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Profit Maximization with Sufficient Customer Satisfactions
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In many commercial campaigns, we observe that there exists a trade-off between the number of customers

satisfied by the company and the profit gained. Merely satisfying as many customers as possible or maximizing

the profit is not desirable. To this end, in this paper, we propose a new problem calledk-Satisfiability Assignment
for Maximizing the Profit (k-SAMP) where k is a user parameter and a non-negative integer. Given a set P of

products and a set O of customers, k-SAMP is to find an assignment between P and O such that at least k
customers are satisfied in the assignment and the profit incurred by this assignment is maximized. Although

we find that this problem is closely related to two classic computer science problems, namely maximum weight

matching and maximum matching, the techniques developed for these classic problems cannot be adapted

to our k-SAMP problem. In this work, we design a novel algorithm called Adjust for the k-SAMP problem.

Given an assignment A, Adjust iteratively increases the profit of A by adjusting some appropriate matches in

A while keeping at least k customers satisfied in A. We prove that Adjust returns a global optimum. Extensive

experiments were conducted which verified the efficiency of Adjust.
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1 INTRODUCTION
Assigning products to customers is a very common scenario and finds many applications in real life.

Some examples are school admission [10], profile matching [32], facility allocation [12], Internet

auctions [25] and product bidding [27]. Here, the terms “products” and “customers” are general

and can refer to different things in different applications. For example, consider the “Name Your

Own Price” (NYOP) service [27] from Priceline.com, which assigns packages/hotels (as products)

to bidders (as customers), as follows.

Example 1.1 (Name Your Own Price (Priceline.com)). “Name Your Own Price” (NYOP) [27] is a

hotel booking service launched by Priceline.com where customers specify their requirements on

the hotels (e.g., check in/out dates, quantity, location and star level) and provide their biding prices

(i.e., name your own price). Then, Priceline.com returns an assignment between the customers and

the hotels each with a cost. As part of the agreement, a customer cannot reject the products that

are assigned to him/her.

Consider that customers are looking for vacation packages to Bordeaux, France using Price-

line.com. They use two criteria for choosing packages, namely price and distance-to-beach (in short,

distance). Table 1 shows six customer preferences on packages. In this table, each customer gives
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1:2 C. Long et al.

Table 1. Customer preferences on packages

Name Price

($)

Distance

(km)

Alice 200 7

Bob 40 10

Clement 300 5

David 400 4

Emily 100 9

Fred 550 1

Table 2. Packages provided by a travel agency

Package Cost

($)

Distance

(km)

p1 120 6

p2 80 6.5

p3 510 1.5

p4 310 2

p5 280 5.5

p6 290 2.5

a value on each criterion denoting the greatest possible acceptable value for this criterion. For

example, Alice is looking for a package with price at most $200 where the distance between a hotel

in the package and a beach is at most 7km.

Besides, suppose Priceline.com has six packages in stock as shown in Table 2. In this table,

attribute Cost corresponds to the cost of a package.

If Priceline.com sets the price of packagep1 to be $200, then packagep1 satisfies Alice’s preference
and the agency can make a profit of $200 - $120 = $80 if p1 is assigned to Alice.

In the application of NYOP, two aspects should be taken into consideration (from the perspective

of a travel agency such as Priceline.com). The first aspect is, of course, the profit. The second aspect
is the satisfiability (which corresponds to the number of customers who have been assigned with

products, i.e., they are satisfied) since if it is not considered (i.e., the goal is to maximize the profit

only), the number of customers who are satisfied with the assignment (i.e., the satisfiability) could

be undesirably low (which is verified theoretically in Section 3 and empirically in Section 7), and

this would then discourage the customers from using this service. An intuitive solution for this

problem is to maximize the profit such that a reasonable number of customers are satisfied. For

example, the travel agency can set it a goal to satisfy at least three customers in our running example

and at the same time, the profit should be maximized, which we illustrate in detail in the following

example.

Example 1.2 (Profit Maximization With Sufficient Customer Satisfactions). For the sake of illustra-
tion, we first consider that the agency wants to satisfy exactly one customer. When we assign p2 to
Alice and set the price of p2 to $200, the agency can make the greatest profit of $200 - $80 = $120.

, Vol. 1, No. 1, Article 1. Publication date: June 2017.



Profit Maximization with Sufficient Customer Satisfactions 1:3

Next, consider that it wants to satisfy exactly two customers. Suppose that we want to satisfy

Alice and David. We can assign p2 and p6 to them, respectively, which corresponds to an assignment

{(p2, Alice), (p6, David)}. In this case, we set the price of p2 to $200 and the price of p6 to $400. So,

p2 satisfies Alice (with a profit gain of $200 - $80 = $120) and p6 satisfies David (with a profit gain

of $400-$290 = $110). So, the profit of these two packages is equal to $230 (which is greater than
$120, the greatest profit the agency can make when it satisfies exactly one customer.) In fact, this

assignment {(p2, Alice), (p6, David)} maximizes the total profit if the agency satisfies exactly two

customers.

Onemay raise a question: “Is it a must that we canmakemore profit if we satisfymore customers?”

The answer is interestingly no. Consider back our scenario that the agency wants to satisfy at
least three customers and maximize its profit. With similar derivations, we obtain the assignment

{(p2, Alice), (p4, David), (p6, Clement)} satisfying three customers, which maximizes the total profit

(=$220) (which is smaller than $230, the profit the agency can make when it satisfies exactly two

customers.)

Note that in Example 1.2, compared with satisfying two customers (with profit $230), when the

agency satisfies three customers (with profit $220), it loses $10. In other words, it pays $10 to satisfy
the third customer. One may question why it is willing to sacrifice $10 to satisfy the third customer.

The first reason is the reputation consideration, i.e., if the total number of customers satisfied by

products is very small, the reputation of this company will become low and these customers will

likely not buy any products from this company again in the future. The second reason is that

the agency can promote its company and its products easily to the public when it satisfies more

customers. Customers who are satisfied with a company are eager to promote the company to their

friends, relatives or families via their personal relationship, which can be regarded as an effective

marketing strategy [22, 24]. Thus, this $10 sacrifice is not just regarded as the cost of satisfying

more customers. It can also be used to raise the awareness of other customers.

If an assignment satisfies at least k customers, we say that this assignment is k-satisfiable. Thus,
the last assignment in Example 1.2 is 2-satisfiable and also 3-satisfiable.

Problem k-SAMP: In this paper, we propose a new problem called k-Satisfiability Assignment for
Maximizing Profit (k-SAMP) where k is a user parameter and a non-negative integer. Specifically,

given a set P of product types and a setO of customers, k-SAMP is to find a k-satisfiable assignment

between P and O such that the profit incurred by this assignment is maximized. In our running

example, k is equal to 3.

The k-SAMP problem is closely related to two classic computer science problems, namely the

maximum weight matching problem [26] and the maximum matching problem [6]. Firstly, our

k-SAMP problem is a general problem of the maximum weight matching problem in the sense that

if we set k to 0 in our k-SAMP problem, then our problem becomes the profit maximization problem

(or equivalently the maximum weight matching problem). Clearly, the solution of the maximum

weight matching problem cannot be used for our k-SAMP problem. In our running example, the

solution of the maximum weight matching problem for profit maximization is {(p2, Alice), (p6,
David)} satisfying two customers only and giving the profit of $230, which does not satisfy the

constraint that at least three customers must be satisfied. Secondly, the maximummatching problem

is exactly a customer satisfiability maximization problem in our problem setting without considering

the profit objective. In our running example, the solution of the maximum matching problem is the

assignment {(p1, Emily), (p2, Bob), (p4, David), (p5, Alice), (p6, Clement)} satisfying five customers

and loosing the profit of $40, which is not a desirable solution. Although the two classic problems

have been well-studied, their solutions cannot be applied to solve our k-SAMP problem.
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1:4 C. Long et al.

The k-SAMP problem can easily be formulated as an integer linear programming (ILP) problem

(the details will be introduced in Section 7), however, as will be demonstrated in our experiments,

solving the k-SAMP problem as an ILP problem by using existing ILP solvers is very expensive

and not scalable (e.g., it took more than 6 hours and occupied more than 10GB memory on a real

dataset with 17,274 and 1,711 products and customers, respectively).

In this paper, we design an efficient algorithm called Adjust for k-SAMP. Adjust first initializes a
k-satisfiable assignment and then conducts appropriate adjustments iteratively on this assignment

such that the resulting assignment is still k-satisfiable and has more profit, until no such adjustments

are available. We prove that the final assignment is k-satisfiable with the greatest profit.

Contribution and Organization:We summarize our main contributions as follows. Firstly, to the

best of our knowledge, we are the first to propose the k-SAMP problem, which is more general and

practical than the existing assignment problems and thus has more extensive real-life applications.

Secondly, we propose an efficient method calledAdjust fork-SAMP. Thirdly, we conducted extensive

experiments which verified our Adjust algorithm.

The rest of the paper is organized as follows. We formulate our k-SAMP problem in Section 2

and clarify the relations of k-SAMP to existing problems in Section 3. We introduce the Adjust
algorithm in Section 4 and further discuss it in Section 6. We give the empirical studies in Section 7

and conclude the paper in Section 8.

2 PROBLEM DEFINITION
Let P be a set of product types andO be a set of customers. Each product type p in P has its capacity,
denoted by p.w , representing the total number of products of type p the company provides. Each

customer o in O has his/her demand, denoted by o.w , representing the number of products s/he

needs. Each product type p is associated with a cost attribute and a set A of attributes other than

the cost attribute describing this product type. For each product type p, we use p.cost to denote the

cost of p and p.a to denote the value of p on attribute a ∈ A. We assume that for any two values, v
and v ′, in each attribute, if v < v ′, then v is more preferable. In the case that a larger value is more

preferable on an attribute, we can just negate all values on this attribute. Consider Example 1.1,

A = {distance}. If a =“distance”, p1.a = 6 and p1.cost = 120.

Similar to [9, 13, 15, 17, 18, 21, 28, 29], each customer o in O has his/her own preference on

the attributes of product types (or simply products). Customer preferences can be collected by

conducting surveys where customers can provide their preferences on products by questionnaire.

The preferences can also be obtained by extracting customers’ preferences from their past histories

[14]. Besides, they can also be obtained directly by some online systems such as “Name Your Own

Price” [27] where customers can provide their acceptable prices called bidding prices directly. Similar

to a product type, each customer o in O has the same set A of attributes and an attribute called

price . We use o.price to denote the bidding price provided by customer o and use o.a to denote the

greatest acceptable value on each attribute a ∈ A given by o.
In order to encourage customers to give “reasonable” bidding prices (i.e., they do not fool the

system by providing very low bidding prices), we have the following strategies. First, as what the

“Name Your Own Price” service does, we can suggest a customer an “average” bidding price for

the hotels that satisfy the requirements of this customer, which could be computed based on the

historical data easily. Second, we propose a strategy called “local profit loss tolerance” requirement

which main idea is that we only accept the bidding prices which should not be too low compared

with the cost of a potential hotel. More specifications of this strategy will be introduced later in

this section.

, Vol. 1, No. 1, Article 1. Publication date: June 2017.
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In Example 1.2, we need to set the price of a package p for a customer o assigned. In order to

gain more profit (if any) or lose less money (otherwise), we should set the price of p to be o.price .
Thus, given a customer o and a product type p, we define the unit profit of p assigned to o, denoted
by pro f it(p,o), to be o.price − p.cost .

We know that when a product type p is assigned to a customer o, pro f it(p,o) can be positive or

negative. A positive value means that the company gains profit for this pair (p,o) but a negative
value means that it loses money.

