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Abstract

In finite difference time domain simulation of room acoustics, source

functions are subject to various constraints. These depend on the way

sources are injected into the grid and on the chosen parameters of

the numerical scheme being used. This paper addresses the issue of se-

lecting and designing sources for finite difference simulation, by first re-

viewing associated aims and constraints, and evaluating existing source

models against these criteria. The process of exciting a model is gen-

eralized by introducing a system of three cascaded filters respectively

characterizing the driving pulse, the source mechanics, and the injec-

tion of the resulting source function into the grid. It is shown that

hard, soft and transparent sources can be seen as special cases within

this unified approach. Starting from the mechanics of a small pul-

sating sphere, a parametric source model is formulated by specifying

suitable filters. This physically constrained source model is numerically

consistent, does not scatter incoming waves and is free from DC and

low-frequency artifacts. Simulation results are employed for compari-

son with existing source formulations in terms of meeting the spectral

and temporal requirements on the outward propagating wave.

PACS numbers: 43.55.Ka,43.38.Ar,43.55.Lb
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I. INTRODUCTION

The Finite Difference Time Domain (FDTD) method has recently gained in applicabil-

ity to room acoustics, largely owing to improved boundary formulations1–4, newly emerged

schemes5,6, and hardware-accelerated implementations7–9. Among the various FDTD mod-

eling aspects, grid excitation has received relatively sparse attention in the literature, with

researchers in acoustics usually directly employing the methods inherited from their coun-

terparts in the field of electromagnetics.

In FDTD simulation of electromagnetic fields, where the numerical scheme approximates

a solution to Maxwell’s equations10, a general distinction is made between a Hard Source

(HS), which imposes a voltage or current on the electrical field, and a Soft Source (SS),

which superimposes either variable onto the field11,12. By analogy, these forms of injecting

energy into the grid can be used to simulate pressure and velocity sources in an acoustic

field.

While in the first acoustic FDTD formulation by Botteldooren13 the field was excited

by imposing velocity across an area representing a speaker membrane, subsequent acoustic

studies have often made use of omni-directional sources via HS or SS excitation at a sin-

gle grid node. Similar source formulations can be found in the closely related simulation

paradigm of digital waveguide modeling14,15.

One advantage of HS over SS excitation is that it allows a more precise control of the

outward propagating pressure wave, which facilitates various modeling aims, such as field

visualization and response analysis16. However, unlike with soft sources, waves propagating

back to the source reflect from a hard source node17, effectively imposing a severe limit on

the available time window. Schneider and colleagues18,19 addressed this major drawback by

proposing Transparent Sources (TS), which generate the same pressure field as a HS but

avoid the source node scattering by means of reflection cancellation; this involves measur-

b)URL: http://www.acoustics.salford.ac.uk/res/; Electronic address: j.sheaffer@

edu.salford.ac.uk

3



ing the grid impulse response prior to the principal numerical experiment, which carries

a significant additional computational effort. A similarity between TS and the so-called

total-field/scattered field and pure scattered field formulations was noted by Redondo and

colleagues20.

More recently, Jeong and Lam21 showed that HS and TS are prone to undesired low-

frequency artifacts when certain excitation functions are used, and proposed the use of sine-

modulated Gaussian pulses - which are not spectrally flat - to address this. In a similar vein,

differentiated pulses have been in use in electromagnetic FDTD for some time, in order to

avoid DC excitation11,12. These solutions exemplify the inherent trade-offs in FDTD source

modeling, in this case balancing the elimination of low-frequency artifacts with effecting an

outward wave of desirable frequency content. These findings also suggest that the methods

for shaping and for injection of the source pulse should not be seen and chosen in isolation.

The literature does, however, not give a clear view of how the various criteria relate to the

underlying physics and the employed numerical formulations.

In order to obtain a broader insight into how trade-offs can be made in the design of

acoustic FDTD source models, this paper addresses the problem by first reviewing the as-

sociated aims and constraints. Several methods for injection and pulse shaping are then

evaluated against these criteria (Section III). In the following section, grid excitation mod-

eling is generalized in the form of a digital filter chain, each filter representing a separate

constraining system; this processing structure converts an arbitrarily chosen excitation signal

into a final source function. Starting from a small pulsating sphere model, a new excitation

method is then formulated by specifying suitable filters. Finally, the resulting Physically-

Constrained Source (PCS) model is evaluated through numerical results and compared to

existing methods in Section V.
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II. THE FDTD METHOD IN ACOUSTICS

A. Yee-type Method

The original FDTD method for electrodynamics suggested by Yee10 makes use of two

staggered grids representing the electric and magnetic fields. In the field of acoustics, the

method was adapted to solve Euler’s linearized equations13, which represent propagation of

pressure and particle velocity, and will be further referred to as a Yee-type method. When

sources are present in the domain, the conservation laws of mass and momentum describing

the sound field at x = (x, y, z) ∈ R3, are given by22

1

c2
∂p(x, t)

∂t
+ ρ0∇ · u(x, t) = q(x, t) (1)

ρ0
∂u(x, t)

∂t
+∇p(x, t) = F̃(x, t) (2)

where p(x, t) is sound pressure, u(x, t) is particle velocity, ρ0 is the ambient density of air

and c is the velocity of sound in air. Here, the function q(x, t) denotes the rate of fluid

emergence in the system in the dimension of density per unit time (Kg m−3 s−1), and the

function F̃(x, t) is the acoustic force exerted upon the source volume. For simplicity, it is

assumed that all considered excitation functions represent volume velocity sources, and as

such, the force term in Equation (2), is neglected. Accordingly, Equations (1), and (2), can

be approximated using finite difference operators as

δtp
∣∣n
i

= c2Tq
∣∣n
i︸ ︷︷ ︸

Source Term

−z0λ
(
δxux

∣∣n
i

+ δyuy
∣∣n
i

+ δzuz
∣∣n
i

)
(3)

and

δtux
∣∣n
i

= − λ
z0
δxp
∣∣n
i

(4a)

