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ABSTRACT 

Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. 

Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. 

Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current 

detection measures in place, timely discovery of new malware is still a critical issue. This calls for novel approaches to 

mitigate the growing threat of zero-day Android malware. Hence, in this paper we develop and analyze proactive Machine 

Learning approaches based on Bayesian classification aimed at uncovering unknown Android malware via static analysis. The 

study, which is based on a large malware sample set of majority of the existing families, demonstrates detection capabilities 

with high accuracy. Empirical results and comparative analysis are presented offering useful insight towards development of 

effective static-analytic Bayesian classification based solutions for detecting unknown Android malware.   

Keywords 

mobile security,  Android,  malware detection,  data mining, Bayesian classification,  static analysis,  machine learning. 

1. INTRODUCTION 

The Android mobile platform is increasing in popularity surpassing rivals like iOS, Blackberry, Symbian and Windows 

mobile. The apps available on the Google Play Android market alone are well over 675,000, with an estimated 25 billion 

downloads (as at October 2012) [1]. At the same time, malware targeting the Android platform has risen sharply over the last 

two years. According to a report from Fortinet (November 2011), approximately 2000 Android malware samples belonging to 
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80 different families had been discovered [2]. Since the discovery of the first Android malware in August 2010, more 

sophisticated families capable of evading traditional signature-based detection are emerging [3].   

In February 2011, Google introduced Bouncer to its official app marketplace to screen submitted apps for malicious behavior. 

No doubt a welcome development towards curbing malware, this has not completely eliminated the problem. Bouncer is 

based on run-time dynamic behavioral analysis; and possible means of circumventing its analysis process have been 

demonstrated by Oberheide and Miller [4].  Moreover, other than Google Play, users commonly download apps from third 

party sources not protected by Bouncer. 

According to security experts, the difficulties in spotting malicious mobile apps results in most Android malware remaining 

unnoticed for up to 3 months before being discovered [2]. Furthermore, Oberheide et al. [5] observed that it took on average 

48 days for a signature-based antivirus engine to become capable of detecting new threats. 

Clearly, there is a need for improved detection capabilities to overcome the aforementioned challenges and mitigate the 

impact of evolving Android malware. Hence, in this paper we present Bayesian classification based machine learning 

approaches that utilize static analysis to enable proactive Android malware detection. The methods are effective in detecting 

known families as well as unknown malware with reasonably high accuracy. Thus, it is definitely useful in overcoming the 

limitations of traditional signature-based scanning as well as viable for filtering apps for further analysis by complementary 

methods or manual reverse engineering analysis by security analysts, thus reducing the costs and effort involved in uncovering 

new malware samples. 

In this paper, three Bayesian classification based approaches for detecting Android malware are presented and analyzed. 

These are developed from application characteristics obtained through automated static analysis using a large scale malware 

sample library of 49 known Android families and a wide variety of benign apps. We discuss three viable Bayesian 

classification models that can be built from statically mining a large collection of apps, and provide empirical results that offer 

useful insight towards development of effective automated static analysis based solutions for detecting unknown Android 

malware.  

The rest of the paper is organized as follows: related work is discussed followed by the automated reverse engineering and 

static analysis that underpins the proposed Bayesian approaches. Next, the Bayesian models’ formulation is presented. 

Experiments, results and analyses follow; the paper is then concluded further work outlined. 
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2. RELATED WORK 

In the current literature, related work on behavioral based mobile malware detection such as [7], [8] or on-device anomaly 

detection [9] can be found. Different from the aforementioned, this paper proposes and analyzes off-device, data mining 

approaches that employ static analysis of Android application packages, whilst avoiding performance bottleneck issues of on-

device approaches. Static analysis has the advantage of being undetectable, as obviously malware cannot modify its behavior 

during analysis [2]. Thus, it has been applied to Android vulnerability assessment, profiling, threat detection etc. For example, 

ComDroid [10] is a static analysis tool for detecting application communication vulnerabilities. DroidChecker [11] is a tool 

for detecting capability leakage in Android applications. ProfileDroid [12] is a monitoring and profiling system for 

characterizing Android app behaviors at multiple layers: static, user, OS and network. RiskRanker [6] provides not only 

profiling but also automated risk assessment to police Android markets and aid zero-day malware detection. RiskRanker 

employs a two-order risk analysis system and classifies apps as high, medium or low risk. Profiling and reporting function for 

Android applications based on static analysis is also presented in [13]. Though the method used in [13] is designed to identify 

security and privacy threats, unlike the study in this paper, it is not based on data mining or machine learning.  