We want to assign customers with product types such that each product type p assigned to a

customer o can “satisfy” both the company’s need and the customer o’s need. If a given pair (p,o)
satisfies both needs, we say that (p,o) is matchable.
Company’s Need: There are two scenarios. The first scenario is that some companies want to

enforce the local profit gain requirement: for each assigned pair (p,o),pro f it(p,o) > 0 (i.e., o.price >
p.cost ). Note that the overall profit among all products assigned to customers in this scenario must be

positive. The second scenario is that some companies do not enforce this requirement. Specifically,

for an assigned pair (p,o), it is possible that o.price > p.cost but for another assigned pair (p ′,o′), it
is possible that o′.price ≤ p ′.cost . In this case, the overall profit can be positive or negative. Under

this scenario, different companies may still have different requirements. One requirement can be the

local profit loss tolerance requirement: given a user parameter α ∈ [0, 1], for each assigned pair (p,o),
o.price > p.cost × α . If α is set to 1, this scenario becomes the first scenario. This requirement is

enforced to avoid each customer o setting o.price too low. The other requirement can be the global
profit gain requirement which means that the overall profit should be greater than 0. Under this

requirement, if the overall profit obtained is positive, we will return customers with their assigned

product types as an output. Otherwise, we will return nothing (since there exists on solution with

positive overall profit).

In the following, we illustrate our concepts under the first scenario (i.e., pro f t(p,o) > 0). The

second scenario will be discussed in Section 6.

Customers’ Need: Each customer o requires that a product type p assigned to him/her can meet

his/her preference.

We define formally the concept of “matchable” as follows.

Given a pair (p,o), we say that (p,o) is matchable if and only if o.price > p.cost and for each

a ∈ A, o.a ≥ p.a.
We define a match to be a triplet in the form of (p,o,w) where (p,o) is matchable and w is a

positive integer denoting the number of products of type p assigned to o.w is said to be the weight
of this match. We define an assignment between P and O to be a set A of matches such that (1)

the total number of products of each type assigned to customers should be at most its capacity

(i.e., ∀ p ∈ P ,
∑
(p,o,w )∈Aw ≤ p.w), and (2) the total number of products assigned to each customer

should be at most his/her demand (i.e., ∀ o ∈ O,
∑
(p,o,w )∈Aw ≤ o.w).

Given an assignmentA, we define the satisfiability ofA, denoted by sat(A), to be
∑
(p,o,w ) ∈ Aw .

A is said to be k-satisfiable if sat(A) ≥ k .
Let A be an assignment and (p,o,w) be a match in A. The profit of (p,o,w), denoted by

pro f it(p,o,w), is w · (o.price − p.cost). We define the profit of A, denoted by pro f it(A), to be

the sum of the profits of all matches in A, i.e., pro f it(A) =
∑
(p,o,w )∈A pro f it(p,o,w).

Problem 1 (k-SAMP). The goal of k-SAMP is to find the k-satisfiable assignment A with the
greatest pro f it(A).

In the following, for the ease of illustration, we focus on the un-weighted version of k-SAMP

where for each o ∈ O and each p ∈ P , o.w = 1 and p.w = 1. In this case, since each match (p,o,w)

, Vol. 1, No. 1, Article 1. Publication date: June 2017.



1:6 C. Long et al.

Table 3. Summary of notations

P (O) the set of product types (customers)

p (o) a product type in P (a customer in O)

p.w (o.w) product type p’s capacity (customer o’s demand)

A (a) the set of attributes of a product type (an attribute in A)

p.a (o.a) product type p’s value on attribute a (customer o’s requirement on attribute a)

p.cost (o.price) product type p’s cost (customer o’s bidding price)

pro f it(p,o) the unit profit gained if a product of product type p is assigned to o

(p,o,w) a match meaning thatw products of product type p are assigned to customer o

(p,o) an un-weighted match (equivalent to (p,o, 1)) or a feasible pair

A a set of matches, i.e., an assignment

sat(A) the satisfiability of assignment A (i.e., the amount of products assigned in A)

pro f it(A) the profit of assignment A (i.e., the sum of the profits of all matches in A)

A the set of all possible assignments between P and O

S a feasible sequence, usually in the form of (p1,o1,p2,o2, ...,pm ,om )

M(S) the set of all internal matches in feasible sequence S

o(S,A) the adjusting operation on feasible sequence S in assignment A

N (S) the set of all new matches formed after o(S,A) is done

PG(S,A) the profit gain due to o(S,A)

SG(S,A) the satisfiability gain due to o(S,A)

T the set of all possible sequences

T ∗ the set of all critical sequences

GA(V ,E) (GA) the directed graph based on assignment A

π a path in GA(V ,E)

path(S) the mapped path of sequence S in GA(V ,E)

seq(π ) the mapped feasible sequence of path π in A

C a cycle in GA(V ,E)

has its weight w equal to 1, we simply write a match as (p,o). Similarly, we can simply write

pro f it(p,o,w) as pro f it(p,o).
The original version of k-SAMP where o.w and p.w can be equal to any positive integer can be

transformed easily to the un-weighted version by duplicating each o o.w times and p p.w times.

Thus, the following proposed technique for the un-weighted version can also solve the original

version. Note that we have a more concise technique for the original version which is developed

based on the concepts in the un-weighted version, and the details could be found in Section 5.

The notations used throughout this paper are summarized in Table 3.

3 RELATEDWORK
LetA be the set of all possible assignments between P andO . We define satmax to bemaxA∈A sat(A)
and define pro f itmax to be maxA∈A pro f it(A).

MaximumMatching: Given a bipartite graphG containing two sets of vertices, P and O , and a

set of edges each of which connects a vertex p ∈ P and a vertex o ∈ O , the maximum matching
problem [6] is to find an assignment A between P and O such that the total number of the matches

in A is the greatest. Let X be the set of multiple assignments which have the greatest number of

matches. A variation of the maximum matching problem considers the same bipartite graph where

each edge is associated with a weight w , and finds the assignment in X which has the greatest

, Vol. 1, No. 1, Article 1. Publication date: June 2017.
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sum of the weights of all matches involved in the assignment. This variation can be solved by a

well-known min-cost flow algorithm [1]. In the following, we focus on this variation.

Given an instance of the k-SAMP problem, we can construct the variation of the maximum

matching problem as follows. Firstly, all product types in P form one vertex set in the bipartite

graph while all customers inO form another vertex set. Secondly, for each p ∈ P and o ∈ O , if (p,o)
is matchable, we create an edge connecting the vertex for p and the vertex for o and set the weight

of this edge to be pro f it(p,o). It is easy to verify that the satisfiability of the assignment for the

maximum matching problem is equal to satmax .

Lemma 3.1 (Solution Existence). There exists an assignment for k-SAMP if and only if k ≤
satmax .

Lemma 3.2 (Inapplicable Maximum Matching). Let A be the assignment for the constructed
maximum matching problem and Ao be the optimal assignment for k-SAMP. There exists a problem
instance such that prof it (A)

prof it (Ao )
≈ 0.

Maximum Weight Matching: Given the same bipartite graph G with weights described in the

variation of the maximum matching problem, the maximum weight matching problem [26] is to

find an assignment A between P and O such that the sum of the weights of the matches in A is the

greatest.

Given an instance of the k-SAMP problem, we can construct the maximum weight matching

problem in the same way as the construction for the variation of the maximum matching problem.

Clearly, the sum of the weights of the matches in the assignment for the constructed maximum

weight matching problem is equal to pro f itmax .

Lemma 3.3 (Max. Weight Matching). The constructed maximum weight matching problem is a
special case of k-SAMP. If we set k = 0, k-SAMP becomes the constructed maximum weight matching
problem.

Lemma 3.4 (Inapplicable Max. Weight Matching). Let A be the assignment for the constructed
maximum weight matching problem and Ao be the optimal assignment for k-SAMP. There exists a
problem instance such that sat (A)

sat (Ao )
≈ 0.

Assignment Problems: Different assignment problems have been studied extensively in the

literature [1, 10, 16, 20, 23]. Among them, maximum weight perfect matching [1, 16, 23] is to find a

matching with n matches between a set of n objects and another set of n objects, which has the

greatest sum of the weights of the matches, cardinality assignment [20] is to find a matching with

exactly a given number of matches, which has the smallest sum of the weights of the matches,

and stable marriage matching [10] is to find a matching between two sets such that there exist no

unstable matches where whether a match is stable depends on the preferences of objects (i.e., a

match of (p,o) is said to be unstable if p (o) prefers some other objects than o (p)). To the best of

our knowledge, none of the existing assignment problems is the same as the k-SAMP problem

proposed in this paper.

Recently, [28, 32, 35] studied the assignment problem under the spatial setting. Specifically, they

are the spatial matching problem [32], the capacity constrained assignment problem [35] and the fair
assignment problem [28]. However, all these studies aim at either satisfying the greatest number of

customers in O with some objectives or maximizing the total weight (or profit in our case), which

is different from our problem satisfying at least k customers. [4] provides an extensive survey on

, Vol. 1, No. 1, Article 1. Publication date: June 2017.
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Fig. 1. Our running example

assignment problems. To the best of our knowledge, no existing studies have been performed on

k-SAMP.

Besides, in the literature of Recommendation Systems, there are several studies which study the

recommendation problem for profit maximization [2, 5, 8, 19]. Those studies are different from the

one in this paper since their focus is mainly on how to model the adoption probabilities of users

for a specific product based on which a product is recommended to a limited number of users for a

potentially optimal profit but user satisfaction as defined in this paper is not considered. Some other

related work includes [11] which studies a tour recommendation problem by considering both

the travel cost and tourists’ interests, [33] which exploits the temporal behaviour patterns in the

buying processes of the business customers and develops a B2B (business to business) marketing

campaign recommender system, and [36] which studies an assignment problem which maximizes

the total social surplus without any guarantee over the satisfiability.

4 ALGORITHM
In this section, we propose an algorithm called Adjust for k-SAMP with the following framework
in two phases. Phase 1 is to initialize a k-satisfiable assignment. Phase 2 is to conduct appropriate

adjustments iteratively on this assignment such that the resulting assignment is still k-satisfiable
and has more profit, until no such adjustments are available. Here, we focus on the first scenario

and the techniques developed will be extended to the second scenario in Section 6.

4.1 Concepts
In this subsection, we introduce a new concept called “feasible sequence” which is a component

used for the assignment adjusting in Phase 2 of Adjust. After that, we describe an operation on it,

which is one of the fundamental steps for the assignment adjusting.

4.1.1 Feasible Sequence. We first define the concept of feasible un-matched pair (or feasible pair
in short) which is the basic unit in a “feasible sequence”.

Definition 4.1 (feasible pair). Let A be an assignment. Given p ∈ P and o ∈ O , we say that (p,o) is
a feasible pair wrt A if (p,o) is matchable and p is not matched with o in A.

Given two feasible pairs wrt A, namely (p,o) and (p ′,o′), if (p ′,o) is a match in A, we say that

(1) these two feasible pairs are adjacent wrt A, (2) match (p ′,o) is the connector between (p,o) and
(p ′,o′) wrt A, (3) (p,o) appears before (p ′,o′) wrt A, and (4) (p ′,o′) appears after (p,o) wrt A. Note
that any connector is a match in A. In the following, we simply say a feasible pair wrt A a feasible

pair if there is no ambiguity of A.

, Vol. 1, No. 1, Article 1. Publication date: June 2017.



Profit Maximization with Sufficient Customer Satisfactions 1:9

Example 4.2 (Feasible Pair). In order to illustrate better, we include one more customer, Gary, in

Table 1 where his preference on (Price, Distance) is ($350, 5.5). We present the customers in Table 1

and the packages in Table 2 with a bipartite graph in Figure 1, where each black dot represents a

customer and each black square box represents a package. For each pair of package p and customer

o that is matchable, we draw solid line between p and o if p is matched with o and draw a dashed
line between p and o in the other case. Besides, we associate with each line (either solid or dashed)

between p and o a number equal to pro f it(p,o). For simplicity, we ignore in the bipartite graph

those customers and packages that are not involved in any matchable pairs (e.g., p3). Consider an
assignment A = {(p1, Alice), (p2, Emily), (p4, David), (p6, Gary)} as presented in the bipartite graph

in Figure 1(a). Then, (p5, Gary) is a feasible pair since (p5, Gary) is matchable and p5 is not matched

with Gary in A. Similarly, (p6, David) is also a feasible pair . Since (p6, Gary) is a match in A, (p5,
Gary) and (p6, David) are adjacent. Besides, (p6, Gary) is the connector between (p5, Gary) and (p6,
David), and we say (p5, Gary) appears before (p6, David) and (p6, David) appears after (p5, Gary) .