δtuy
∣∣n
i

= − λ
z0
δyp
∣∣n
i

(4b)

δtuz
∣∣n
i

= − λ
z0
δzp
∣∣n
i

(4c)

where ux, uy and uz denote the orthogonal components of the particle velocity vector u

in a Cartesian coordinate system, z0 = ρ0c is the characteristic impedance of air, and
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λ = cT/X is the Courant number 23. In the numerical domain, the system is sampled such

that (x, y, z, t)→ [lX,mX, iX, nT ] and accordingly n and i = [l,m, i] are the index positions

in discrete time and space, and X and T are respectively the spatial and temporal sample

periods. The finite difference operators are given by

δtu
∣∣n
i
≡ u

∣∣n+ 1
2

i
− u

∣∣n− 1
2

i
δtp
∣∣n
i
≡ p
∣∣n+1

i
− p
∣∣n
i

(5a)

δxu
∣∣n
i
≡ u

∣∣n+ 1
2

l+ 1
2
,m,i
− u

∣∣n+ 1
2

l− 1
2
,m,i

δxp
∣∣n
i
≡ p
∣∣n
l+1,m,i

− p
∣∣n
l,m,i

(5b)

δyu
∣∣n
i
≡ u

∣∣n+ 1
2

l,m+ 1
2
,i
− u

∣∣n+ 1
2

l,m− 1
2
,i

δyp
∣∣n
i
≡ p
∣∣n
l,m+1,i

− p
∣∣n
l,m,i

(5c)

δzu
∣∣n
i
≡ u

∣∣n+ 1
2

l,m,i+ 1
2

− u
∣∣n+ 1

2

l,m,i− 1
2

δyp
∣∣n
i
≡ p
∣∣n
l,m,i+1

− p
∣∣n
l,m,i

(5d)

By direct substitution of (5) into (3) and (4), and by removing any source terms, the

update equations for air are obtained, as originally formulated by Botteldooren13.

B. Scalar Wave Equation Method

While the Yee scheme is a popular choice of many authors, it is by no means the most

efficient solution for room acoustics simulation24. In fact, if knowledge of particle velocity

is not required throughout the entire soundfield, then one may employ a finite difference

scheme approximating the scalar wave equation for pressure, a formulation which is here

referred to as the Wave Equation Method5. Accordingly, when sources are present in the

domain, one considers the inhomogeneous wave equation,

1

c2
∂2p(x, t)

∂t2
−∇2p(x, t) = ψ(x, t) (6)

To enable a direct comparison with other studies, here ψ(x, t) is defined as a general source

driving function, whose physical relation to fluid emergence in the system shall be further

discussed in Section III. Using the same nomenclature, the wave equation can be discretized

as (
δ2t − λ2δ2x

)
p
∣∣n
i

= c2T 2ψ
∣∣n
i︸ ︷︷ ︸

Source Term

(7)
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with the finite difference operators given as

δ2t p
∣∣n
i
≡ p
∣∣n+1

i
− 2p

∣∣n
i

+ p
∣∣n−1
i

(8)

δ2xp
∣∣n
i
≡ p
∣∣n
l+1,m,i

− 2p
∣∣n
l,m,i

+ p
∣∣n
l−1,m,i (9)

δ2yp
∣∣n
i
≡ p
∣∣n
l,m+1,i

− 2p
∣∣n
l,m,i

+ p
∣∣n
l,m−1,i (10)

δ2zp
∣∣n
i
≡ p
∣∣n
l,m,i+1

− 2p
∣∣n
l,m,i

+ p
∣∣n
l,m,i−1 (11)

where the operator δ2x is given by

δ2x = δ2x + δ2y + δ2z + a
(
δ2xδ

2
y + δ2xδ

2
z + δ2yδ

2
z

)
+ bδ2xδ

2
yδ

2
z (12)

The free parameters a and b are chosen according to the desired properties of the numerical

scheme being used. By setting a = 0, b = 0, applying the finite difference operators to

Equation (7), and removing the source term, one obtains the well known update equation

for air in a rectilinear node arrangement5.

III. SOURCE MODELING REVIEW

A. General Aims

In order to assess the merits and shortcomings of existing source models, it is useful to

review some of the requirements for an idealized sound source in room acoustics simulation,

which are generally similar to those of an acoustic measurement. First, it is desired that

the bandwidth of the source is wide enough to cover the entire frequency range of interest,

and that it is sufficiently flat within that range25,26. The sound source should generate a

prescribed pressure field, meaning that one should be able to predict its magnitude in free

field. In many cases, it is useful to have a source that can excite the room omni-directionally

at all frequencies of interest27 (at least within the dispersion limitations of the numerical

scheme). It is also important that the process of grid excitation is numerically consistent,

meaning that a change in grid parameters would not affect the magnitude of the sound field

generated by the source. Also, when transient phenomena are investigated, it is desired that
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the source excitation signal is sufficiently compact in time, so that temporal overlap between

discrete reflections is minimized. Lastly, although never feasible in a physical measurement,

it is useful to be able to excite the room transparently, that is, without introducing scattering

effects from the source itself.

B. Physical Constraints

Equation (1), relates the time derivative of pressure and space derivatives of particle

velocity to the rate of fluid emergence, q(x, t), which shall now be developed mathematically.