Other existing works that employ static analysis for detection of malicious activities like SCANDAL [14], AndroidLeaks [15], 

and the framework presented in [16], focus on privacy information leakage. Whereas, the malicious activities targeted by our 

work extends beyond privacy information loss.   

In [17] Blasing et al. presented an Android Application Sandbox (AAS) that uses both static and dynamic analyses on 

Android applications to automatically detect suspicious applications. For the static analysis part, the code is decompiled and 5 

different types of patterns are matched namely: JNI usage, reflection, spawning child processes, services and IPC usage, and 

runtime requested permissions. Compared to AAS, our methods cover a much wider range of pattern attributes extracted not 

only from the application code logic but also scrutiny of resources, assets, and executable libraries where malicious payload 

could be lurking. Additionally, these attributes contribute to ranked feature sets which drive our Bayesian classification 

models. 

In [2] Apvrille and Strazzere employ a heuristics approach based on static analysis for Android malware detection. Their 

heuristic engine uses 39 different flags weighted based on statistics computed from techniques commonly employed by 

malware authors in their code. The engine then outputs a risk score to highlight the most likely malicious sample. Our 

approach shares similarity in the reverse engineering technique, but differs by utilizing Bayesian classification methods that 
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are more flexible and easier to maintain. For example, models can be re-trained as new malware samples are discovered, 

while features sets can be automatically updated.  

In [18], Schmidt et al. employ static analysis on executables to extract their function calls using the readelf command. They 

then compare these function call lists with those from Linux malware executables in order to classify the executables using 

learning algorithms. In contrast, our static analysis approach is based on automated analyses of Android packages. Moreover, 

Android malware samples across a wide range of existing families are employed in our work rather than Linux malware 

executables.  

Other earlier non-Android based papers have explored data mining and machine learning techniques for malware 

identification including for example [19], [20] and [28]. The authors of [19] apply machine learning methods on a data set of 

malicious executables where a set of Windows and MS-DOS format executables are utilized while comparing three learning 

algorithms with signature based detection. While [20] is based on application of data mining methods and SVM to distinguish 

between benign executables and virus by statically extracting dynamic link libraries and application programming interfaces.  

For the Android platform, a paper by Sahs and Khan [21] presented a machine learning approach for Android malware 

detection based on SVM. A single-class SVM model derived from benign samples alone is used. Contrary to their approach, 

our classification models are trained with both a wide variety of benign apps and a range of samples from across 49 malware 

families discovered in the wild.  Also, in [22], PUMA (Permission usage to detect malware in Android) detects malicious 

Android applications through machine-learning techniques by analyzing the extracted permissions from the application itself. 

Our work leverages not only permissions, but also other code-based properties through automated reverse engineering to 

investigate our data-mining approach for malware detection. Moreover, our study was undertaken with a larger malware 

sample set. Different from [22], this paper also provides insight into permissions usage from a different perspective; i.e. in-

depth comparative analysis with the use of other viable application properties to underpin the machine learning detection 

approach. 

In summary, the main contributions of this paper different from existing related works in the literature are as follows: 

 Novel approaches that apply automated static analysis based Bayesian classification for proactive Android malware 

detection.  
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 Extensive empirical evaluation and comparative analysis of the Bayesian classification methods with a large malware 

sample set from across 49 malware families in the wild. 

Our approach for discovery of unknown malicious applications is motivated by the need to bolster existing methods given 

their limitations. We also note that the significant delay between malware release and eventual discovery is still a critical 

problem, which suggests that we are currently unaware of many Android malware samples in the wild [2]. 

3. ANDROID APP REVERSE ENGINEERING  

Android applications are written in Java and compiled by the Android SDK tools —along with any data and resource files—

into an Android package (APK), an archive file with an .apk suffix. All the code in a single .apk file is considered to be one 

application and it is this file that Android-powered devices use to install the application. The applications are distributed as 

self-contained packages that are compressed (ZIP) bundle of files typically consisting of: AndroidManifest.xml (Manifest 

file), classes.dex (A single file which holds the complete bytecode to be interpreted by Dalvik VM). Other binary or XML-

based resources required by the application to run may be held in res/ and assets/ folders. 

The Android application is built from four different types of components: Activities, Services, Broadcast Receivers, and 

Content Providers [23]. An application must declare its components in a Manifest file which must be at the root of the 

application project directory. Before the Android system can start an application component, the system must know that the 

component exists by reading this file. The Manifest file also states the user permissions that the application requires, such as 

internet access or read-access to the user’s contacts.   

In order to facilitate the machine learning detection approaches in this paper, we implemented a Java-based Android package 

analyzer and profiling tool for automated reverse engineering of the APK files. The steps involved are shown in Figure 1. 