Definition 4.3 (Feasible Sequence). Let A be an assignment. Consider m feasible pairs wrt A,
namely (p1,o1), (p2,o2), ..., (pm ,om). A sequence S in the form of (p1,o1,p2,o2, ...,pm ,om) is said to

be a feasible sequence wrt A iff (pi ,oi ) appears before (pi+1,oi+1) for 1 ≤ i ≤ m − 1. Each of these

m pairs is also said to be a feasible pair of S , and S is said to involve thesem feasible pairs.

In the above definition, the connector between (pi ,oi ) and (pi+1,oi+1) is said to be an internal
match in S for 1 ≤ i ≤ m − 1. Note that S hasm − 1 internal matches. p1 (om) is defined to be the

head (tail) in S , which must come from P (O). If there exists a match involving p1 (om ) in A, then
this match is said to be the head match (tail match) in S .

Example 4.4 (Feasible Sequence). Continue Example 4.2. Let S be a sequence in the form of (p5,
Gary, p6, David). Since we know that (p5, Gary) and (p6, David) are feasible pairs, and (p5, Gary)
appears before (p6, David), we conclude that S is a feasible sequence. Besides, (p6, Gary) (which
is the connector between (p5, Gary) and (p6, David)) is an internal match in S . Since there are no
other internal matches in S , (p6, Gary) corresponds to the only internal match in S . p5 is the head in
S and David is the tail in S . Since there is no customer in O currently matched with p5, the head in

S , in A, there is no head match in S . Since p4 is matched with David, the tail in S , in A, (p4, David) is
the tail match in S .

In the following, for clarity, when we write “sequence”, we mean “feasible sequence”.

4.1.2 Operation on Sequence. Next, we define an operation called an adjusting operation on a

feasible sequence. Given a sequence S ,M(S) is defined to be the set containing all internal matches

in S , the head match in S (if its head is matched) and the tail match in S (if its tail is matched).

Consider the sequence S=(p5, Gary, p6, David) in Example 4.4.M(S) corresponds to {(p6, Gary), (p4,
David)}.

Definition 4.5 (Adjusting Operation). Let A be an assignment. Consider a feasible sequence S wrt

A. The adjusting operation on S in A, denoted by o(S,A), is defined to be an operation which takes

S and A as inputs and outputs the assignment A′ which is formed by breaking each match inM(S)
and forming new matches for all feasible pairs of S . We say that this operation adjusts S in A to

form A′. A′ is said to be the adjusted assignment of A by S .

Each feasible pair of sequence S (originally un-matched) becomes matched after the adjusting

operation on S . We define N (S) to be the set of all new matches formed during this operation.
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Example 4.6 (Adjusting Operation). Consider the sequence S =(p5, Gary, p6, David) in Example 4.4.

The adjusting operation on S in A breaks each match in M(S) (which is equal to {(p6, Gary), (p4,
David)}) and forms new matches for all feasible pairs of S (i.e., (p5, Gary) and (p6, David) which
form the set N (S)). Consequently, we form a new assignment A′ = {(p1, Alice), (p2, Emily), (p5,
Gary) and (p6, David)} (which is presented in the bipartite graph in Figure 1(b)).

Given an assignment A and a sequence S wrt A, we capture the effect of o(S,A) on the profit

(satisfiability) of A by the concept “profit gain” (“satisfiability gain”).

Definition 4.7. Let A be an assignment and S be a feasible sequence wrt A. Let A′ be the adjusted
assignment of A by S . The profit gain of adjusting S in A, denoted by PG(S,A), is defined to be

pro f it(A′) − pro f it(A). The satisfiability gain of adjusting S in A, denoted by SG(S,A), is defined
to be sat(A′) − sat(A).

It is easy to verify that PG(S,A) = pro f it(N (S)) − pro f it(M(S)) and SG(S,A) = sat(N (S)) −
sat(M(S)) because the adjusting operation on S only affects the matches broken inM(S) and the

matches newly formed in N (S).

Example 4.8 (Satisfiability/Profit Gain). Consider the sequence S =(p5, Gary, p6, David) in Exam-

ple 4.4. We have N (S) = {(p5, Gary), (p6, David))} and M(S) = {(p6, Gary), (p4, David)}. We have

pro f it (p5, Gary) = 70, pro f it (p6, David) = 110, pro f it (p6, Gary) = 60 and pro f it (p4, David) = 90.

Thus, pro f it(N (S)) = 70 + 110 = 180 and pro f it(M(S)) = 60 + 90 = 150. Besides, sat(N (S)) = 2

and sat(M(S)) = 2. Therefore, PG(S,A) = pro f it(N (S)) − pro f it(M(S)) = 180 − 150 = 30 and

SG(S,A) = sat(N (S)) − sat(M(S)) = 2 − 2 = 0.

Consider an assignment A. Let S be a feasible sequence wrt A involvingm feasible pairs. Let

A′ be the adjusted assignment of A by S . If PG(S,A) is positive, then the profit will increase after

we adjust sequence S in A. However, if it is negative, the profit will decrease after we adjust S .
Interestingly, SG(S,A) is equal to one of the three possible values, 1, -1 or 0.

Lemma 4.9 (Possible Values of SG(S,A)). Let A be an assignment. Consider a feasible sequence S
wrt A. SG(S,A) is equal to one of the three values, 1, -1 or 0.

Let S = (p1,o1,p2,o2, ...,pm ,om) be a sequence. N (S) = {(pi ,oi )|1 ≤ i ≤ m} and thus sat(N (S)) =
m.M(S) corresponds to the set {(pi+1,oi )|1 ≤ i ≤ m − 1} augmented with the head match (if any)

and the tail match (if any). Thus, sat(M(S)) could bem − 1 (S has no head match nor tail match),

m + 1 (S has both its head match and its tail match which are distinct) orm (the other cases). Recall

that SG(S,A) = sat(N (S)) − sat(M(S)) and thus SG(S,A) belongs to {1,−1, 0}.

4.1.3 Three Kinds of Sequences. Based on the satisfiability gain and the profit gain, we define the

following three kinds of sequences, namely affirmative sequence, profitable sequence and gratifying
sequence which will be used in our Adjust algorithm.

Definition 4.10. Let A be an assignment and S be a sequence in A. S is said to be

• affirmative in A iff SG(S,A) ≥ 0 and PG(S,A) > 0;

• profitable in A iff SG(S,A) < 0 and PG(S,A) > 0;

• gratifying in A iff SG(S,A) > 0 and PG(S,A) ≤ 0.

We do not define other kinds of sequences like the sequence S which has SG(S,A) < 0 and

PG(S,A) < 0 since they are not useful for our algorithm.
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Example 4.11. Consider the sequence S =(p5, Gary, p6, David) used in Example 4.4. According to
Example 4.8, PG(S,A) = 30 > 0 and SG(S,A) = 0. Therefore, S is an affirmative sequence. Similarly,
in the assignment A′ = {(p1, Alice), (p2, Emily), (p5, Gary) and (p6, David)} presented in the bipartite
graph in Figure 1(b), we can verify that sequence (p2, Alice) is a profitable sequence and sequence (p4,
David, p6, Clement) is a gratifying sequence.

Affirmative, profitable and gratifying sequences are very useful to develop our Adjust algorithm.

For example, consider an assignment A. When we find an affirmative sequence in A and execute

an operation on this sequence, the profit of A will increase and meantime, the satisfiability of A is

kept (i.e., not decreased). More discussions will be found in the next subsection.

According to Lemma 4.9, we conclude that if S is affirmative, then SG(S,A) must be 1 or 0. If S is

profitable, then SG(S,A) must be -1 . If S is gratifying, then SG(S,A) must be 1.

4.2 Challenges
Consider back the framework of our proposed algorithm which considers a number of iterations

each of which performs an assignment adjustment on a k-satisfiable assignment maintained in the

algorithm. Suppose that A is the k-satisfiable assignment at an iteration. No matter what sat(A) is,
if we find an affirmative sequence S and adjust S in A, we obtain the adjusted assignment of A by S
which has a larger profit and at least the satisfiability of A. Besides, if sat(A) is strictly larger than

k , in addition to an affirmative sequence, we can find a profitable sequence S in A, adjust S in A
and obtain the adjusted assignment A′ of A by S which has a larger profit but has sat(A′) equal to
sat(A) − 1 (since SG(S,A) = -1). In this case, though sat(A′) is smaller than sat(A), we know that

sat(A′) is still at least k (because sat(A′) = sat(A) − 1 and sat(A) > k). Thus, finding an affirmative

sequence no matter what sat(A) is and finding a profitable sequence when sat(A) > k is a good

way for our strategy.

One may ask: “Is this the only way to increase the profit of an assignment while the satisfiability is
at least k?” The answer is “no”. In fact, one may come up with the idea that we can find a series of
feasible sequences and after we execute the adjusting operations on these sequences one by one,
the profit of the resulting assignment increases and the satisfiability of the resulting assignment is

at least k . For example, suppose that this series involves three sequences, S1, S2 and S3. Let A be the

original k-satisfiable assignment. We find S1 in A and adjust S1 in A. Then, we obtain a resulting

assignment A′. Next, we do it similarly. We find S2 in A′ and adjust S2 in A′, finally obtaining a

resulting assignment A′′. The last step is to find S3 in A′′ and perform the adjusting operation.

Suppose that sequence S1 has SG(S1,A) = 1 and PG(S1,A) = −40, S2 has SG(S2,A
′) = −1 and

PG(S2,A
′) = 30 and S3 has SG(S3,A

′′) = 0 and PG(S3,A
′′) = 20. After executing all three adjusting

operations, we obtain that the profit gain is 10 and there is no satisfiability change.

This idea is promising but it has two challenges.

Challenge 1: The first challenge is that each series may involve a lot of feasible sequences which

means that the computational cost of finding a series is very high. In the above example, it involves

three sequences in order to increase the profit. Fortunately, we show that it is sufficient to find a

series involving at most two feasible sequences, which can significantly lower down the cost of

finding a series.

Challenge 2: The second challenge is related to the computational cost of finding such a series

even if it involves two feasible sequences only. According to the above idea, the second feasible

sequence in the series is to be found on the assignment obtained after the adjusting operation on

the first feasible sequence in the series is executed. However, in this paper, we show that we can find

the first feasible sequence and the second feasible sequence simultaneously based on one interesting

, Vol. 1, No. 1, Article 1. Publication date: June 2017.



1:12 C. Long et al.

property. The property is that the first feasible sequence and the second feasible sequence are

compatible (or independent). This means that we can find the second feasible sequence based on the

original assignment instead of the assignment obtained due to the adjusting operation on the first

feasible sequence. With this compatible property, we can design a more efficient algorithm.

Definition 4.12 (Compatible). Consider an assignment A. Two distinct feasible sequences S and S ′

are said to be compatible wrt A iffM(S) ∩M(S ′) = ∅.

Example 4.13 (Compatible). Consider the assignment A as shown in the bipartite graph in

Figure 1(b). Consider two sequences S and S ′ where S is (p2, Alice) and S
′
is (p4, David, p6, Clement).

SinceM(S) = {(p1, Alice), (p2, Emily)} andM(S ′) = {(p6, David)}, i.e.,M(S) ∩M(S
′) = ∅, S and S ′

are compatible.

Lemma 4.14. Consider an assignment A. If two sequences S and S ′ are distinct and compatible, then
N (S) ∩ N (S ′) = ∅.

According to the above lemma, whenever two distinct feasible sequences S and S ′ wrt an
assignmentA are compatible (i.e.,M(S)∩M(S ′) = ∅), we have N (S)∩N (S ′) = ∅, which implies that

the matches to be broken and the new matches to be formed during the adjust operation on S are

totally different from those matches during the adjust operation on S ′. In other words, S and S ′ are
independent. Continue Example 4.13. N (S) = {(p2, Alice)} and N (S

′) = {(p4, David), (p6, Clement)}.