In acoustics, a fundamental type of source known as a point monopole is a limitingly small

object which radiates spherical wavefronts28. Radiation could be caused, for example, due

to a time-varying heat, or some mechanical force causing a sphere to pulsate and generate

a volumetric flow (such a system will be described in more detail in Section IV.A). In

the limiting case, where the physical size of the object approaches zero, the soundfield at

the source position, x′ = (x′, y′, z′) ∈ R3, approaches a point of singularity in which the

homogeneous wave equation is not satisfied. The rate of fluid emergence inside a small

volume V surrounding this point source must equal the local mass flow rate divided by V :

q(x, t) =
ρ0Q(t)δ(x− x′)

V
(13)

where Q(t) is the volumetric flow rate, or volume velocity of the source. In anticipation

of how this applies to a discretized system in which V is the volume occupied by a single

FDTD node, it can be seen that Equation (13), changes the dimension of volume velocity

and, as such, presents a scaling constraint relating the amplitude of the source to the volume

it occupies. By combining equations (2) and (1), the particle velocity vector is eliminated

and the inhomogeneous wave equation is derived. It follows from this derivation and from

the relations described by Equation (13), that the source term in Equation (6), becomes

ψ(x, t) =
∂q(x, t)

∂t
=
ρ0
V

d

dt
Q(t)δ(x− x′) (14)

Physically, the quantity ψ(x, t) has the dimension of density per unit time squared (Kg m−3

s−2), and can be thought of as fluid emergence due to volume acceleration of the source.
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Following Equation (14), it can be seen that a differentiation constraint applies to sources

in the wave equation, meaning that volume velocity should be injected as its first time

derivative. Observe that the source terms in Equations (1), and (6), are supplemental to

the fundamental time-space relationships, that is, if one sets q(x, t) = 0 then the homoge-

neous wave equation is obtained. This indicates that fluid emergence is an additive process,

implying a superposition constraint, which numerically means that source nodes should also

be evaluated with the FDTD update equations for air.

In order to generate a volume velocity at the source, some mechanical system is required.

Such a system would be governed by the laws of motion, and accordingly introduce further

modeling constraints. While some mechanical constraints are specific to a chosen transducer,

continuous DC flow is something that traditional acoustic transducers generally cannot

produce, therefore one would expect that∫ ∞
−∞

ψ(x, t)dt = 0 (15)

which naturally occurs if the differentiation constraint described in Section III.B is adhered

to, and if q(x, t) is compact in time (i.e. starts at and decays to zero within a finite amount

of time). However, if one decides to arbitrarily choose ψ(x, t), then failure to adhere to this

constraint might have detrimental effects, as will be further discussed in Section V.D.

C. Numerical Constraints

Finite difference methods are subject to numerical dispersion, which increases as the

ratio of the sample rate to the modeled frequency is decreased. This results in waves whose

phase velocities are dependent on frequency and on the direction of propagation5. When

the grid is excited at frequencies prone to substantial dispersion, numerical errors contribute

to the resulting response, which not only impair the ability to perform visual analysis, but

may also introduce undesired audible artifacts in resulting auralizations29.

Accordingly, it is important that high frequencies are removed from the excitation sig-

nal to prevent these from contaminating the simulated field, which is here referred to as
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bandwidth constraint. In the case of auralization, where visual inspection of the soundfield

is not required, the grid can be excited directly with the program material to be auralized.

A more efficient way is to first determine the room’s impulse response using a unit impulse,

and subsequently obtain the sound signals at the reciever locations via convolution. In such

case, bandlimiting can be enforced in the post-processing stage.

When transient phenomena are studied, the grid is excited with a short, impulsive source

signal so that possible temporal overlap between reflections is minimized. Such a pulse signal

is compact in time and as such can be said to adhere to a time-compactness constraint, which

in practice has to be traded-off against the bandwidth constraint. Note that if the excitation

signal is not finite in time by definition, it has to be truncated at points selected such that

any discontinuity errors are minimal. In addition, the value of all of the signal derivatives

up to the truncation order of the scheme would ideally also be zero at simulation onset.

However this further requirement has been reported to be prominent only for higher order

numerical schemes30.

D. Injection Methods

Most generally, an excitation signal can be injected via a single or multiple nodes into

a grid representing any of the computed acoustic fields. As this paper aims to develop an

excitation approach compatible with both Yee and wave-equation schemes, further analysis

and formulation will be given from the perspective of a single pressure node excitation.

1. Hard Sources

A hard source is the simplest form of grid excitation, in which an acoustic quantity is

directly imposed on the source node. This quantity is represented in the discrete domain by

the excitation signal sp
∣∣n, and accordingly, the update equation for a HS node is

p
∣∣n+1

i′
= sp

∣∣n+1
(16)
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where i′ = [l′,m′, i′] denotes the index position of the source. The first thing evident from

Equation (16), is that the laws of mass and momentum conservation are not satisfied at the

source node, meaning that the HS does not adhere to a superposition constraint. In other

words, update equations for air cannot operate over a HS node and any incoming waves get

scattered by the source. Accordingly, the node is often loosely thought of as a sound radiating

boundary node. This description, however, is not precise, as such an element should adhere

to boundary conditions which are not evident in the HS formulation. In addition, one could

argue that in a real measurement scenario, a loudspeaker would inevitably be present in

the room, and therefore scattering from a HS is not an unrealistic outcome. However, in

an FDTD simulation the physical size of the sound radiating node is directly dependent

on the spatial sample period, meaning that the scattering effects of the HS are numerically

inconsistent.

2. Soft Sources

The scattering and low-frequency problems21 of hard sources can be overcome by em-

ploying soft sources (SS), in which the excitation signal is superimposed on a source node

which has already been evaluated by the update equations for the medium. The update

equation for a SS node on a pressure grid is therefore

p
∣∣n+1

i′
=
{
p
∣∣n+1

i′

}
+ sp

∣∣n+1
(17)

where
{
p
∣∣n+1

i′

}
represents the result of updating the node with the general update equation

for air, that is, Equation (7), or Equations (3), and (4), in the absence of any source terms.

