks
at ∼5 keV (σiz = 3 × 10−21 cm2 [38]), and assuming a fluorescence yield YK ∼ 0.14 [42], the
estimated number of photons collected within the detector solid angle � ∼ 0.1 sr is

Nph ≈ 3 × 1025 f YK χ−4 � σi z R4
sh n2

16,

which gives Nph ∼ 4–35 for shock radii considered here. While small, this number is sufficient
for single shot detection, especially if a high throughput crystal monochromator is used to
enhance the signal to noise ratio.

Another possible technique that may be used to make a detection, involves taking
advantage of the perpendicular geometry. At a perpendicular shock, the acceleration has a
directional bias, determined by the grad B drift, as shown in figure 1. The resulting asymmetry in
the x-ray luminosity on opposite sides of the witness plate could be detected using two pinhole
x-ray cameras.

In all cases, care should be taken not to confuse any signal from fast electrons produced
either from the laser–target interaction, or stray electrons from the external injection source.
Again, control experiments can be used to confirm or invalidate any successful detections.

6. Discussion

The theory of diffusive shock acceleration has been incredibly successful in accurately
modelling non-thermal radiation from astrophysical sources for several decades. While the
evidence for its occurrence at numerous shocks in both astrophysical and space environments is
convincing, there are many aspects that can not be fully understood from distant observations
and satellite measurements. In particular questions about injection, self-regulation, maximum
energy, nonlinear feedback and magnetic field amplification are active areas of research in the
theoretical community. The study of collisionless shocks using high-power lasers is a growing
field [12, 28, 29, 35, 44], and the question of whether shock acceleration, or the formation of
non-thermal particle populations occurs, is of fundamental importance.

We have reviewed the necessary conditions that must be satisfied in order to achieve a clear
detection of accelerated particles. Our analysis confirms that several laser facilities currently
operating may be capable of producing a shock which accelerates electrons to maximum
energies where they can be clearly distinguished as shock accelerated particles. It is however
quite unlikely that the same can be done for protons for any currently existing facilities. We
also note that the requirement that the shock be completely collisionless can be relaxed slightly,
although it remains crucial that the magnetic Reynolds number is sufficiently large that the
magnetic dissipation can be neglected on the gyro-scale of the accelerating electrons.

There are a number of uncertainties in the analysis presented in this paper, about which
we have tried to be transparent. However, we can summarize them here again. Firstly the
question of injection, which is also of great importance in astrophysics. We have made the,
not unreasonable, approximation that a small fraction of the shocked electrons are heated to a
temperature on the order of 10% that of the shocked ions. While this assumption is of course
arbitrary, if no acceleration is observed, it is still possible to inject fast electrons that satisfy
the necessary conditions. On the other hand, should acceleration be detected without external
injection, these experiments provide a novel platform to study the injection itself.

The other major uncertainty is the nature of the scattering ωgτB. This is an important topic
in its own right in the study of collisionless shocks, and recent experiments are advancing our
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understanding [28, 35]. However, as noted earlier, the ratio of the gyroradius of a keV electron to
the collisionless skin-depth is rg(keV)/(c/ωpe) = 1.4B−1

4 n1/2
16 , i.e. on the correct scale to scatter

resonantly the electrons. Future magnetized experiments will provide valuable information.
While the discussion in this paper has involved, in all cases, the presence of a strong

large-scale field, there are ongoing efforts to realize collisionless unmagnetized shocks in the
laboratory [28, 32]. Numerical simulations of unmagnetized shocks, in an astrophysical context,
have developed rapidly in recent years [25, 30, 40], and are of vital importance to understanding
the underlying kinetic processes. However, for the non-relativistic flow speeds we expect in
the laboratory, our analysis suggests that a large-scale magnetic field is required to accelerate
particles to energies where a detection can be made on the relevant timescale. The production
of mildly relativistic unmagnetized shocks in the laboratory has recently been demonstrated
numerically [16], using particle-in-cell simulations of intense (1020–1022 W cm−2) laser pulses
in an over-dense plasma. This is an exciting line of research with many applications, however,
regarding shock acceleration, the finite lifetime and more importantly the finite transverse extent
of the shock front will be a limiting factor when distinguishing accelerated particles from the
relativistic shock heated particles.

In conclusion, it appears quite possible that diffusive shock acceleration can be reproduced
in the laboratory. Even with the help of a mega-Joule laser such as NIF, an unambiguous
detection of shock accelerated electrons will not be trivial, and is unlikely to be found without
careful diagnostics and analysis, but should indeed be possible in the very near future. The
success of such an experiment would be a first step in helping bring new insight to how Nature
accelerates the most energetic particles in the Universe.
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