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abstract: Many species are currently experiencing anthropogen-
ically driven environmental changes. Among these changes, increas-
ing noise levels are specifically a problem for species using acoustic
signals (i.e., species relying on signals that use the same sensory
modality as anthropogenic noise). Yet many species use other sensory
modalities, such as visual and olfactory signals, to communicate.
However, we have only little understanding of whether changes in
the acoustic environment affect species that use sensory modalities
other than acoustic signals. We studied the impact of anthropogenic
noise on the common cuttlefish Sepia officinalis, which uses highly
complex visual signals. We showed that cuttlefish adjusted their visual
displays by changing their color more frequently during a playback
of anthropogenic noise, compared with before and after the playback.
Our results provide experimental evidence that anthropogenic noise
has a marked effect on the behavior of species that are not reliant
on acoustic communication. Thus, interference in one sensory chan-
nel, in this case the acoustic one, affects signaling in other sensory
channels. By considering sensory channels in isolation, we risk over-
looking the broader implications of environmental changes for the
behavior of animals.

Keywords: animal communication, noise pollution, environmental
change, phenotypic plasticity, Sepia officinalis.

Introduction

Animal communication plays a crucial role for many spe-
cies, because it is used in different contexts (e.g., sexual
selection, parental care, and predator-prey interactions;
Bradbury and Vehrencamp 2011). Communication in its
simplest form involves a sender producing a signal that
conveys information and a receiver making a decision on
how to respond to that signal (Bradbury and Vehrencamp
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2011). Thus, for an individual, it is vital that the signal is
transmitted effectively across the environment to the
receiver. To maintain signal efficiency, species use a variety
of different sensory modalities to communicate, depending
on the environment they inhabit. However, many species
are currently experiencing anthropogenically driven
environmental changes, including noise altering acoustic
environments in both aquatic and terrestrial ecosystems
(Malakoff 2010; Slabbekoorn et al. 2010).

Changes in the acoustic environment are a specific prob-
lem faced by species that use acoustic signals (i.e., those
that rely on signals that use the same sensory modality as
anthropogenic noise). For example, anura and birds adjust
their acoustic signals when experimentally exposed to
increased noise levels (e.g., Halfwerk and Slabbekoorn
2009; Cunnington and Fahrig 2010; Gross et al. 2010; Ver-
zijden et al. 2010). In these cases, animals modify their
acoustic signals in response to changes in the acoustic
environment within one sensory modality. Yet many spe-
cies use other sensory modalities, such as visual and ol-
factory signals, to communicate (Bradbury and Vehren-
camp 2011). However, whether changes in the acoustic
environment affect species that use sensory modalities
other than acoustic signals is still unknown.

Cephalopods use complex visual signals, including the
alteration of body coloration and patterning (Tinbergen
1939; Hanlon and Messenger 1988, 1996). Additionally,
they use a mechanosensory receptor system of epidermal
head and arm lines, which allows them to detect local water
movements, including those caused by sound waves trans-
mitted underwater (Sundermann 1983; Budelmann and
Bleckmann 1988). The perception of local water move-
ments can be enhanced by raising their first pair of arms,
and there is no evidence that cephalopods communicate
by sound (Budelmann et al. 1991; Hanlon and Messenger
1996; Vermeij 2010). If species that do not rely on acoustic
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communication respond to anthropogenic changes in their
acoustic environment, noise pollution could have far-
reaching consequences by affecting not only species that
use acoustic signals but also those that communicate by
other means.

To test whether anthropogenic noise affects animals that
do not rely on acoustic communication, we exposed com-
mon cuttlefish (Sepia officinalis) to an experimental noise-
polluted environment. We examined whether cuttlefish
changed their visual and tactile behavior in response to
changes in their acoustic environment by exposing them
to anthropogenic noise. To exclude the possibility that the
presence of the loudspeaker alone or any other acoustic
stimuli elicits the same behavioral response, we exposed
the same individuals to a control playback consisting of
waves breaking in the surf zone. We predicted that indi-
viduals exposed to anthropogenic noise should adjust their
behavior to changes in their acoustic environment. Fur-
thermore, if individuals responded more strongly to an-
thropogenic noise than to the control playback, we could
conclude that anthropogenic noise, and not merely any
change in the acoustic environment, affects behavior.

Material and Methods

Study Species and Housing

Sepia officinalis eggs were collected from lobster pot lines
off Weymouth, England; transported to aquarium facilities
in Portaferry, Northern Ireland; and reared under standard
laboratory conditions for 4–6 weeks after hatching (e.g.,
Forsythe et al. 1991, 1994). Animals were fed live mysid
shrimps ad lib., with food supplies checked and topped
up twice daily. Cuttlefish were exposed to only common
aquarium noises until the start of the playback experi-
ments. One week before experimentation, 30 cuttlefish
were placed singly in isolated tanks (22 cm # 31 cm #
22 cm) supplied with flow-through seawater at local am-
bient temperature. To prevent sound from playbacks being
transmitted to other tanks, all tanks rested on a 10-cm
thick Styrofoam base, and each tank was isolated visually
from neighboring tanks by 5-cm Styrofoam.