Soft sources may have different effects depending on the type of scheme being used. In

Yee-type grids, a SS is differentiated due to the staggered nature of the scheme. The update

equation for pressure progresses through time in only one half of a step, and the remaining

half-step occurs when updating particle velocity, i.e. by evaluating the derivatives of pres-

sure. This inherent differentiation is important as it ensures elimination of a DC component,

yet it also severely modifies the spectrum of the outward propagating wave by generating a
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(normally undesired) roll-off in low frequencies.

In wave-equation methods, the SS does not get automatically differentiated, and as such,

gives a different result. The outward wave has a spectral content similar to that of sp
∣∣n,

which is a desired feature. Because of this, however, one is not free to arbitrarily choose the

excitation signal. More specifically, any existing DC component in the excitation function

may cause the ambient pressure in the room to gradually increase. To explain this, let

us consider a plane wave of arbitrary amplitude A propagating through the x-plane and

interacting with a surface of reflection coefficient r̂. The total sound pressure along the

plane is given by

p(x, t) = Aej(ωt−kx) + r̂Aej(ωt+kx) (18)

Accordingly, for ω = 0 the sound pressure is uniformly p = A(1 + r̂) along the plane.

Since the SS is being added to existing pressure, then for any r̂ > 0 a pre-existing DC

component would constructively superimpose on itself at the source node. This may result

in an incremental offset in the response, as will be numerically evaluated in Section V.D.

Similar effects have been observed in the field of computational electrodynamics31.

Based on digital waveguide analysis, Karjalainen and Erkut14 identified the requirement

to superimpose, differentiate and scale soft sources in wave-equation FDTD schemes. Their

formulation, which shall be further referred to as a Differentiated Soft Source (DSS), is given

by

p
∣∣n+1

l′,m′,i′
=
{
p
∣∣n+1

l′,m′,i′

}
+
ρ0cX

2Aw

(
Q
∣∣n+1 −Q

∣∣n−1) (19)

where Aw denotes the cross-sectional area of the waveguide occupied by the source. Note

that here the excitation function is explicitly defined as a volume velocity. The formula-

tion adheres to both superposition and differentiation constraint, but being drawn from 1D

waveguide theory the scaling factor would only be correct for one dimensional schemes.
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3. Transparent Sources

A side effect of all soft sources is that the injected excitation function is modified by the

grid’s impulse response, which occurs due to the update equations for the medium operating

over the source node19. It is important to distinguish between the effects of the grid’s

impulse response which have a minimal effect on the magnitude of the generated soundfield,

and the differentiation process which severely modifies the spectrum of the generated wave.

Schneider and colleagues19 addressed some of these issues by making use of Transparent

Sources (TS), which do not scatter incoming waves and do not get modified by the grid’s

impulse response. The approach requires that the grid’s impulse response is measured prior

to the simulation stage and is compensated for during simulation. This process can be

described mathematically by

p
∣∣n+1

i′
=
{
p
∣∣n+1

i′

}
+ sp

∣∣n+1 −
n∑
µ=0

I
∣∣n−µ+1

sp
∣∣µ (20)

where I
∣∣n denotes the pre-measured impulse response of the grid, which is obtained by

exciting the grid with a unit impulse and capturing the result of updating the source node

with the update equation for air19. Therefore, TS in a Yee scheme do not only compensate for

the grid’s impulse response, but also reverse the effects of source differentiation, effectively

resulting in a sound field similar to that of a HS but without scattering any incoming waves.

In addition, TS suffer from the same low frequency artifacts as HS21. It should also be

noted that the grid’s impulse response must be obtained in the absence of any scattering

objects, which for long simulation times entails modeling a large domain and thus introduces

an additional computational burden. In sum, it can be said that TS do not adhere to any

scaling constraints and, due to the grid compensation process, nor to the differentiation

constraint.
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FIG. 1. Pulse spectra. (a) Gaussian (G), Blackman-Harris (BH), and Maximally Flat (MF)

FIR pulse. (b) Differentiated Gaussian (DG), Sine-Modulated Gaussian (MG), and Ricker

Wavelet (RW). The modulation frequency for the MG pulse and the peak frequency of the

RW pulse were chosen equal to the cutoff frequeny fc = 0.1fs.

E. Pulse Shaping

The grid has to be excited with a pulse signal that adheres to the aforementioned

bandwidth and the time-compactness constraints, and is usually defined in terms of a −6dB

cutoff frequency (fc) and the number of samples (M). Two widely employed pulse signals

in FDTD modeling are the Gaussian pulse and the Blackman-Harris window12. Figure 1(a)

shows the respective amplitude spectra for fc = 0.1fs and M = 79. The Gaussian pulse

signal has to be truncated with care in order to avoid the introduction of spectral ripples.

The Blackman-Harris pulse has inherent stopband ripples, and any detrimental effects may

become particularly evident when lower cutoff frequencies are required12.

Differentiated versions of these pulse signals are sometimes used in order to avoid DC

excitation11,12. A special case is the Ricker wavelet32, which is a normalized second-derivative

of a Gaussian function, and has several documented uses in acoustics FDTD20,33,34. In the

light of the discussion in Section III.B, it can be said that the differentiation constraint is

inherently met when using such pulses. Similarly, sine-modulated pulses12,21 have no DC
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component and may be considered as differentiated versions of pulse signals of finite power

and length, thus also meeting the differentiation constraint. Figure 1(b) shows a spectral

comparison between a Ricker wavelet, a differentiated Gaussian and a sine-modulated Gaus-

sian.

It is worthwhile noting that the differentiation in Equation (14), stems from the gov-

erning equations, which are discretized in the numerical formulation. It is therefore more

consistent with the FDTD model to incorporate the source differentiation in the same dis-

cretized fashion, rather than performing an analytic differentiation on the initial pulse signal.

As explained in Section IV, this leads to the use of an “injection filter” for wave equation

FDTD grids.