First, the .apk files are decompressed into separate folders containing the Manifest file, .dex file and other resource 

subfolders. Afterwards, the manifest file is converted into readable format using AXML2jar. The .dex file is then 

disassembled using a tool called Baksmali [24]. Baksmali is a disassembler for the dex format used by Dalvik. Baksmali 

disassembles .dex files into multiple files with .smali extensions. Each .smali file contains only one class information which is 

equivalent to a Java .class file. The files in the decompressed folders are mined to extract relevant properties subsequently 

used to construct the Bayesian classification-based models. 
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Decompress .apk 
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Convert Manifest.xml 
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Permissions-based 
feature vectors 

Mine manifest.xml.clean 
files  to extract Permissions

Code-based 
feature vectors 

Mixed Permissions 
and Code-based 
feature vectors 

 

Figure 1. Automated Android app reverse engineering and data mining for Bayesian model(s) feature extraction with 

the Java-based custom built APK analyzer.  

4. THE MACHINE LEARNING APPROACHES   

Data mining and machine learning are increasingly being applied in the anti-malware industry, particularly in augmenting 

well-established heuristics and generics methods [25]. Data mining drives automation, which is motivated by reducing 

maintenance costs associated with the traditional heuristics and generics methods [25].  Data mining usually employs machine 

learning methods for inference, prediction, classification etc. Hence, it is important to select an appropriate method depending 

on the particular application. Bayesian classification is well suited to our problem of filtering large amounts of apps as it can 

perform relatively fast classification with low computational overhead once trained. Another important property which 

motivates its implementation in our approach for detecting suspicious Android applications, is the ability to model both an 

‘expert’ and  ‘learning’ system with relative ease compared to other machine learning techniques. Bayesian method allows the 

incorporation of prior probabilities (expert knowledge) even before the training phase. This hybrid property can be exploited 

as a performance tuning tool without incurring additional computational overhead.  

4.1 The classifier model 

The Bayesian based classifier consists of learning and detection stages. The learning stage uses a training set of known 

malicious samples in the wild and another set of benign Android applications, collectively called the app corpus. The Java-

based package analyzer uses several ‘detectors’ to extract the desired features from each app in the corpus. The feature set is 

subsequently reduced by a feature ranking and selection function, while the training function calculates the marginal and 

conditional probabilities used in formulating the algorithm employed for the final classification decisions.  
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4.2 Feature ranking and selection 

Let an application characteristic ri obtained from mining of the APKs by the analyzer, be defined by a random variable: 

1, cov det
0,{i

if dis ered by the ectors
otherwiseR                                            (1) 

In order to ensure selection of the most relevant application features for the classification stage, we calculate the Mutual 

Information (MI) [26] or information gain of each feature Ri with respect to the class variable C.  This is used to rank the 

features and select the most relevant features during the feature selection stage prior to model training. Let C be a random 

variable representing the application class, suspicious or benign: 

 
,{ }C suspicious benign

 

Every application is assigned a vector defined by  1, 2,... nr r r r with ri being the result of the i
th

 random variable Ri. As 

the goal is to select the most relevant features, the feature selection function computes the MI ranking score of each random 

variable calculated as follows: 
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After calculating the score for each feature Ri, the feature set is then ranked in descending order and the top n most relevant 

features with the highest information gain are then selected for training the model in order to maximize the classification 

accuracy.  

4.3 Bayesian classification 

According to Bayes theorem, the probability of an application with the feature vector  1, 2,... nr r r r  belonging in class C 

is given by:  

1
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Where ( | )i iP R r C c   and ( )jP C c are the estimated probabilities obtained from the frequencies calculated on the app 

learning corpus.  While n is the number of features used in the classification engine; c0 and c1 are the benign and suspicious 

classes respectively. 

An app represented by the vector  1, 2,... nr r r r  is classified as benign if:            

( | ) ( | )P C benign R r P C suspicious R r         (5) 

Otherwise, it is classified as suspicious. In terms of classification error, two cases can occur: (a) A benign app misclassified as 

suspicious. (b) A suspicious app misclassified as benign. In the context of our problem, the latter case is considered more 

critical, since allowing a malicious app to reach an end device is more critical than excluding a benign app from the 

distribution chain to be subject to further scrutiny. 

4.4 Implemented Bayesian models from different data mining approaches 

Three different data mining methods are implemented within the apk analyzer in order to build the Bayesian classification 

models. Through automated mining of the pre-processed .apk files, three separate models are built from:  

 Input features derived from standard Android permissions extracted by static analysis of the Manifest files.  

 Input features derived from code-based properties obtained by parsing disassembled .dex files present in the apk and 

other external resource files resulting from the apk decompression by the custom built analyzer.  