Playback Stimuli and Experimental Setup

First, we tested whether cuttlefish adjusted their behavior
to anthropogenic noise, and second, whether the exposure
to anthropogenic noise and a control sound led to different
behavioral responses (cf. Gross et al. 2010). To avoid pseu-
doreplication, a new set of acoustic stimuli was created
for each individual (Kunc et al. 2007a, 2007b ; McMullen
et al. 2014). The control playback consisted of recordings
of waves breaking in the surf zone, and the anthropogenic

noise playback consisted of underwater engine noise from
a small car ferry (MV Portaferry II, 312 gross tonnage).
We chose ship noise, because it is the most common source
of anthropogenic noise in the aquatic environment (Vas-
concelos et al. 2007), and because most other anthropo-
genic noise is biased toward the lower frequency band
(Hildebrand 2009). Therefore, ship noise represents a suit-
able stimulus to test the impact of anthropogenic noise
on animals in the aquatic environment. Recordings of both
types of stimuli were made with a hydrophone (HTI-96-
MIN with preamplifier; manufacturer-calibrated sensitiv-
ity, �165 dB re: 1 v/mPa; frequency range, 2 Hz to 30
kHz) connected to a Marantz PMD660 recorder. The hy-
drophone and recorder were calibrated using a signal of
known amplitude (for method, see Purser and Radford
2011). Averaged power spectra (fig. 1) were generated in
AVISOFT SASLab (R. Specht, Berlin) using fast Fourier
transform (FFT) analysis (FFT size 1,024; Hann evaluation
window; spectrum level units normalized to 1 Hz band-
width; 50% overlap, averaged from 5-s segments of mul-
tiple recordings).

The original recording of the ship noise, which was used
as the anthropogenic noise stimuli, had a higher sound
pressure level (SPL) than the waves breaking the surf zone,
which was used as a control treatment (fig. 1). Therefore,
to mitigate the difference in SPL, we standardized the stim-
uli to the peak amplitude using the “normalize” function
in Audacity 1.2.6. (sample frequency: 44.1 kHz; sample
format: 32-bit float). Rerecordings of the two stimuli in
the tank showed that this successfully reduced the differ-
ence in SPL between the two stimuli (fig. 1; difference
between original recordings: 48 dB; difference between
tank rerecordings: 20 dB). The remaining differences in
the recordings of the different stimuli are based on the
spectral characteristics of the stimuli, which show similar
patterns to the original recordings (frequency quartiles for
the original anthropogenic recording: 25% p 417 Hz,
50% p 812 Hz, 75% p 22,358 Hz; frequency quartiles
for the anthropogenic noise recorded in tank: 25% p 270
Hz, 50% p 656 Hz, 75% p 6434 Hz; frequency quartiles
for the original control recording: 25% p 80 Hz, 50% p
370 Hz, 75% p 2,488 Hz; frequency quartiles for the
control recorded in tank: 25% p 80 Hz, 50% p 140 Hz,
75% p 235 Hz).

The aim of our study was to test whether changes in
one sensory channel (the acoustic channel, which was af-
fected by adding anthropogenic noise) affect behavior in
other sensory channels (the tactile and the visual chan-
nels). To rule out the possibility that individuals might
respond to any change in their acoustic environment in a
uniform manner, we compared the response to anthro-
pogenic noise with response to the control treatment.

Playbacks were conducted on 30 individuals in a ran-
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Figure 1: Averaged power spectra for anthropogenic noise (ferry noise) and biological control (waves breaking in the surf zone) recorded
in the wild and recorded in the experimental tank (fast Fourier transform size p 1,024; Hann evaluation window; spectrum level units
normalized to 1 Hz bandwidth; 50% overlap; averaged from 5-s recordings). Freq p frequency.

domized order, and the two treatments were separated by
24 h to minimize habituation effects. Stimuli were played
back through a UW30 underwater speaker (Lubell Labs)
from a compact disk player connected to an amplifier
(EAGLE TPA 30V). The speaker was mounted in a cus-
tomized tank lid that allowed it to sit below the water line
while keeping disturbance to a minimum.