The main remaining assessment criterion is the extent to which the pulse spectrum is

flat and rippleless in its passband and stopband. As such, a good alternative to the standard

Gaussian and Blackman-Harris pulses can be found in the digital signal processing literature

on maximally flat (MF) FIR lowpass filter design. In the original formulation35, the MF

FIR tap coefficients were computed by applying an inverse discrete Fourier transform to

polynomial expressions evaluated in the frequency domain. More recently, Khan and Ohba36

derived explicit formulae, from which an MF pulse can be defined for −(2N − 1) ≤ n ≤

(2N − 1) as

sp
∣∣0 = ωcT

sp
∣∣n =

(2N − 1)!!2 sin(nωcT )

b̂n(2N + n− 1)!!(2N − n− 1)!!
(21)

where the coefficient b̂ equals 2 for odd n and π for even n, ωc = 2πfc is the angular cutoff

frequency and M = 4N − 1. As seen in Figure 1(a), the MF pulse spectrum is flatter within

the pass band than the standard pulse signals, and also has a steeper roll-off. Together with

the absence of stopband ripples this makes the MF FIR pulse particularly suited to FDTD

field visualization and auralization.
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IV. UNIFIED SOURCE MODELING USING CASCADED FILTERS

In order to gain a stronger sense of overview over the design process, it is useful to

represent the source model in terms of its associated signal processing path. As such, the

process of injecting a source signal can be generalized in parametric fashion by considering

it as a system of three cascaded digital filters whose input is a Kronecker Delta, as shown

in Figure 2. The delta function is first passed through a pulse shaping filter of transfer

function Hp(z), which ensures that the system is driven using a signal adhering to the

aforementioned numerical constraints. The output of this filter is the excitation signal sp
∣∣n,

which then drives a mechanical filter of transfer function Hm(z), the function of which is to

meet some of the transduction constraints. In principle, removal of a DC component can be

accomplished by means of a simple DC-blocker37, but - as shown in Section IV.A - a more

systematic approach is to simulate the mechanics of a simple transducer.

+

FIG. 2. Unified representation of source models. Hp(z) pulse-shaping filter, Hm(z) mechan-

ical filter, Hi(z) injection filter, sp
∣∣n excitation signal, sg

∣∣n
i′

final grid signal to be injected.

The remaining transduction constraints are then met by employing an injection filter,

Hi(z), and its corresponding gain coefficients g0 and g1. This represents the final stage in

transforming the excitation signal sp
∣∣n into the source function sg

∣∣n
i′
. The purpose of the

coefficient g0 is to account for the scaling constraints. The signal is then routed through

an injection filter which acts either as a differentiator or, for a transparent source, as a

cancellation mechanism. Lastly, the gain function g1 controls the superposition constraint,
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and may take on the values 0 or 1 depending on whether the source function is imposed

or superimposed on the grid. While the two filters, Hi(z) and Hm(z), are associated with

the same physical system, they are here described separately in order to allow an efficient

generalization of FDTD source models.

A. Physically Constrained Source (PCS) Model

The unified source representation directly facilitates the design of source models that

adhere to the aforementioned constraints. In this section, such a model is derived starting

from a pulsating sphere of (small) radius a0 whose surface velocity ν(t), in vacuum, is

governed by

M
∂ν(t)

∂t
= −Rν(t)−K

∫
ν(t)dt+ F (t) (22)

where M , R, and K are respectively, the mass, damping and elasticity constants characteriz-

ing the mechanical system, and F (t) is the mechanical force driving the sphere pulsation (not

to be confused with acoustic force, which has been neglected in this formulation). With air

surrounding the sphere, the mechanical impedance of the system is Z(ω) = Zv(ω) + Za(ω)

where

Zv(ω) = Mjω +R +K/(jω) (23)

is the impedance of the system in vacuum and

Za(ω) = ρ0Aa0
(
jω + (a0/c)ω

2
)

(24)

is the mechanical impedance of the surrounding air38, approximated for ka0 � 1. However,

the latter term may be omitted since a0 is very small, meaning that |Zv(ω)| � |Za(ω)| in

all practical cases. Hence the system may be characterized by the transfer function

Hm(s) =
s

Ms2 +Rs+K
(25)

which has the dimension of mechanical admittance. In the time domain, the impulse response

of the system is given by

hm(t) =

[
cos(ωrt)−

α

ωr

sin(ωrt)

]
Me−αt (26)
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where α = R/(2M) is the damping factor, ω0 =
√
K/M is the system’s undamped resonant

frequency and ωr =
√
ω2
0 − α2. At the source, the sphere’s surface velocity equals the

particle velocity of air, which can be mathematically expressed as convolution between the

driving force and the system’s impulse response, ν(t) = F (t) ∗ hm(t). The pulsation of the

sphere causes fluid to be pushed into and extracted from the region bordering the source

sphere surface, which is characterized by a volume velocity,

Q(t) = ν(t)As (27)

having the dimension of volume per unit time, where As = 4πa20 is the surface area of the

sphere.

In the numerical domain, the transfer function of the PCS mechanical filter, Hm(z), can

be formulated by applying a bilinear transform to Hm(s). This choice is mainly because,

unlike other discretization methods, the bilinear transform does not place any stability limits

on the values of M , R and K, thus allowing them to be freely chosen. Taking the bilinear

transform of Equation (25), the following digital filter is obtained:

Hm(z) =
b0 + b2z

−2

1 + a1z−1 + a2z−2
(28)

with the coefficients given by

b0 =
β

Mβ2 +Rβ +K
b2 = − β

Mβ2 +Rβ +K

a1 =
2 (K −Mβ2)

Mβ2 +Rβ +K
a2 = 1− 2Rβ

Mβ2 +Rβ +K
(29)

where β is the bilinear operator, which for a pre-warped ω0 is given by

β =
ω0

tan(ω0T/2)
(30)