That is, N (S) ∩ N (S ′) = ∅.
In contrast, if two sequences S and S ′ wrt the current assignment A are not compatible, i.e.,

M(S) ∩M(S ′) , ∅, we show that the adjusting operation on one would make the other one not

a feasible sequence wrt the resulting assignment any more and thus they cannot be performed

simultaneously. Let match (p,o) be one of the common matches ofM(S) andM(S ′). Let A′ be the
adjusted assignment of A by S . According to Definition 4.5, the adjusting operation on S breaks

down (p,o) resulting in (p,o) no longer a match inA′. As a result, S ′ is no longer a feasible sequence
wrt A′ and thus we cannot perform the adjusting operation on S ′ after the adjusting operation on S
(this essentially tells that the adjusting operations on S and S ′ cannot be performed simultaneously).

4.3 Theoretical Properties and Algorithm
Now, we can explain how we address the two challenges we described with two lemmas.

Lemma 4.15 (Compatible). LetA be an assignment. Suppose that there exist no affirmative sequences
in A. If there exist a profitable sequence S and a gratifying sequence S ′ in A such that PG(S,A) +
PG(S ′,A) > 0, then S and S ′ are compatible.

If there exist no affirmative sequences, and a profitable sequence S and a gratifying sequence

S ′ wrt an assignment A satisfy PG(S,A) + PG(S ′,A) > 0, we say that these two sequences are two

partner sequences in A. Obviously, the profit of the resulting assignment A′ due to the adjusting

operations on these two sequences is greater than the original profit. Besides, the satisfiability of this

resulting assignmentA′ is exactly equal to the original satisfiability because SG(S,A)+SG(S ′,A) = 0

(since SG(S,A) = −1 and SG(S ′,A) = 1).

This lemma suggests a powerful tool to design our assignment adjustment as follows.

• We first determine whether there exists any affirmative sequence in A. If yes, we can perform

the adjusting operation on an affirmative sequence. Otherwise, we do the next step.

• We have the following two cases.
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ALGORITHM 1: Algorithm Adjust

1: //Phase 1

2: initialize a k-satisfiable assignment A
3: //Phase 2

4: while true do
5: if sat(A) = k then
6: if there exists an affirmative sequence S in A then
7: A← o(S,A)
8: else if there exist 2 partner sequences in A, S and S ′ then
9: A← o(S,A);A← o(S ′,A)
10: end if
11: else return A
12: else
13: // sat(A) > k
14: if there exists a sequence S which is affirmative or profitable in A
15: then A← o(S,A)
16: else return A
17: end if
18: end while

– If sat(A) > k , we determine whether there exists any profitable sequence in A. If yes, we
can perform the adjusting operation on a profitable sequence.

– If sat(A) = k , we proceed to the next step.

• We determine whether there exist two partner sequences. If yes, we can also perform the

adjusting operations on these sequences.

This strategy can address the second challenge provided that this strategy is sufficient to find

the optimal assignment. The following lemma states that this strategy is sufficient for the optimal

solution.

Lemma 4.16 (Optimal). Given an assignment A, A is optimal if one of the following two conditions
is satisfied: C1: sat(A) > k and there does not exist any affirmative sequence and any profitable
sequence in A, and C2: sat(A) = k and there does not exist any affirmative sequence and any two
partner sequences in A.

The above lemma suggests that it is sufficient to use an affirmative sequence or a profitable

sequence when sat(A) > k and use an affirmative sequence or two partner sequences when

sat(A) = k for the assignment adjustment where the number of sequences involved in each

assignment adjustment is at most two. Thus, the first challenge can be addressed well.

We present Adjust in Algorithm 1.

Example 4.17 (Adjust). Consider our running example shown in Figure 1. Let k be 4. Assume

that initialized assignment is the one presented in the bipartite graph shown in Figure 1(a). Note

that sat(A) = 4 and pro f it(A) = 250. At iteration 1, since sat(A) is equal to k , it aims to search

affirmative sequences or two partner sequences. Assume that Adjust finds sequence S =(p5, Gary,
p6, David) which is an affirmative sequence. Then, it adjusts S in A and the bipartite graph in

Figure 1(b) presents the resulting assignment. It then updates A as the resulting assignment. Note

that pro f it(A) is increased to 280. At iteration 2, sat(A) = k . There exist no affirmative sequences

but two partner sequences wrt A namely S =(p2, Alice) and S
′ =(p4, David, p6, Clement). According

to Lemma 4.15, S and S ′ are compatible. Therefore, Adjust performs the adjusting operations on S
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and S ′ simultaneously and the bipartite graph in Figure 1(c) presents the resulting assignment. It

then updates A as the resulting assignment. Note that pro f it(A) is increased to 290. At iteration 3,

sat(A) = 4 and there exist no affirmative sequences nor two partner sequences. Thus, it returns A
as the optimal k-satisfiable assignment.

We verify the correctness of Adjust with Theorem 4.18.

Theorem 4.18 (Correctness). The Adjust algorithm returns the optimal assignment for the k-
SAMP problem.

Note that in a case when k is set too large that a k-satisfiable assignment is not available,

our Adjust algorithm (by its current definition in Algorithm 1) would stop in Phase 1 (i.e., the

initialization phase) by returning an assignment with the greatest possible satisfiability, says k ′

(k ′ < k). Fortunately, Adjust has a very good feature that its Phase 2 is essentially a procedure which
improves the profit of an assignment while retaining its satisfiability for any given assignment, and

as a benefit of this feature, Adjust can deal with the above case well by performing Phase 2 on the

k ′-satisfiable assignment returned by Phase 1 and finally returns a k ′-satisfiable assignment with

the greatest profit, which is the best assignment we can expect (it has the greatest profit among all

assignments with the greatest possible satisfiability).

4.4 Detailed Steps and Time Complexity
In Phase 1, we have to initialize a k-satisfiable assignment A. We propose four methods for this

phase, namely Pure, P-Match, Random and P-Seq. In Pure, we iteratively find a gratifying sequence S
and perform an adjusting operation on S for k times. The effect of Pure is exactly the effect obtained
when we execute an algorithm for the maximum matching problem finding k matches only. In

P-Match, for each customer o, we form a match (p,o) where p is the product which is not matched

yet and p has the largest value of pro f it(p,o) among all possible p’s which are matchable with o. If
all matches form a k-satisfiable assignment A, we return A. Otherwise, we execute the iterative
process in Pure repeatedly until A becomes k-satisfiable. Random is identical to P-Match except

that it selects products in P randomly instead of using the profit heuristic. P-Seq is the same as

Pure except that it finds the gratifying sequence S with the greatest value of PG(S,A) among all

gratifying sequences for each iteration.

In Phase 2, we have an iterative process. For each iteration, we find affirmative sequences and

partner sequences in an assignmentAwhen sat(A) = k , and find affirmative sequences and profitable

sequences in A when sat(A) > k . Thus, when sat(A) = k , any affirmative sequence and any two

partner sequences (together) are desirable wrt A. When sat(A) > k , any affirmative/profitable

sequence is desirable wrt A.
Consider an iteration. A straightforward implementation is to enumerate all possible feasible

sequences one by one and check whether each sequence is desirable. Enumerating all possible

feasible sequences is too costly. Instead, we will show that it is sufficient to only enumerate some

critical sequences.
Given a sequence S , we say that S is critical if S has the greatest profit gain among all sequences

that have the same heads and tails as S . Let T denote the set of all possible sequences and T ∗

denote the set of all critical sequences. We observe the following property.

Lemma 4.19 (Critical Seqences). Given an assignment A, there exist desirable sequences wrt A
in T iff there exist desirable sequences wrt A in T ∗.
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According to Lemma 4.19, it is sufficient to focus on T ∗ for searching desirable sequences. It

could be verified that |T ∗ | is bounded by |P | · |O | since for each pair of p and o, there exists at most

one critical sequence. In the following, we discuss our method for finding all critical sequences in

T ∗.

We construct a directed graphGA(V ,E) based on assignmentA from which we can find all critical

sequences. For each product p ∈ P (customer o ∈ O), we create a vertex p (o) in V . For each feasible
pair (p,o) wrt A, we create a directed edge (p,o) and assign its weight to be −pro f it(p,o). For each
match (p ′,o′) in A, we create a directed edge (o′,p ′) and assign its weight to be pro f it(p ′,o′).
Note that for a sequence S in the form of (p1,o1, ...,pm ,om) wrt assignment A, there exists a

path π in GA(V ,E) which is in the form of (p1,o1, ...,pm ,om). We say that π is the mapped path

of sequence S and vice versa. Besides, we denote the mapped path of sequence S by path(S) and
denote the mapped sequence of a path π (if exist) by seq(π ).
Given an assignment A and its corresponding graph GA, we have the following interesting

property.

Lemma 4.20 (Shortest Path). Given an assignment A, a sequence S is critical wrt A iff path(S) is
the shortest simple path from p to o in GA, where p (o) is the head (tail) of S .

Here, the shortest simple path corresponds to the simple path with the minimum total weight

along the path.

According to Lemma 4.20, we can compute all critical sequences by computing all shortest pathes

from the product types p ∈ P to the customers o ∈ O . This is very promising that we can find all

critical sequences. Unfortunately, since the weights of some edges in GA are negative, and thus

there might exist negative-weight cycles in GA, finding the shortest simple path from a product

type to a customer in GA with negative-weight cycles is NP-hard [6].

Fortunately, we observe the following interesting property, under our problem setting, that there

is no need to calculate the shortest simple path when there exists a negative-weight cycle in GA.

This is because the negative-weight cycle corresponds an affirmative sequence, which achieves our

major goal to find desirable sequences.

Lemma 4.21 (Negative-weight Cycle). Given an assignment A and its corresponding graph GA,
for any negative-weight cycle C in GA, seq(C) is affirmative.

Here, cycle C can be represented in the form of a path π : (v1,v2, ..,vm) where vertex vi and
vertex vi+1 are connected for each i ∈ [1,m − 1], and vertex v1 and vertex vm are connected. seq(C)
is defined to be seq(π ).
The above discussion suggests the following ways to find desirable sequences. Step 1: We first

construct GA (which takes O(|V | + |E |) time). Step 2: We can then use an existing algorithm (e.g.,

the Bellman-Ford’s algorithm [6]) to check whether there exists a negative-weight cycle in GA.

We denote the time complexity of this existing algorithm by α . Note that the worst-case time

complexity of the Bellman-Ford’s algorithm isO(|V | · |E |) and thus α = O(|V | · |E |). This algorithm
can significantly be speeded up in practice with the techniques introduced in [34] (e.g., early
termination) which are adopted in our experiments. If there exists a negative cycle, then we can

find that cycle C out and return seq(C) as an affirmative sequence. Otherwise, we proceed the next

step. Step 3: For each product type p ∈ P , we adopt the Johnson’s algorithm [6] to find the shortest

simple paths on the graph containing no negative-weight cycle from p to all customers (which

takesO(|V | log |V | + |E |) time). Whenever we find paths such that the corresponding sequences are

desirable, we returns these sequences. Here, we process product types according to one of the three

heuristics, namely “Capacity”, “Profit” and “Capacity+Profit”. Details will be discussed in Section 7.
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If no desirable sequences are found after we process all product types, then we know that A is

optimal (according to Lemma 4.16). Let γ be the total number of product types we need to process

in Step 3. Note that γ is bounded by |P | and is usually 0.15 · |P | on average in our experiments. The

overall time complexity of finding critical sequences is O(α + γ · (|V | log |V | + |E |)).

Time Complexity. As could be verified, the cost of Phase 1 is dominated by the cost of Phase

2. Thus, we focus on the time complexity of Phase 2 (i.e., Adjust) only. Let I be the total number

of times of executing the while-loop in Adjust and the β be the cost of finding critical sequences.

Then, the time complexity of Adjust is O(I · β) which is equal to O(I · (α + γ · (|V | log |V | + |E |))).

5 WEIGHTED K-SAMP
In the weighted k-SAMP problem, for each p ∈ P (o ∈ O), p.w (o.w) can be any arbitrary positive

integer. Although we can transform from weighted k-SAMP to un-weighted k-SAMP by duplicating

each o ∈ O o.w times and each p ∈ P p.w times, and thus can use Adjust (Algorithm 1) on this un-

weighted problem to find the solution for the weighted problem, this transformation is cumbersome

and undesirable, because duplicating each object multiple times is costly. For example, suppose

that there is a customer o ∈ O and a product p ∈ P such that o.w = 10, 000 and p.w = 20, 000. We

need to duplicate objects 30,000 times. If all duplicates of o are matched with duplicates of p in the

optimal assignment for the weighted k-SAMP, the adapted algorithm have to find an (un-weighted)

match 10,000 times. A concise method is to find a weighted match once with its weight equal to

10,000.