Experimental Protocol

For each playback, individuals were observed for 210 s
before the playback started (silence), which provided an
individual’s baseline level. Playback duration was 210 s,
and we continued to observe subjects for another 210 s
after playback (silence). For the first 30 s of the playback
period, the noise level was increased gradually to avoid
startling the cuttlefish. During each of the 210-s periods,
we noted (i) the frequency of color changes, as a measure
of visual signaling; (ii) the frequency of time individuals
had their first pair of arms raised, as a measure of tactile
signaling (cf. Hanlon and Messenger 1988); and (iii) the
time spent swimming (in seconds), as a measure of
activity.

Statistical Analyses

Statistical analyses were performed in IBM SPSS 19. To
test whether cuttlefish changed their behavior during the
anthropogenic noise playbacks, we used repeated measures
ANOVA. To fulfill the assumptions of sphericity, the three
behavioral measurements were transformed using root
squared ( ). Data shown in the figures are raw datax � 10
and are available in the Dryad Digital Repository: http://
datadryad.org/resource/doi:10.5061/dryad.c6011 (Kunc et
al. 2014). Treatment order had no significant effect on each
of the behavioral responses and thus was excluded from
the final models. To test whether cuttlefish changed their
behavior differently from the baseline control observations
to the two treatment observations, we calculated the dif-
ferences of the transformed data in the frequency of color
changes, in the time swimming, and in the frequency of
arms raised per cuttlefish per interval and tested these
values against each other using paired t-tests (cf. Gross et
al. 2010). All tests were two-tailed.

Results

Cuttlefish changed their behavior in response to anthro-
pogenic noise, and their response also differed between
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the anthropogenic noise and the control playback. Cut-
tlefish altered their visual displays by changing color more
frequently during the anthropogenic noise playback com-
pared with before and after the playback ( ,F p 18.312, 58

; fig. 2A). The increase in color changes wasP ! 0.001
higher during the anthropogenic noise playback than dur-
ing the control playback ( , ; fig. 2D).t p �3.9 P ! 0.00129

Individuals also spent more time swimming during the
anthropogenic noise playback than before and after the
playback ( , ; fig. 2B) and spent moreF p 10.09 P ! 0.0012, 58

time swimming during the anthropogenic noise playback
compared with during the control playback ( ,t p �2.329

; fig. 2E).P ! 0.032
However, the change in the acoustic environment af-

fected signaling not only in the visual channel but also in
the tactile channel. Cuttlefish raised their first pair of arms
more often during the anthropogenic noise playback com-
pared with before or after the playback ( ,F p 19.922, 58

; fig. 2C). During the anthropogenic noise play-P ! 0.001
back, cuttlefish raised their first pair of arms more fre-
quently than during the control playback ( ,t p �6.729

; fig. 2F).P ! 0.001

Discussion

Our results provide experimental evidence that anthro-
pogenic noise can affect behavior across sensory modali-
ties. We found that cuttlefish immediately adjusted their
behavior when they were exposed to anthropogenic noise,
and their response to the noise and the control playback
differed. The noise playback elicited a stronger response
than the control playback of waves breaking in the surf
zone. Cuttlefish in our experiment changed color more
frequently, swam more, and raised their first pair of arms
more often during high levels of noise than before or after
the noise playback.

Adjustments in behavior may allow individuals to re-
spond to interference in one sensory channel by changing
behavior in another channel. However, individuals may
only mitigate the effect of environmental changes, not fully
compensate for them (Gross et al. 2010). A change in a
species’ environment, whether that change is natural or
induced by humans, is a potential source of selection on
traits important for fitness (Gienapp et al. 2008). For ex-
ample, the crossmodal impact of noise on behavior may
change the outcome of sexual selection in species that rely
on visual signals. Cephalopods use complex visual signals
in courtship and deterrence of rivals (Tinbergen 1939;
Hanlon and Messenger 1988, 1996). Therefore, the in-
crease in color changes observed in our experiment may
affect both inter- and intrasexual selection. The crossmodal
effect of noise on visual signals may also affect predator-
prey interactions. The simplest and most common anti-

predator strategy is to avoid being detected by predators
(Bradbury and Vehrencamp 2011). The primary antipred-
ator strategy of cephalopods is crypsis (i.e., blending into
the background; Hanlon and Messenger 1996). Therefore,
the increased frequency of color changes caused by noise
affects the ability to be optimally camouflaged and may
thus increase the risk of predation.

Regarding the behavioral adjustments observed in our
experiment, a number of possible mechanisms may be
involved. Anthropogenic noise can increase stress levels
(Stansfeld and Matheson 2003; Wysocki et al. 2006; Kight
and Swaddle 2011). When exposed to anthropogenic noise
cuttlefish changed colors more frequently and swam more,
suggesting an increase in stress levels. Such stress responses
are found when cuttlefish are exposed to predators by
changing their coloration (Langridge et al. 2007; Langridge
2009), and an increase in swimming suggests enhanced
alarm or avoidance behavior (cf. Skalski et al. 1992; Slotte
et al. 2004; Sara et al. 2007; Fewtrell and McCauley 2012).
Moreover, noise can distract individuals (Chan et al.
2010a, 2010b), reducing the ability of an individual to
maintain efficient crypsis, which may in turn lead to more
color changes.