In the PCS method one considers the quantity represented by the excitation signal sp
∣∣n to

describe the mechanical force driving the sphere, that is, the discrete time equivalent of

F (t). Passing this signal through Hm(z) yields the sphere’s surface velocity ν
∣∣n, which is

then used in the final injection network.
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In this formulation, the pulsating sphere is thought of as an external entity, uni-

directionally coupled to the grid but not embedded into it, whose sole purpose is to generate

a prescribed volume velocity. When this quantity is applied to a single grid node, the spa-

tial period and nodal density of the rectilinear grid dictate that fluid emerges within a finite

volume of V = X3. Accordingly, by discretizing Equation (13), a numerical equivalent of

q(x, t) is given by

q
∣∣n
i′

=
ρ0As

X3
ν
∣∣nδ[i− i′] (31)

To derive the PCS injection filter and its corresponding coefficients g0 and g1, one needs

to consider the type of scheme being used. Taking into account the additional scaling factors

for the source term in Equation (3), the coefficient g0 for a Yee-type scheme is given by

g0 =
z0λAs

X2
(32)

Since in a Yee-scheme source differentiation is inherent in the update equations, the transfer

function of the injection filter’s is Hi(z) = 1. Considering the superposition constraint, g1 is

set to unity in order to allow the update equation for air to operate over the source node.

Accordingly, the final update equation for a Yee-type source node becomes

p
∣∣n+1

i′
=
{
p
∣∣n+1

i′

}
+ g0ν

∣∣n+1

i′

=
{
p
∣∣n+1

i′

}
+ (c2T )q

∣∣n+1

i′
(33)

which is equivalent to the formulation proposed by Matheson39. To develop the injection

filter for the wave equation method, the physical definition of ψ(x, t) is followed. In the

numerical domain, the differentiation constraint described by Equation (14), is adhered to by

employing central finite differences approximating the time derivative of q(x, t). Accordingly,

the transfer function of the injection filter for the wave equation is

Hi(z) =
1

2T

(
z − z−1

)
(34)

Considering the scaling constraints drawn from the formulation of q
∣∣n
i′
, the coefficient g0 for

a wave-equation source is given by

g0 =
λ2ρ0As

X
(35)
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Adhering to the superposition constraint, g1 is set to unity, and the final update equation

for a wave-equation source node becomes

p
∣∣n+1

i′
=
{
p
∣∣n+1

i′

}
+
g0
2T

(
ν
∣∣n+1

i′
− ν
∣∣n−1
i′

)
=
{
p
∣∣n+1

i′

}
+
c2T

2

(
q
∣∣n+1

i′
− q
∣∣n−1
i′

)
(36)

B. Generalizing Source Models

The signal processing chain described in this section can be used to generalize the process

of modeling sources for FDTD simulation, where all existing source models, as well as the

PCS, can be seen as special cases of the cascaded-filters method. To summarize this, Table I

shows the different transfer functions and coefficients which may be used in the filter network

in order to model different sources. For hard and soft sources the grid source function simply

equals the excitation signal at the source position, that is sg
∣∣n
i′

= sp
∣∣n with the only difference

being the value of g1 which controls the superposition constraint. Within our formulation,

in a Yee-type scheme the dimension of a hard source is pressure and the dimension of a soft

source is velocity (due to the inherent differentiation), whereas in wave equation schemes

both sources have the dimension of pressure. Differentiated soft sources calculate the signal’s

time derivative in the injection filter and therefore the injected quantity is volume velocity,

however, their associated scaling coefficient g0 is appropriate for 1D grids. Transparent

sources feature a processing chain similar to that of soft sources, with the injection filter

designed to compensate for the grid IR and, in Yee-schemes also reverse the effects of inherent

differentiation. For the PCS method, the dimension of sp
∣∣n is mechanical force and, after

the complete signal processing chain, the source function represents source density (in Yee

methods), i.e. q
∣∣n
i′

= sg
∣∣n
i′
, or its first time derivative (in wave equation methods), i.e.

ψ
∣∣n
i′

= sg
∣∣n
i′
.

Readers who wish to make practical use of the unified source representation described in

this section may download a dedicated Matlab function library, the Source Modeling Toolbox,

which has been made available online40.
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V. RESULTS AND DISCUSSION

A. Prescribed Pressure

To exemplify how the PCS can be designed to achieve a prescribed pressure field, a

receiver was placed at the center of a 6x6x6m domain, which was solved using the standard

rectilinear scheme (a = 0 and b = 0) at a sample rate of 16kHz. A PCS was placed at a

radial distance of r = 1.5m and an azimuth of 45◦ on the same plane as the receiver. The

simulation was executed long enough for the entire signal to propagate from the source to

the receiver but without introducing any reflections from the boundaries. The excitation

signal was designed with the impulse response of a MF FIR (M = 16 and fc = 0.075fs),

which corresponds to the 2% dispersion criterion for the standard rectilinear scheme5. The

magnitude of excitation was chosen such that the peak amplitude of the filter’s output is

normalized to a driving force of 250µN.

The mechanical filter of the PCS is characterized by the system resonance ω0 and quality

factor Q. In an optimal transducer design process, the designer would specify the desired

values for these parameters and the remaining electro-mechanical quantities would be en-

gineered accordingly. In this experiment, the radius of the pulsating sphere was arbitrarily

chosen to be a0 = 5cm, and its mechanical constants corresponded to values of M = 25g,

f0 = 100Hz and Q = 0.7. It is worthwhile noting that a transducer of such small surface

area would, in reality, produce a poor volume velocity at low frequencies. However, while

the numerical model is governed by physical laws, it is not bound by real world engineering

constraints, and as such, it is possible to design a small sphere of such low resonance. Accord-

ingly, the remaining damping and stiffness coefficients are calculated from R = ω0M/Q and

K = Mω2
0, respectively. As reference, a closed-form solution for Equation (6) in free field is

used. With a point-source approximation, the sound pressure at the distance r = ‖x− x′‖

is given by28

p(r, t) =
ρ0

4πr

d

dt
Q
(
t− r

c

)
(37)

Numerical results were obtained using both the wave equation method and the Yee-type
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method, and a reference response was calculated by passing the PCS volume velocity through

Equation (37). As shown in Figure 3(a), when using the PCS model, both methods are in

agreement with the closed form solution.
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FIG. 3. Sound pressure at the receiving position of a domain excited using the PCS method.