In this section, we first describe the difference between the un-weighted version and the weighted

version. Based on this difference, we design some adapted concepts for our weighted version.

In the weighted version, different from the un-weighted version, each object (o or p) in one

dataset can be matched with multiple objects in the other dataset. Even an object has a weighted

match with another object, it is possible that this object has its remaining weight which is not

involved in all of its matches. According to this difference, we define the following concepts.

Let A be a weighted assignment. For a product p ∈ P , we define its free capacity, denoted by

p. f ree , to be the amount of p not assigned in A. That is, p. f ree = p.w −
∑
(p,o,w )∈Aw . We say that

product p has no free capacity if p. f ree = 0. For a customer o ∈ O , we define its deficient demand,
denoted by o.de f icient , to be the amount of o’s demand not satisfied in A. That is, o.de f icient =
o.w −

∑
(p,o,w )∈Aw . We say customer o has no deficient demand if o.de f icient = 0. Besides, p (o)

is said to be fully matched with o (p) in A if there exists a weighted match (p,o,w) in A such that

w = min{p.w,o.w} in A.
In the weighted version, we also have the concept of feasible sequences which is made up of

a number of feasible pairs. In the un-weighed version, for any two adjacent feasible pairs, there

is a connector between these two pairs which is a match in the given assignment. Note that in

the un-weighted setting, each object involved in this match has no free capacity or no deficient

demand. In the weighted version, we also have a similar concept of “adjacency” for any two feasible

pairs as follows.

Let A be a (weighted) assignment between P and O . Given p ∈ P and o ∈ O , we say (p,o) is a
feasible un-matched weighted pair (or feasible pair in short) in A if (p,o) is matchable and p is not

fully matched with o in A. Given two feasible pairs in A, namely (p,o) and (p ′,o′), if (p ′,o,w) is a
(weighted) match inAwherew is a positive integer, o.de f icient = 0 and p. f ree = 0, we say that (1)

these two feasible pairs are adjacent in A, (2) the weighted match (p ′,o,w) is the connector between
(p,o) and (p ′,o′), (3) (p,o) appears before (p ′,o′) in A, and (4) (p ′,o′) appears after (p,o) in A.
With the above definition of “adjacency”, we have the same definition of feasible sequences in

the weighted version (Definition 4.3).
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Next, we describe how we define the adjusting operation of a feasible sequence in the weighted

version. In the un-weighted version, a sequence has at most one head match and at most one

tail match. In the weighted version, a sequence can have multiple head matches and multiple tail

matches. Even if it has multiple head/tail matches, its head/tail can have its free capacity/deficient

demand.

In this weighted version, we adopt the principle that we should first use up all the free capacity of
each product (or satisfy the deficient demand of each customer) (if we can increase the profit) and

then consider breaking some matches involved in each product or customer. Under this principle,

we can increase the profit gradually if we execute the adjusting operations on some sequences.

Given a sequence S , if S has its head match, the best head match in S is defined to be the head

match in S in form of (p,o,w) which has the minimum value of pro f it(p,o). Similarly, we have the

definition for the best tail match in S . Given a sequence S , we defineM(S) to be the set containing

all internal matches in S , the best head match in S (if the head in S has no free capacity) and the

best tail match in S (if the tail in S has no deficient demand).

With the definition ofM(S), we can define the adjusting operation on a sequence S similar to the

one in the un-weighted version (Definition 4.5). But, we need to generalize this operation which

can incorporate the weight information. As we described at the beginning of this section, we may

execute the (un-weighted) adjusting operation 10,000 times. In order to solve this problem, we

associate a weight to each adjusting operation where the weight corresponds to the total number

of matches involved in the assignment to be broken or the total number of matches to be formed.

With this weight concept associated to each sequence, we have to find the greatest possible

amount of matches to be broken (or to be formed) for this sequence as follows. LetW to be the set

of the weights of all internal matches in S . Given a sequence S , we definewhead to be the weight of

its best head match if its head has no free capacity and to be the free capacity of its head otherwise.

Similarly, we have a similar definition ofwtail for its tail. Thus, we define this weight associated

with a sequence S to be min{whead ,wtail ,winternal } wherewinternal = minw ∈W w .

Similar to the un-weighted version, we have the same definition of “compatible” (Definition 4.12)

in the weighted version.

Finally, the two important Lemmas 4.15 and 4.16 in the un-weighted problem can still be satisfied

under the setting of the weighted problem. With these two lemmas, we can also design a weighted

version of algorithm Adjust, called Weighted Adjust.

Theorem 5.1 (Correctness). The Weighted Adjust algorithm returns the optimal assignment for
the weighted k-SAMP problem.

6 DISCUSSION
In the previous sections, we focus on the first scenario. In this section, we discuss how our proposed

method can be extended to the second scenario.

Firstly, we re-define the concept of “matchable” based on the second scenario. In the second

scenario, when we consider the local profit loss tolerance requirement, given a pair (p,o), we say
that (p,o) is matchable if o.price > p.cost × α and for each a ∈ A, o.a ≥ p.a. When we do not

consider this requirement, given a pair (p,o), we say that (p,o) is matchable if for each a ∈ A,

o.a ≥ p.a.
In general, the second scenario is different from the first scenario in the following way. In the

second scenario, it is possible that we can assign o with p where o.price ≤ p.cost but in the first

scenario, it is not possible.

All concepts described in Section 4 can be used for the second scenario. However, we need to

introduce one concept related to a match (p,o) where o.price ≤ p.cost .
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Let A be an assignment. In Definition 4.3, we know that a feasible sequence contains at least one

feasible pair. Here, we generalize the definition of a feasible sequence which covers not only the

original definition containing at least one feasible pair, called a regular feasible sequence, but also
the new definition to be introduced containing no feasible pair, called a special feasible sequence.

Given an assignment A and a match (p,o) ∈ A where o.price ≤ p.cost , a special feasible sequence
S wrt A is a sequence of zero length where (1) there is no feasible pair involved, (2) its head match

is defined to be (p,o), and (3) both its tail match and its internal matches are defined to none. p is

said to be the head in S . Note that SG(S,A) = −1.
Note that the adjusting operation on a regular feasible sequence creates at least one match based

on the feasible pairs wrt this sequence. Besides, it breaks its internal matches (if any), its head

match (if any) and its tail match (if any). However, we define the adjusting operation on a special

feasible sequence which creates no match (since it involve no feasible pair). Besides, it breaks its

head match since the sequence contains its head match only.

For example, suppose that A contains a match (p5, Alice) where Alice.price ≤ p5.cost . Thus,
there is a special feasible sequence S wrt A with its head match (p5, Alice) and its head as p5.

All lemmas/theorems can be kept the same except the parts related to the new concept. Specifically,

only the proofs of Lemma 4.15 and Lemma 4.16 should be updated. The updated proofs can be

found in the appendix.

As a result, since we still keep using the same set of lemmas/theorems, the same algorithm Adjust
can still be used.

7 EMPIRICAL STUDIES
We introduce the experimental setup in Section 7.1 and present the experimental results in Sec-

tion 7.2.

7.1 Experiment Setup
Datasets. We used both real datasets and synthetic datasets in our experiments. The real datasets

are Package [30] and NBA [28]. Package corresponds to a set of trip packages (e.g., hotels and flights)

crawled from Priceline.com and Expedia.com and contains 4,936 trip packages each containing

5 attributes and a cost. Details of how the trip packages were crawled can be found in [30]. NBA

corresponds to the Great NBA Players’ technical statistics from 1960 to 2001, which contains 17,247

players and each has 17 attributes such as points, rebounds, and assists etc.
1
. Since a larger attribute

value of a player means that he is a better player, we regard each player’s cost as the sum of all

of its attribute values. All attribute values and cost are normalized in range [0, 1]. For each real

product type set P , we generated its corresponding customer set O of size equal to N with two

steps where N is the targeted number of customer preferences. First, for each p ∈ P , we generated
a customer preference o such that for each attribute a, o.a is set to be p.a plus a random offset

falling a Gaussian distribution N(δ ,δ/2), where δ a user parameter. As a result, we obtained |P |
customer preferences. Second, we randomly sampled N customer preferences from the |P | customer

preferences generated at the first step and included them into O . We assumed N ≤ |P | in our

experiments. The summaries of real datasets are shown in Table 4.

The synthetic datasets were generated with the method in [3] which follows existing studies

on preference queries [3, 7, 31]. We used three types of distributions for the product type set,

namely anti-correlated, correlated and independent. The anti-correlated distribution indicates that a

product that has a good attribute value in one attribute would probably has poor attribute values

in other attributes. In contrast, the correlated distribution corresponds to the phenomenon that

1
NBA Statistics v2.1. http://basketballreference.com/stats download.htm.
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a product that has a good attribute value in one attribute would likely have desirable attribute

values in other attributes as well. The independent distribution means that the attribute values

of a product are generated in a random and independent way. These three types of distributions

are common benchmarks for preference-based queries [3, 7, 31], and following [3, 7, 31], we used

anti-correlated products by default. All attribute values fall in range [0, 1]. For each product type set

P , we generated its corresponding setO with N customer preference by first generating N customer

preferences in the same way as generating product types and then for each generated customer

preference o, adding o.a for each attribute a by a random offset falling a Gaussian distribution

N(δ ,δ/2), where δ a user parameter.

For the un-weighted version of k-SAMP, the capacity (demand) of each product type (customer)

is 1. For the original version (we call it the weighted version), we set the capacity (demand) of each

product type (customer) to be an integer in range [1, 10) randomly.

Algorithms. We studied our algorithm Adjust and also a baseline algorithm CBC (Coin-OR Branch

and Cut)
2
which is the one of the fastest open-sourced integer linear programming (ILP) solvers

according to some existing empirical study
3
. In the following, we introduce the details of formalizing

the k-SAMP problem as an ILP problem.

We let n1 denote the number of customers (i.e., n1 = |O |), n2 denote the number of product

types (i.e., n2 = |P |), r denote the number of pairs of p and o which are matchable (r = |{(p,o) ∈
P ×O |(p,o) is matchable}|). We then order the set of customers, the set of product types, and the set

of matchable pairs and let c[h] denote the capacity of the h-th customer in O where h = 1, 2, ..,n1,
d[i] denote the demand of the i-th product type in P where i = 1, 2, ...,n2, and f [j] denote the profit
of the j-th matchable pair where j = 1, 2, ..., r .
We define B to be the bipartite graph O × P where there exists an edge between a customer o

and a product type p if (p,o) is matchable. Besides, we order the vertices in B as the 1st customer,

the 2nd customer, ..., the n1-th customer, the 1st product type, the 2nd product type, ..., the n2-th
product type and the edges as the 1st matchable pair, the 2nd matchable pair, ..., the r -th matchable

pair. We then define A to be the incident matrix of B. In other words, A[i][j] = 1 if the i-th vertex of

B is incident to the j-th edge of B and A[i][j] = 0 otherwise, where i = 1, 2, ...,n where n = n1 + n2
and j = 1, 2, ..., r .
We define b to be the vector ⟨c[1], c[2], ......, c[n1],d[1],d[2], ......,d[n2]⟩

T
, f to be the vector

⟨f [1], f [2], ......, f [r ]⟩T , and x to be an r -dimensional non-negative vector. Then, we formulate the

k-SAMP problem as an integer linear programming (ILP) problem as follows.

max fT · x
s.t. A · x ≤ b,

1 · x ≥ k

x ≥ 0,x ∈ Zr .

In this ILP, the entries in x are variables, the objective captures the goal of k-SAMP which is to

maximize the profit, the first constraint guarantees that the demand constraint and also the capacity

constraint are satisfied, the second constraint guarantees that the satisfiability is at least k , and the

third constraint guarantees that a product can only be assigned to a customer as a whole.