In terrestrial species, recent research showed that be-
havioral plasticity allows individuals to respond to a novel
acoustic environment by immediately adjusting their
acoustic signals to increasing noise levels (Cunnington and
Fahrig 2010; Gross et al. 2010; Verzijden et al. 2010; Ber-
mudez-Cuamatzin et al. 2011; Hanna et al. 2011; Mc-
Laughlin and Kunc 2013; Montague et al. 2013). It has
been suggested that species using acoustic signals as their
main form of communication may suffer most from
changes in the acoustic environment because of the in-
creased interference in their communication channel (Ra-
bin and Greene 2002; Rabin et al. 2003; Warren et al. 2006).
Our results extend these findings by demonstrating that
anthropogenic noise does not affect only behavior within
the interfered sensory modality. Thus, the impact of an-
thropogenic-induced changes in the environment, by hav-
ing a crossmodal impact on the behavior of species that
rely on sensory channels other than the one with inter-
ference, may be more widespread than previously thought.

The crossmodal impact of anthropogenic noise was not
limited to the visual channel alone; noise also affected the
tactile channel. Cuttlefish detect local water movements
with the epidermal head and arm lines (Komak et al. 2005),
which are analogous to the lateral lines of fish (Budelmann
and Bleckmann 1988). The increase in arm raising seen
in this study suggests that an individual is in a heightened
state of awareness that is caused by the constant water
movements generated by the playback. Because cuttlefish
rely on the epidermal lines for prey location, hunting, and
capture (Budelmann et al. 1991), anthropogenic noise
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Figure 2: Mean � SE (A) frequency of color changes, (B) time spent swimming, and (C) frequency of raised-arms behavior before, during,
and after the ferry noise playback. Mean � SE change in (D) frequency of color changes, (E) time spent swimming, and (F) frequency of
raised-arms behavior from before to during the noise and control playback.
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might mask subtle cues, such as vibrations of potential
predators or prey.

Anthropogenic noise may mask important auditory cues
in the environment (e.g., Katti and Warren 2004; Brumm
and Slabbekoorn 2005; Patricelli and Blickley 2006). Cut-
tlefish use a mechanosensory receptor system to detect
local water movements. There is much debate regarding
whether and how cephalopods detect sound per se (e.g.,
Packard et al. 1990; Hu et al. 2009; Mooney et al. 2010).
Underwater acoustic stimuli have two components: par-
ticle motion and sound pressure, both of which can pro-
vide information to individuals (Radford et al. 2012). Most
recent evidence suggests that squid, a closely related spe-
cies, detect particle motion rather than pressure of a sound
field (Mooney et al. 2010). In our setup, individuals were
in the acoustic near field; therefore, particle motion cannot
be estimated from the SPL, because the two are not pro-
portionally coupled (Akamatsu et al. 2002). Therefore, an
increase in SPL does not necessarily correspond with an
increase in particle motion (Akamatsu et al. 2002). Because
of the lack of commercially available equipment, particle
motion was not measured. The differences in the response
to the two stimuli are not necessarily due to differences
in SPL or particle motion. However, the observed differ-
ences could be explained by the nature of the stimuli,
which differ in time domain and spectral characteristics
(cf. Gross et al. 2010). Indeed, our data suggest that cut-
tlefish are able to distinguish between different acoustic
stimuli in their environment. Cuttlefish may habituate to
anthropogenic noise over time, although this process
would depend on the nature and characteristics of the
signal in question. Additional studies conducted over dif-
ferent time scales are required to consider the longer-term
consequences of these behavioral responses.

Our experiment was not designed to distinguish be-
tween the two components, particle motion and sound
pressure, but rather to investigate behavioral responses to
changes in the acoustic environment, which are often dif-
ficult to detect underwater. Experimental studies in a con-
trolled environment provide a starting point to test
whether anthropogenic noise affects not only species that
rely on acoustic signals but also species that use other
sensory channels as their main form of communication.
Care must be taken when extrapolating results from tank-
based experiments to meaningful implications for indi-
viduals living in the wild, because underwater acoustics
are complex (Bruintjes and Radford 2013; Wale et al.
2013).

In conclusion, our results provide experimental evi-
dence that anthropogenic noise has a marked effect on the
behavior of a species that is not reliant on acoustic com-
munication and that different types of background noise
lead to different behavioral responses. Interference in one

sensory channel, in this case the acoustic one, can affect
behavior in other sensory channels. Thus, by considering
sensory channels in isolation, we risk overlooking the
broader implications of noise pollution.
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