(a) Time domain comparison: Yee and Wave equation (WE) methods plotted against the

closed-form solution (CF). (b) Frequency spectra: wave equation method solved with differ-

ent values of Q.

B. Frequency Response Comparison

To study the pressure spectrum resulting from a PCS excitation, the same experiment

was conducted using an interpolated wideband scheme (a = 1/4 and b = 1/16), allowing

for the high cutoff frequency to be increased to 0.25fs. The PCS resonance was kept at

f0 = 100Hz, which corresponds to 0.0063fs. This simulation was repeated for different

values of Q ranging from 0.5 to 2.0. As seen in Figure 3(b), the PCS model facilitates a

means to design sources having a flat bandwidth between the system’s resonance and the

cutoff frequency of the pulse-shaping filter. As expected from a second order linear system,

adjusting Q controls the trade-off between the steepness of the low-frequency transition

band and the magnitude of resonance.
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For comparison of with other source models, three simulations were executed using an

interpolated-wideband scheme, with a HS (also representative of the frequency response of

a TS and a wave-equation SS), a DSS (also representative of a Yee-type SS) and a PCS.

All simulations used a MF FIR pulse with fc = 0.25fs, and the PCS was designed with

a low resonance at f0 = 0.167fs and Q = 0.7. For visual clarity, simulation outputs were

normalized such that the peak value of each resulting impulse response is unity. As seen in

Figure 4, the SS suffers from a severe roll off at low frequencies, which is to be expected due

to differentiation (be it inherited in the source formulation or in the grid update equations

in the case of a Yee method). Given that in the standard SS formulation, no mechanical

or pulse shaping filter is explicitly defined, either the flatness requirement is not met (if the

signal is differentiated) or solution growth is not prevented (if it is undifferentiated). In

the PCS model, the mass reactance of the sphere acts as an integrator which, in a physical

manner, counters the effects of differentiation. Below its resonant frequency, the system

is stiffness controlled, and as such, naturally acts as a DC-blocking filter. The result is a

source having a near-flat pressure spectrum whose physical properties can be freely chosen

by adjusting Q and ω0. In comparison to a HS, the spectrum of the PCS is flat above f0

but not down to DC; however, such a low-frequency response is essential for the exclusion

of a DC component.

C. Numerical Consistency

When simulating a physical system, changing numerical parameters should only affect

the accuracy of the model. Accordingly, changing the sample rate of an FDTD model should

not affect the magnitude of the generated sound field, a notion which is related to the scaling

constraint discussed in Section III. To test this, the wave equation FDTD method was used

with three sources, namely HS, DSS and PCS. Transparent sources and undifferentiated soft

sources have the same scaling coefficients as HS, thus as far as the magnitude of the soundfield

is concerned, results can be appropriately deduced from the HS example. The simulation
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FIG. 4. Calculated frequency response for three different source models, HS - hard source

(response similar to TS), DSS - differentiated soft source (response similar to SS in Yee

methods), PCS - physically constrained source. Excitation signals are MF FIR pulses of

N = 16 and fc = 0.25fs. PCS resonance is at f0 = 0.167fs.

was repeated for three sample rates, namely 8kHz (X = 74.37mm), 12kHz (X = 49.58mm)

and 18kHz (X = 33.05mm). An MF-FIR pulse-shaping filter with M = 16 and fc = 600Hz

was used in all simulations (regardless of the sample rate), thus ensuring that anomalies do

not occur due to differences in the excitation signals.

It can be seen in Figure 5 that the PCS is the only source model which results in a

response whose magnitude is independent of sample rate. Nevertheless, in a one-dimensional

problem, one would expect similar consistency for the case of a differentiated soft source,

when it is appropriately scaled as described by Karjalainen and Erkut14.

D. DC and Low Frequency Artifacts

The theoretical analysis in Section III.D indicates that when soft sources in wave equa-

tion schemes include a DC component, a growing solution could occur. The concern arises

when one uses an arbitrary SS, such as described by Equation (19), where the source function

directly equals the excitation signal, and as such, may contain energy around DC. To test
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FIG. 5. Pressure at the receiving position of a grid excited by (a) hard-source, (b) differen-

tiated soft-source and (c) physically-constrained source, at three different sample rates.

this, let us consider an arbitrary SS and a PCS, both of which are designed using a Gaussian

pulse shaping filter. This pulse is unipolar and hence features a strong DC component. A

receiver was placed at the center of a 216m3 room at a distance of 0.5m from the source.

The room was designed with uniform frequency independent boundaries, corresponding to

a normal-incidence reflection coefficient of r̂ = 0.997. Results from these simulations are

displayed in Figure 6(a). For visual clarity, responses are normalized such that the direct

component in the resulting responses equal 1Pa. It is evident that the PCS response remains

around the horizontal axis over time, whereas the soft source solution is linearly growing.

This growth is attributed to the accumulation of DC in the soundfield, and is unrelated to
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stability issues which normally cause an exponential growth.
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FIG. 6. Sound pressure at the receiving position for a grid excited by a physically constrained

source (PCS) compared to (a) SS - undifferentiated soft source and, (b) HS - hard source. All

source models employ a Gaussian pulse shaping filter (σ = 31
3
·10−4). Results are normalized

for visual clarity.