Factors and Measurements. We studied the following 6 factors, namely the parameter δ , the
parameter k (for convenience, we use relative values for k in this section, e.g., k = 0.6 means that

60% customers need to be satisfied), the number of product types called P size, the number of

2
https://projects.coin-or.org/Cbc

3
http://www.gurobi.com/resources/switching-to-gurobi/open-source-solvers
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Table 4. Real datasets

Package NBA

|P | 4,787 17,274

|O | 488 1,711

Dim. 6 17

Table 5. Synthetic datasets

Factors Settings

|P | 5k, 10k, 15k, 20k, 25k
|O | 100, 250, 500, 750, 1000
Dim. 1, 2, 3

Offset(δ ) .10, .11, .12, .13, .14, .15
k 0.6, 0.7, 0.8, 0.9, 1
r 5,000,000 - 8,000,000

customers calledO size, the dimensionality, and the number of matchable pairs r . The settings of the
above factors are given in Table 5. We evaluated our algorithm with the following 2 measurements,

namely the running time and memory usage.

All algorithms were implemented in C/C++, and all experiments were conducted on an IBM

X3650 M3 server with 2x6-Core 2.66GHz and 48GB RAM operated by a CentOS linux distribution.

7.2 Experimental results
7.2.1 Profit vs. Satisfiability. In this section, we compared our algorithm with two related

algorithms. The first algorithm Alдsat is the algorithm which maximizes its satisfiability while the

second algorithmAlдprof it is the algorithm which maximizes its profit.Alдsat can be accomplished

by the min-cost flow algorithm and Alдprof it can be completed by the maximum weight matching

algorithm.

We conducted experiments on our real datasets, Package and NBA. For the sake of comparison,

we normalized the profit in range [0, 1]. Consider the results on the Package dataset. We found

that Alдsat returned an assignment Asat where sat(Asat ) = 487 and pro f it(Asat ) ≈ 0, while

Alдprof it returned an assignment Aprof it where sat(Aprof it ) = 33 and pro f it(Aprof it ) = 1.0. We

also conducted experiments on the effect of the parameter k over the profit of a k-SAMP assignment,

and the results are shown in Figure 2(a) on the Package dataset and in Figure 2(b) on the NBA

dataset. According to the results, we can see that there is always a non-increasing pattern (or

negative correlation) between the parameter k (i.e., the least satisfiability an assignment needs to

have) and the greatest profit of a k-satisfiable assignment. This is simply because by definition,

each (k + 1)-satisfiable assignment is also a k-satisfiable assignment but not vice versa. The trend

in general is that when k increases from a small number to a large number, the greatest possible

profit keeps being the maximum one for a while (when k is small) and then decreases strictly (when

k becomes large). The intuition behind this phenomenon is that when k is small, in which case

the satisfiability requirement is loose, there is quite much freedom to assign between the products

and the customers and a maximum profit could be achieved and when k gets larger, due to the

satisfiability requirement, some matches that generate larger profits need to be broken in order for

some more matches that generate smaller profits to be formed, and as a result, the satisfiability

increases (for satisfying the satsifiability requirement) while the profit decreases.

7.2.2 Initialization Methods and Heuristics. In this part, we evaluated the 4 initialization methods

in Phase 1 described in Section 4.4, namely Pure, Random, P-Match and P-Seq. Besides, we tested
the effectiveness of the 3 heuristics in Phase 2, i.e., “Capacity”, “Profit” and “Capacity+Profit”, by
comparing them with the algorithm without any heuristic, which is denoted by “No-Heuristic”.
In “Capacity”, the product types in P are sorted in descending order of their free capacities (the

amount of capacity not assigned yet). In “Profit”, each product type p is given a label equal to
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Fig. 2. Profits of k-SAMP assignments with varying k’s
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Fig. 3. Effects of initialization methods & heuristics (Un-weighted version)

min(p,o,w )∈A pro f it(p,o) if it has no free capacity and equal to 0 otherwise. The product types

are sorted in ascending order of their labels. In “Capacity+Profit”, the product types are sorted in

descending order of their free capacities and then in ascending order of their labels.

In our experiment, we studied each possible combination of 4 initialization methods and 4

heuristics (including “No-Heuristic” ), and the results are shown in Figure 3. According to Figure 3(a),

it is clear that the combination of P-Seq (Initialization method) and “Capacity+Profit” (Heuristic)
runs the fastest. According to Figure 3(b), we know that choices of an initialization method and a

heuristic have no significant effect on the memory usage of the Adjust algorithm, and this is because

the component that dominates the memory usage of Adjust is the component for storing matchable

pairs and the matches of the assignment to be computed which is independent of the choices of

an initialization method and a heuristic. In conclusion, the combination of P-Seq (Initialization

method) and “Capacity+Profit” (Heuristic) runs faster and occupies slightly more memory than all

other combinations. Therefore, in the rest of experiments, we adopted the combination of P-Seq
and “Capacity+Profit” only for our Adjust algorithm and when we say the “Adjust” algorithm, we

mean the version that employs the combination of P-Seq and “Capacity+Profit”.
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Fig. 4. Effects of the offset parameter (δ ) (Real dataset Package, Un-weighted version)

7.2.3 Performance studies. In this part, we conducted performance studies on the two algorithms,

Adjust and CBC (which we denote by CBC (ILP) in the figures), by varying different settings for

the factors and seeing their effects on the measurements.

Offset parameter δ . We varied δ with values from {0.10, 0.11, 0.12, 0.13, 0.14, 0.15}, and the results
on the Package dataset, the NBA dataset, synthetic datasets are shown in Figure 4, Figure 5, and

Figure 6, respectively. Consider the results in Figure 4 for example. We can see that (1) the running

times of both Adjust and CBC increase with δ in general; (2) the running time of CBC is up to 7

times larger than that of CBC (in the default setting of δ = 0.10, the running time of CBC is 112.1s

and that of Adjust is 16.8s); (3) the memories of both algorithms increase slightly with δ also; and

(4) the memory of CBC is consistently about 2 orders of magnitudes larger than that of Adjust. The
high-level idea of explaining (1) and (3) is that when δ increases, the attributes of the customers

generated become larger and it further implies that more pairs of customers and product types

would be matchable. As a result, more candidates need to be considered for the matching process,

and thus more computation cost (e.g., running time and memory) is incurred (in the case of the

Adjust algorithm, it means that the input graph is larger and in the case of the CBC algorithm,

it means that the number of variables is bigger). The reason for (2) is probably that Adjust is an
algorithm specifically designed for the k-SAMP problem while CBC is an algorithm designed for

all general ILP problems and does not necessarily work efficiently for the k-SAMP problem. Last,

the reason for (4) is that CBC needs to maintain a n × r matrix which is very expensive since n × r
has a cubic complexity in terms of |P | and/or |O | while Adjust has its at most quadratic.

Parameter k . We varied the parameter k with values from {0.5, 0.6, 0.7, 0.8, 0.9, 1}, and the results

on the dataset Package, the dataset NBA, synthetic datasets are shown in Figure 7, Figure 8, and

Figure 9, respectively. Consider the results on the dataset Package for example. We can see that (1)

the effects of parameter k on both the running time andmemory for two algorithms are insignificant,

(2) the running time of CBC is about 10 times larger than that of Adjust; (3) the memory of CBC

is about 2 orders of magnitude larger than that of Adjust except for the setting of k = 1; and (4)

the running time and memory of two algorithms drop when k changes from 0.9 to 1. The reason

for (1) is that in the case of Adjust, when k increases, though it takes more time (or iterations) to

initialize a k-satisfiable assignment during Phase 1, there would be less room left for adjusting

the assignment and thus it needs less time for adjusting during Phase 2, and in the case of CBC,

the number of variables in the underlying ILP simply does not relies on parameter k . The reason
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Fig. 5. Effects of the offset parameter (δ ) (Real dataset NBA, Un-weighted version)
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Fig. 6. Effects of the offset parameter (δ ) (Synthetic dataset, Un-weighted version)

for (2) and (3) is similar to that for explaining (2) and (4) of varying the offset. Last, the reason for

(4) is that in the setting of k = 1 which means all customers need to be satisfied, both algorithms

terminate earlier after detecting this is the case (e.g., in the case of Adjust, Phase 1 for initializing a

k-satisfiable assignment cannot be finished and then Phase 2 is skipped).

P size |P |. We varied |P | with values from {5k, 10k, 15k, 20k, 25k}, and the results are shown in

Figure 10. We can see that (1) the running times and memories of both algorithms increase with

|P |; (2) the running time of CBC is up to 11 times larger than that of Adjust (e.g., in the setting of

|P | = 25k , CBC ran for 38,963.9s and Adjust ran for 3,449.8s) and the gap increases with |P |; and (3)

the memory of CBC is consistently larger than that of Adjust by 2 orders of magnitude. The reason

for (1) is simply that when |P | increases, in the case of Adjust, the underlying graph becomes larger

and in the case of CBC, the number of variables becomes larger, and as a result, the computation

cost (running time and memory) increases. Again, (2) and (3) can be explained similarly as when

varying the offset and parameter k .
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Fig. 7. Effects of k (Real dataset Package, Un-weighted version)
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Fig. 8. Effects of k (Real dataset NBA, Un-weighted version)

O size |O |. We varied |O | with values from {100, 250, 500, 750, 1000}, and the results are shown

in Figure 11. The results are quite similar to those when varying |P | and could also be explained

similarly.

No. of matchable pairs (r ). We used real datasets for this experiment and generated datasets

with different number of matchable pairs by using different offset values (recall that a larger offset

would result in a dataset with more matchable pairs). We varied the number of matchable pairs

r with some values from 5, 000, 000 to 8, 000, 000, and the results on the dataset NBA are shown

in Figure 12 (those on the dataset Package are similar than they are omitted). We can see that the

running times and memories of both algorithms increase with the number of matchable pairs and

this is clearly the reasonable results since the number of matchable pairs determines the complexity

of the problem to an significant extent (more matchable pairs means more variables in the ILP

problem for CBC and bigger graph for Adjust).
Dimensionality. We varied the dimensionality with values from {1, 2, 3}, and the results are

shown in Figure 13. We can see that (1) the running times and memories of both both algorithms

decrease when the dimensionality increases; and (2) the gap of running time between CBC and
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Fig. 9. Effects of k (Synthetic dataset, Un-weighted version)
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Fig. 10. Effects of P size (|P |) (Synthetic dataset, Un-weighted version)

Adjust becomes smaller when the deimensionality increases. The reason for (1) is that a larger

dimensionality means that a customer gives more attribute values on the product types, and thus it

is more likely that this customer cannot be satisfied, which further implies that each customer can

be satisfied by fewer candidates (product types), i.e., there are fewer matchable pairs. As a result,

less computation cost (running time and memory) is needed. The reason for (2) is probably that the

number of matchable pairs affects CBC more directly than Adjust since it determines the number

of variables on which the performance of CBC directly rely.

Scalability test. We vary |P | with values from {25k, 50k, 75k, 100k} for scalability test. In each

setting of |P |, |O | = |P |/10. The results of our Adjust algorithm are shown in Figure 14 and those

of the CBC algorithm are not shown since it ran out of memory (i.e., it occupied more than 48GB

memory) in the settings of 75k and 100k and could not be finished within a reasonable amount of

time in the other settings. According to results, we can see that Adjust ran for less than 1.5 days

and occupied about 12GB when |P | = 100k (and |O | = 10k).

Weighted version. We performed similar experiments for the weighted version of k-SAMP and

the results are similar to those for the un-weighted version. For simplicity, we only show the results
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Fig. 11. Effects of O size (|O |) (Synthetic dataset, Un-weighted version)
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Fig. 12. Effects of no. of matchable pairs (Real dataset NBA, Un-weighted version)

on one of the real datasets Package in Figure 15 (varying the offset parameter δ ) and Figure 16

(varying the parameter k).

7.2.4 Conclusion of the Experimental Results. Our Adjust algorithm is about 5-10 times faster

than the CBC algorithm for the majority of the experimental settings and occupies less memory

than the CBC algorithm by about 2 orders of magnitude.