Such a growth is also sensible from a physical perspective as a DC component in sg
∣∣n

indicates that q(t) is not of finite length, meaning that the equivalent excitation signal

does not adhere to a time-compactness constraint. To explain this, it is useful to discuss

the physical meaning of using the Gaussian as a source function in an undifferentiated SS

model. Since such a source does not adhere to the differentiation constraint nor to any other

mechanical constraints, then the excitation signal and source function are a direct numerical
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representation of ψ(x, t):

sg
∣∣n = sp

∣∣n ≡ ψ(x, t)
∣∣
t=nT

(38)

Since ψ(x, t) is defined as the first time derivative of q(x, t), then following Equation

(14), the rate of fluid emergence due to the soft source is obtained by taking the integral of

a Gaussian function, which yields

q(x, t) =

∫
ψ(x, t)dt =

∫
Ap exp

(
− [t− t0]2

2σ2

)
dt

=

√
π

2
Apσerf

(
t− t0√

2σ

)
(39)

where erf(·) is the Gauss error function, σ is the pulse variance, Ap is the amplitude of

the pulse and t0 denotes an initial time shift. Figure 7 depicts ψ(t) and q(t), for such an

undifferentiated soft source and for a physically constrained source.
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FIG. 7. Source function (dashed lines), ψ(t), and rate of fluid emergence (solid lines),

q(t) at the source node, for (a) undifferentiated soft source and (b) physically constrained

source, both excited using a Gaussian pulse. Results have been normalized to ±1Pa. and

±1kgm−3s−1 for visual clarity.

When the PCS mechanical filter is damped (i.e. α > 0) and driven by an appropriately

time-limited force, then both q(t) and ψ(t) start at and decay to zero, indicating a finite
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source. However, this is not the case for the arbitrary SS. The fact that the grid signal

represented by ψ(t) is time-limited can be misleading as, in physical terms, it only means that

the source generating mechanism does not accelerate before or after the excitation period.

This does not mean that the source is not active. In fact, it can be seen for the SS that

when ψ(t) decays, q(t) rises and stays at a constant value through the remaining simulation

period, which indicates that even when ψ(t) is time limited, the source mechanism may still

generate volume velocity. As one would expect, q(t) remains at a constant positive value

which is equivalent to the generation of DC flow, meaning that the soundfield continuously

gets pressurized by the source.

For the case of a HS injection, solution growth is not expected even if the excitation signal

contains a DC component. This is because hard sources do not adhere to the superposition

constraint, and as such, the existing pressure at the source node gets replaced by (rather

than added to) the source function. As was identified by Jeong and Lam21, this prevents

air particles at the source position from being able to perform rarefaction, which leads to

a spurious low frequency component in the resulting response. Figure 6(b) compares the

results of exciting the grid with a PCS and HS, both of which are based on a Gaussian

excitation signal. It can be seen that while the HS solution does not display growth, it does

contain a spurious low frequency component (with a period of 582ms).

E. Time Limiting

Based on the assumption that excitation signals are relatively compact in time, it was

further suggested by Jeong and Lam21 that the HS scattering and low frequency artifacts can

be overcome by using sine-modulated pulses together with time-limiting the source injection

process. To accomplish this, the source node is updated with a HS formulation until the

associated excitation signal has decayed to zero, after which the regular update equations

for the medium are used. This workaround may appear useful for generating a soundfield

similar to that of a transparent source, however it bears a couple of complications. Firstly,
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even if the excitation signal has decayed to zero, one cannot generally assume that the

nodes surrounding the source are also null (although if the excitation signal is short and the

source is sufficiently distant from a boundary, they might be). Additionally, it was shown

in Figure 7 that in wave equation methods it is possible that even when the source function

has decayed, the source is still physically active. Since the update equations for the medium

involve temporal as well as spatial differentiation, any sudden change in the equations for

the source node might introduce errors arising from the associated discontinuities.

VI. CONCLUDING REMARKS

A coherent approach to modeling sources in acoustic FDTD simulation has been made

possible by representing the signal injection path with a chain of digital filters, and deriving

the associated parameters from the physics and the numerics of the problem. The results

presented in Section V show that a simple numerical monopole source can be formulated

which is consistent with its continuous-domain counterpart, does not scatter wave energy,

and effects a free-field pressure wave that is spectrally flat between specified cut-off frequen-

cies. As such, the proposed physically-constrained source model offers an improved approach

for meeting the aims and constraints inherent to FDTD excitation.

One principal limitation remains, in that the design of the source signal cannot escape the

Gabor limit, meaning that there is inevitably some limit on the simultaneous time-frequency

resolution one may achieve. Within this fundamental restriction, the proposed method offers

some design freedom through control of the resonance frequency and quality factor of the

modeled pulsating sphere, both of which are intuitive design parameters from a physical as

well as a spectral analysis perspective. As explained in relation to the simulation results

presented in Sections V.A and V.B, the value of the third design parameter, namely the

higher cutoff frequency, has to be chosen in relation to the numerical dispersion properties

of the employed scheme.

Since direct extension to multipole, plane-wave, and further spatially distributed exci-
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tation forms41 is straightforward, the simple monopole model, as formulated in the present

study, is directly applicable in FDTD grid excitation for a wide variety of acoustic applica-

tions. Amongst more elaborate future extensions, the formulation of bi-directional coupling

between the source and the medium is of interest, in particular with regard to the study of

room-loudspeaker interactions.
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TABLE I. Generalization of source models using the cascaded filters approach. Inactive

gains or filter blocks are indicated with a unity multiplier.

Hm(z) g0 Hi(z) g1

HS 1 1 1 0

SS 1 1 1 1

DSS 1 1
2As
ρ0cX z − z−1 1

TS 1 1 1− I(z) 1

PCS (Yee) Eq. (28) 1
X2 z0λAs 1 1

PCS (Wave) Eq. (28) 1
X
λ2ρ0As

1
2T

(z − z−1) 1
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