8 CONCLUSION
In this paper, we propose a new problem called k-SAMP, which has a lot of practical applications for

decision-making. We propose an efficient algorithm Adjust for this problem. Finally, we conducted

experiments which verified the efficiency of our algorithm. There are several interesting future

directions. One direction is to study the problem of maximizing the (average) profit that we can

earn from a single customer satisfied. Another direction is to study the k-SAMP problem with an

additional constraint that each customer can be matched with at most one product type. Besides,

one can consider the k-SAMP problem with other definitions of sat(A), e.g., the total number of

customers that are satisfied completely in assignment A. Lastly, one possible direction is to study
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Fig. 13. Effects of dimensionality (Synthetic datasets, Un-weighted version)
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Fig. 14. Scalability test (Synthetic datasets, Un-weighted version)

how to set k when the minimum profit to be earned is specified. Another direction is to study the

k-SAMP problem in the context where customers’ preferences and satisfactions are modeled with

latent factors, which are computed with collective behavioral data.
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Proof of Lemmas/Theorems
Proof of Lemma 3.1: This could be verified by the fact that satmax is the greatest possible

satisfiability.

Proof of Lemma 3.2: We prove Lemma 3.2 by constructing a problem instance such that

pro f it(A)/pro f it(Ao) → 0. Consider Figure 17(a). We have two products, p1 and p2, and two

customers, o1 and o2. For each matchable pair in the form of (p,o), we link p and o with a dashed

line, and the number along the dashed line represents pro f it(p,o). For example, (p1,o1) is matchable

with pro f it(p1,o1) equal to pro f it .
It is easy to verify that A = {(p1,o2), (p2,o1)} with its satisfiability equal to 2 (2 is the greatest

possible satisfiability for this problem instance). As a result, we have pro f it(A) = 2. Assume

pro f it > 2 and the parameter k is equal to 1 in our k-SAMP problem. With this configuration,

Ao would be {(p1,o1)}, since sat(Ao) is at least k (i.e., 1) and Ao gives the greatest possible profit.

Note that pro f it(Ao) = pro f it . Thus, we have pro f it(A)/pro f it(Ao) = 2/pro f it . Clearly, when
pro f it →∞, pro f it(A)/pro f it(Ao) → 0.

Proof of Lemma 3.3: The k-SAMP problem with k = 0 maximizes the profit of the assignment

imposing no requirement on the satisfiability of the assignment, which is identical to the maximum

weight matching problem.

Proof of Lemma 3.4: We prove Lemma 3.4 by constructing a problem instance such that

sat(A)/sat(Ao) ≈ 0, where A is the assignment for the maximum weight matching and Ao is

the optimal assignment for our k-SAMP problem. Consider Figure 17(b). We have n products, pi for
1 ≤ i ≤ n, and n customers, oi for 1 ≤ i ≤ n. For each matchable pair in the form of (p,o), we link p
and o with a dashed line and the number along the dashed line represents pro f it(p,o).
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Fig. 18. Proof of Lemma 4.15

Clearly, A corresponds to {(p1,o1)} with the profit equal to 1. Thus, sat(A) = 1. Assume that

k = n in our k-SAMP problem. Then, Ao is {(pi ,oi )|1 ≤ i ≤ n}. Thus, sat(Ao) = n. As a result, we
have sat(A)/sat(Ao) = 1/n, which approaches 0 when n →∞.

Proof of Lemma 4.9: If a sequence S contains no head match and no tail match, SG(S,A) = 1. If

it contains exactly one of the head match and the tail match, SG(S,A) = 0. If it contains both its

head match and its tail match, we consider two cases. The first case is that these two matches are

distinct, then SG(S,A) = −1. The second case is that they are identical, then SG(S,A) = 0.

Proof of Lemma 4.14: We prove by contradiction. Assume that N (S) ∩ N (S ′) , ∅. Let (p,o) be
one such feasible pair in N (S) ∩ N (S ′). We consider 2 cases with p and o. Case 1: none of p and o is
matched in A. In this case, both S and S ′ correspond to the same sequence (p,o). This leads to a

contradiction since S and S ′ are distinct. Case 2: at least one of p and o is matched inA. Without loss

of generality, assume p is matched, say with o′, in A. In this case, (p,o′) ∈ M(S) and (p,o′) ∈ M(S ′).
Thus,M(S) ∩M(S ′) , ∅, which leads to a contradiction. This completes the proof.

Proof of Lemma 4.15: We prove by contradiction. Let the profitable sequence S be

(p1,o1,p2,o2, ...,pm ,om) and the gratifying sequence S ′ be (p ′
1
,o′

1
,p ′

2
,o′

2
, ...,p ′n ,o

′
n). Suppose that S

and S ′ are not compatible. Thus,M(S) ∩M(S ′) , ∅. Let (p,o) be one of the matches inM(S) ∩M(S ′).
Consider S . Since S is profitable, it has its head match (p1,o0) and its tail match (pm+1,om). Besides,
(p1,o0) and (pm+1,om) cannot be identical (i.e., p1 , pm+1 and o0 , om ) (This is because otherwise,
SG(S,A) becomes 0 and thus S is not profitable, which leads to a contradiction). Clearly, M(S) =
{(pi+1,oi )|i = 0, 1, ...,m}. Since (p,o) ∈ M(S), we know ∃ t ∈ [0,m] such that (p,o) = (pt+1,ot ) (i.e.,
p is pt+1 and o is ot ).

Consider S ′. Since S is gratifying, it has no head match and no tail match. Clearly, M(S ′) =
{(p ′i+1,o

′
i )|i = 1, 2, ...,n − 1}. Since (p,o) ∈ M(S ′), we know ∃ t ′ ∈ [1,n − 1] such that (p,o) =

(p ′t ′+1,o
′
t ′) (i.e., p is p ′t ′+1 and o is o

′
t ′).
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Consider two cases. Case 1 (General Case): 0 < t < m and 0 < t ′ < n. We divide the matches

inM(S) into two parts. The first part involves (pi+1,oi ) for i = 0, 1, ..., t . The second part involves

(pi+1,oi ) for i = t +1, t +2, ...,m. Let L1 =
∑t

i=0 pro f it(pi+1,oi ) and L2 =
∑m

i=t+1 pro f it(pi+1,oi ). We

also divide the feasible pairs of S into two parts. The first part involves (pi ,oi ) of S for i = 1, 2, ..., t .
The second part involves (pi ,oi ) of S for i = t + 1, t + 2, ...,m. Let G1 =

∑t
i=1 pro f it(pi ,oi ) and

G2 =
∑m

i=t+1 pro f it(pi ,oi ). It could be verified that PG(S,A) = G1 +G2 − (L1 + L2).
Similar to S , we define L′

1
, L′

2
, G ′

1
and G ′

2
for S ′. Specifically, L′

1
=

∑t
i=1 pro f it(p

′
i+1,o

′
i ),

L′
2
=

∑n−1
i=t+1 pro f it(p

′
i+1,o

′
i ), G

′
1
=

∑t
i=1 pro f it(p

′
i ,o
′
i ) and G ′

2
=

∑n
i=t+1 pro f it(p

′
i ,o
′
i ). As a result,

PG(S ′,A) = G ′
1
+G ′

2
− (L′

1
+ L′

2
).

Next, we construct two sequences, Q and Q ′, based on S and S ′. Specifically, Q is constructed as

(p1,o1,p2,o2, ...,pt ,ot ,p
′
t ′+1,o

′
t+1, ...,p

′
n ,o
′
n) (the first part of S concatenated with the second part

of S ′) and Q ′ is constructed as (p ′
1
,o′

1
,p ′

2
,o′

2
, ...,p ′t ′,o

′
t ′,pt+1,ot+1, ...,pm ,om) (the first part of S ′

concatenated with the second part of S). Note that (p,o), (pt+1,ot ) and (p
′
t ′+1,o

′
t ′) corresponds to the

same match with different symbols. See Figure 18(a) for illustration, where nodes that pass along

solid lines form sequences S and S ′ while those pass along dashed lines form sequences Q and Q ′.
As a result, we can verify that PG(Q,A) = G1 +G

′
2
− (L1 + L

′
2
) and PG(Q ′,A) = G ′

1
+G2 − (L

′
1
+ L2).

It follows that

PG(Q,A) + PG(Q ′,A) = PG(S,A) + PG(S ′,A) (1)

Note that Q has its head match but no tail match. Thus, SG(Q,A) = 0. Similarly, Q ′ has its
tail match but no head match. Thus, SG(Q ′,A) = 0. We further conclude that PG(Q,A) ≤ 0 and

PG(Q ′,A) ≤ 0 (since no affirmative sequences exist in A). Thus, PG(Q,A) + PG(Q ′,A) ≤ 0. With

Equation (1), we deduce that PG(S,A) + PG(S ′,A) ≤ 0, which contradicts our assumption that

PG(S,A) + PG(S ′,A) > 0.

Case 2 (Boundary Case): Case 1 is a general case where t is not equal to 0 and m, and t ′ is
not equal to 0 and n. There are different boundary cases. The proof for each boundary case

is similar. Here, we consider one boundary case that t = 0 and 0 < t ′ < n. We construct Q
as (pt+1,o

′
t ′+1,p

′
t ′+2,o

′
t ′+2, ...,p

′
n ,o
′
n) and Q ′ as (p ′

1
,o′

1
,p ′

2
,o′

2
, ...,o′t ′,p

′
t ′+1,ot+1,pt+2,ot+2, ...,pm ,om)

(See Figure 18(b) for illustration). After that, we can also come up with the same contradiction as

Case 1.

Proof of Lemma 4.16: In this proof, we first give the following lemma, which is used to prove

Lemma 4.16.

Lemma .1 (Transformable). LetA be a k-satisfiable assignment andAo be the optimal assignment
for k-SAMP. There exists a set T of sequences in A such that any two sequences in T are compatible
and the resulting assignment A′ obtained due to the adjusting operations on all sequences in T is Ao .

We prove Lemma 4.16 by contradiction. Suppose that A (which satisfies C1 or C2) is not optimal.

Let Ao be the optimal assignment. We have pro f it(A) < pro f it(Ao). According to Lemma .1, there

exists a set T of sequences {S1, S2, ..., Sm} such that any two sequences in T are compatible and

the adjusting operations on all sequences from T transforms A to Ao .

Let Tp be the set containing all sequences in T where each sequence S in this set has PG(S,A) > 0.

First, Tp , ∅. Since otherwise, pro f it(Ao) ≤ pro f it(A), which leads a contradiction. Second,

SG(S,A) < 0 for each sequence S ∈ Tp (since otherwise, a sequence S ∈ Tp with SG(S,A) ≥ 0

corresponds to an affirmative sequence, which contradicts our assumption). We denote by Sm the

sequence with the greatest profit gain in Tp . Note that Sm is profitable (since SG(Sm ,A) < 0 and

PG(Sm ,A) > 0).
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Let Tд be the set containing all sequences S in T with SG(S,A) > 0. We know Tд ∩ Tp = ∅ (since

otherwise, a sequence that is contained by both Tp and Tд corresponds to an affirmative sequence,

which contradicts our assumption). We deduce that each sequence S in Tд has PG(S,A) ≤ 0. Let S ′m
be the sequence with the greatest profit gain in Tд . Note that S

′
m is gratifying (since SG(S ′m ,A) > 0

and PG(S ′m ,A) ≤ 0).

Consider two cases. Case 1: sat(A) = k . Then,

|Tд | ≥ |Tp | (2)

This is because otherwise, Ao cannot be k-satisfiable (each sequence S ∈ Tp has SG(S,A) = −1 and
each sequence S ′ ∈ Tд has SG(S ′,A) = 1). Besides,

PG(Sm ,A) + PG(S
′
m ,A) ≤ 0 (3)

This is because otherwise, Sm and S ′m correspond to two partner sequences, which leads a contra-

diction.

With Equation (2) and Equation (3), we further deduce that∑
S ∈TpPG(S,A) +

∑
S ′∈TдPG(S

′,A) ≤

|Tp | · PG(Sm ,A) + |Tд | · PG(S
′
m ,A) ≤

|Tд | · (PG(Sm ,A) + PG(S
′
m ,A)) ≤ 0 (4)

Considering Equation (4) and the fact that for any S ∈ T − (Tp ∪ Tд), PG(S,A) < 0, we know

pro f it(Ao) ≤ pro f it(A), which leads to a contradiction.

Case 2: sat(A) > k . In this case, we have Tp = ∅. Since otherwise, there exist either profitable

sequences or affirmative sequences in A, which leads to a contradiction. It immediately follows

that pro f it(Ao) ≤ pro f it(A).
In both cases, we have pro f it(Ao) ≤ pro f it(A), which contradicts our assumption and thus we

finish our proof.

Proof of Theorem 4.18: The correctness follows Lemma 4.16.

Proof of Lemma 4.19: Consider the ‘⇐=’ direction. The proof is trivial since T ∗ ⊆ T .
Consider the ‘=⇒’ direction. Let S be a desirable sequence wrt A in T . We consider the case

where S is an affirmative sequence, one type of desirable sequences, for illustration. Thus, we have

PG(S,A) > 0 and SG(S,A) ≥ 0. Let p and o be S’s head and S’s tail, respectively. Consider two
cases. Case 1: S ∈ T ∗. We are done. Case 2: S < T ∗. As a result, there exists a critical sequence
S∗ in T ∗ with its head p and its tail o such that PG(S∗,A) > PG(S,A) > 0. It could be verified

that SG(S∗,A) = SG(S,A) ≥ 0 since S∗ and S have the same head and tail. As a result, S∗ is also
affirmative wrt A and thus S∗ is desirable wrt A. Since S∗ ∈ T ∗, there exists a desirable sequence
(i.e., S∗) wrt A in T ∗. Therefore, we are done.

The proofs for other cases of S are similar and are omitted.

Proof of Lemma 4.20: Before we give the proof of Lemma 4.20, we introduce a lemma, which

shows the relationship between the profit gain of a sequence and the length of its mapped path.

Lemma .2. Let A be an assignment andGA be the directed graph based on A. Consider a sequence S
wrt A. Letwp (wo ) be the profit of S ’s head (tail) if S has its head (tail) match, and be 0 otherwise. Let
taд be 0 if (1) S has its head match p and its tail match o and (2) (p,o) ∈ A, and be -1 otherwise. Then,
PG(S,A) = −π .lenдth −wp + taд ·wo , where π is path(S) and π .lenдth is the length of π .
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LetA be an assignment and S be a sequence wrtA. Let p (o) be S ’s head (tail). Let π be S ’s mapped

path in GA.

Consider the ‘=⇒’ direction. We have the condition that S is a critical sequence wrt A. We prove

by contradiction. Assume that the shortest simple path between p and o, denoted by π ∗, is not π .
Let S∗ be π ∗’s mapped sequence wrt A. By using Lemma .2, we deduce that PG(S∗,A) > PG(S,A),
which, however, contradicts the assumption that S is a critical sequence.

Consider the ‘⇐=’ direction. Thus, we have the condition that π is the shortest simple path inGA.

Again, by using Lemma .2, we can deduce that S has the greatest profit gain among all sequences

with the head of p and the tail of o. That is, S is critical wrt A.

Proof of Lemma4.21: LetA be the assignment andC , a negative-weight cycle inGA, be represented

in the form of a path π : (p1,o1, ...,pm ,om). Let S = seq(C).
First, we show that SG(S,A) = 0.M(S) = {(pi+1,oi )|1 ≤ i ≤ m−1}∪{(p1,om)}. Thus, |M(S)| =m.

N (S) = {(pi ,oi )|1 ≤ i ≤ m}. Thus, |N (S)| =m. As a result, SG(S,A) = |N (S)| − |M(S)| =m −m = 0.

Second, we show that PG(S,A) > 0. We use C .lenдth to denote the length of C , which is equal

to π .lenдth + pro f it(p1,om) (Note: The addition of term “pro f it(p1,om)” is due to the directed

edge (om ,p1)). Since C is a negative-weight cycle, we have C .lenдth < 0. According to Lemma .2,

PG(S,A) = −π .lenдth −wp + taд ·wo , where wp = wo = pro f it(p1,om) and taд = 0 in this case.

As a result, PG(S,A) = −C .lenдth > 0.

In summary, we have SG(S,A) = 0 and PG(S,A) > 0. Thus, S is an affirmative sequence.

Proof Sketch of Lemma .1: Let Ad = Ao − A and Ac = Ao ∩ A. Thus, Ao = Ac ∪ Ad . For each

match (p,o) in Ad , (p,o) is a feasible pair since (p,o) is matchable and p is not matched with o.
Firstly, we construct a set T of sequences such that for any two sequences in T , these two

sequences are compatible. We construct a graph G = (V ,E) where V is a set of vertices each of

which corresponds to p ∈ P or o ∈ O , and E is a set of edges equal to Ad ∪A. Suppose that there
arem connected components in G each of which contains at least one edge (p,o) in Ad . Let these

components beC1,C2, ...,Cm . It is easy to verify that each component contains a single path without

any branches and along this path, an edge in Ad and an edge in A appear alternatively. Consider a

componentCi containingw edges inAd where one of them is (p,o). Let D be the direction of a path

from p to o. Within Ci , we traverse the path from one end to another end in direction D to find the

first edge in Ad , says (p1,o1), and the last edge in Ad , says (pw ,ow ), along the path. Let the path be

(p1,o1,p2,o2, ...,pw ,ow ). Next, we construct a sequence for this component Ci to be the sequence

denoting the path. For each component, we can construct a sequence. All sequences form a set T .

Secondly, since the sequences are generated from non-overlapping paths, for any two sequences,

S and S ′ in A, we haveM(S) ∩M(S ′) = ∅, and thus S and S ′ are compatible.

Thirdly, we show that each match in Ac (where Ac ⊆ A) is not broken when we perform the

adjusting operation on each sequence from T in A. This can be proved by contradiction.

Fourthly, we show that the resulting assignment A′ due to the adjusting operations on each

sequence from T in A is equal to Ao . Each pair in Ad becomes a match in A′ (since each pair in Ad
appears as a feasible pair in one sequence in T ). We have Ad ⊆ A′. Besides, each match in Ac is not

broken in the resulting assignment A′. Thus, we have Ac ⊆ A′. We conclude that (Ac ∪Ad ) ⊆ A′

and thus Ao ⊆ A′. Let Y (A′,Ao) be the set of all matches (p,o) in A′ −Ao . We consider two cases.

Case 1: Y (A′,Ao) = ∅. We derive that A′ = Ao because there are no matches (p,o) in A′ −Ao . Case
2: Y (A′,Ao) , ∅. Since pro f it(p,o) > 0, we know the profit of A′ is greater than the profit of Ao ,

which leads a contradition. Thus, Case 2 is not possible.

Proof of Lemma .2: Let S be (p1,o1,p2,o2, ...,pm ,om). Then, N (S) = {(pi ,oi )|i = 1, 2, ...,m}.
Let M ′(S) be M(S) excluding S’s head match (if any) and S’s tail match (if any)), i.e., M ′(S) =
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{(pi+1,oi )|i = 1, 2, ...,m − 1}. We have

pro f it(N (S)) − pro f it(M ′(S))

=
∑m

i=1pro f it(pi ,oi ) −
∑m−1

i=1 pro f it(pi+1,oi ). (5)

Consider π .lenдth. Since the weight of edge (pi ,oi ) is −pro f it(pi ,oi ) for 1 ≤ i ≤ m, and the

weight of edge (oi ,pi+1) is pro f it(pi+1,oi ) for 1 ≤ i ≤ m − 1, We have

π .lenдth =
∑m

i=1 − pro f it(pi ,oi ) +
∑m−1

i=1 pro f it(pi+1,oi ). (6)

According to Equation (5) and Equation (6),

pro f it(N (S)) − pro f it(M ′(S)) = −π .lenдth (7)

In the following, we consider 4 cases (4 combinations of the existence of S’s head match and the

existence of S’s tail match).

Case 1: S has its head match (p1,o0) and its tail match (pm+1,om). We further consider two sub-

cases. Case 1(a): (p1,o0) and (pm+1,om) are identical (i.e., p1 = pm+1 and o0 = om). That is, (p1,om)
is a match in A. Thus, taд = 0 and M(S) = M ′(S) ∪ {(p1,om)}. Besides, wp = wo = pro f it(p1,om).
Then, PG(S,A) = pro f it(N (S)) − pro f it(M ′(S)) − pro f it(p1,om) = π .lenдth −wp + taд ·wo .

Case 1(b): (p1,o0) and (pm+1,om) are not identical. Thus, taд = −1 and M(S) = M ′(S) ∪
{(p1,o0)}∪ {(pm+1,om)}. Besides,wp = pro f it(p1,o0) andwo = pro f it(pm+1,om). Then, PG(S,A) =
pro f it(N (S)) − pro f it(M ′(S)) − pro f it(p1,o0) − pro f it(pm+1,om) = π .lenдth −wp + taд ·wo .

The correctness of the remaining three cases could be verified similar to Case 1 and thus they

are omitted here.

Proof of Theorem 5.1: The proof is similar to that of Theorem 4.18.

Updated Proof of Lemma 4.15 described in Section 6: The proof is the same as the original

proof of Lemma 4.15. However, we need to consider the additional case that S (a profitable sequence)
can be a special feasible sequence. Note that S ′ (a gratifying sequence) cannot be a special sequence.
Let (p,o) be the head match in S and (p ′t ′+1,o

′
t ′) be the match in S ′ such that (p ′t ′+1,o

′
t ′) = (p,o).

Consider two sequences, Q and Q ′, where Q = (p ′
1
,o′

1
, ...,p ′t ′,o

′
t ′) and Q

′ = (p ′t ′+1,o
′
t ′+1, ...,p

′
n ,o
′
n).

See Figure 18(c) for illustration. Recall that S ′ is gratifying. Thus, both p ′
1
and o′n are not matched in

A. That is, Q has no head match and Q ′ has no tail match. Considering that (p ′t ′+1,o
′
t ′) is a match in

A, we knowQ has a tail match andQ ′ has a head match. As a result, SG(Q,A) = 0 and SG(Q,A) = 0.

Besides, it is not hard to verify that PG(Q,A) + PG(Q ′,A) is exactly equal to PG(S,A) + PG(S ′,A).
According to the assumption, PG(S,A)+ PG(S ′,A) > 0. Thus, we have PG(Q,A)+ PG(Q ′,A) > 0. It

follows that at one least one of PG(Q,A) and PG(Q ′,A′) is greater than 0. Without loss of generality,

suppose PG(Q,A) > 0. As a result, Q corresponds to an affirmative sequence, which contradicts

the assumption.

Updated Proof of Lemma 4.16 described in Section 6: The proof of Lemma 4.16 can be kept

intact. However, the proof of Lemma .1 used in the proof of Lemma 4.16 should be updated as

follows. The proof is the same as the original proof of Lemma .1 except Case 2 (Y (A′,Ao) , ∅). We

change the proof as follows. In this case, we perform the following post-processing. For each match

(p,o) ∈ Y (A′,Ao) with pro f it(p,o) ≤ 0, we insert a special sequence containing its head match

equal to (p,o) into T . Note that (p,o) is to be broken in the adjusting operation on this special

sequence. Besides, (p,o) must not be in Ao (since otherwise, Ao is not optimal). Suppose that we

execute the adjusting operations on these special sequences onA′ and obtain a resulting assignment

A′′. Since each broken match (p,o) ∈ A′ is not in Ao and Ao ⊆ A′, we deduce that Ao ⊆ A′′. In
addition, there does not exist any matches (p,o) in A′′ − Ao where pro f it(p,o) ≤ 0. Consider

Y (A′′,Ao). We show Y (A′′,Ao) = ∅ by contradiction. Assume that Y (A′′,Ao) , ∅. Let (p,o) be a
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match in Y (A′′,Ao). We have pro f it(p,o) > 0 (since all matches (p ′,o′) with pro f it(p ′,o′) ≤ 0 have

been broken during the above adjusting operations). As a result, we have pro f it(A′′) > pro f it(Ao),

which leads to a contradiction. Thus, A′′ is Ao and we finish our proof.
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