 Input feature set consisting of a mixture of both standard permissions and code-based properties. 

4.4.1 Permission-based Bayesian classifier 

Permissions are the most recognizable security feature in Android [22].  A user must accept them in order to install an 

application. Kirin [27] uses permissions for lightweight on-device application certification. Permissions have also been used 

in several of the Android tools mentioned in section 2, to provide app profiling information. Thus, their efficacy for machine 

learning based malware detection using trained models from large malware sample sets will be investigated. A permission is 

declared using the <uses-permission> tag in the Manifest file. For example, in order for an application to read phone 

contacts it must declare the standard Android permission as follows: 

<uses-permission 

android:name="android.permission.READ_CONTACTS"> 
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</uses-permission> 

In order to build our permission-based model, 2000 Android applications comprising 1000 malware samples (from 49 

different families) and 1000 benign apps were utilized. The apk analyzer parses the decrypted manifest file from each app and 

uses a permissions detector to match 131 standard Android permissions. Once a permission is detected, its count is 

incremented and stored. The stored total for each permission is further utilized by the feature selection function to rank and 

select the most relevant features for the permission-based Bayesian classifier, using equation (3).  

The breakdown of the 49 malware families used and their respective number of samples are shown in Table 1. The malware 

samples were obtained from the Android Malware Genome Project [3]. The set of 1000 non-malicious apps were made up of 

different categories in order to cover a wide variety of application types. The categories include: entertainment, system tools, 

sports, health and fitness, news and magazines, finance, music and audio, business, education, games and a few other 

miscellaneous categories. The apps from third party market places were screened using virustotal scanning service to exclude 

potentially malicious apps from the benign set. 

Table 1.  Malware families used and their numbers. 

Family No of samples Family No of samples 

ADRD 22 GingerMaster 4 

AnserverBot 130 GoldDream 47 

Asroot 8 Gone60 9 

BaseBridge 100 GPSSMSSpy 6 

BeanBot 8 HippoSMS 4 

Bgserve 9 Jifake 1 

Coinpirate 1 jSMSHider 16 

CruseWin 2 KMin 52 

DogWars 1 LoveTrap 1 

DroidCoupon 1 NickyBot 1 

DroidDeluxe 1 NickySpy 2 

DroidDream 16 Pjapps 58 

DroidDreamLight 46 Plankton 11 

DroidKungFu1 30 RougeLemon 2 

DroidKungFu2 34 RougeSPPush 9 

DroidKungFu3 144 SMSReplicator 1 

DroidKungFu4 80 SndApps 10 

DroidKungFuSapp 3 Spitmo 1 

DroidKungFuUpdate 1 Tapsnake 2 

Endofday 1 Walkinwat 1 

FakeNetflix 1 YZHC 22 

FakePlayer 6 zHash 11 

GamblerSMS 1 Zitmo 1 

Geinimi 69 Zsone 12 

GGTracker 1 
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The top 20 requested permissions extracted from the malware sample set are given in the Table 2. The top 20 permissions 

from the benign sample set are also shown in Table 3. Note that the top 20 permissions for malware samples were exactly as 

obtained in [3], whose Android Malware Genome project was the source of the malware samples used to build and analyze 

the models in our work
1
.  

With the exception of ACCESS_NETWORK_STATE, INTERNET, WRITE_EXTERNAL_STORAGE and 

READ_PHONE_STATE, the top 10 requested standard permissions in our malware samples and benign set were different. It 

is interesting to note that READ_SMS, SEND_SMS, RECEIVE_SMS and WRITE SMS were amongst the 10 most requested 

in the malware samples but did not occur in the top 20 for our benign samples. (These were not in the top 20 of 1260 top free 

benign apps studied in [3] either, with the exception of SEND_SMS which was the 17
th

 on the top 20 list in [3].) 

 

Table 2. Top 20 requested permissions from 1000 malware samples. The ranking corresponds to the findings in [3]. 

Permissions Frequency 

INTERNET 939 
READ_PHONE_STATE 888 
ACCESS_NETWORK_STATE 741 
WRITE_EXTERNAL_STORAGE 651 
READ_SMS 591 
ACCESS_WIFI_STATE 546 
RECEIVE_BOOT_COMPLETED 497 
WRITE_SMS 466 
SEND_SMS 443 
RECEIVE_SMS 394 
VIBRATE 357 
ACCESS_COARSE_LOCATION 355 
READ_CONTACTS 344 
CALL_PHONE 324 
ACCESS_FINE_LOCATION 320 
WAKE_LOCK 294 
WRITE_CONTACTS 263 
CHANGE_WIFI_STATE 251 
WRITE_APN_SETTINGS 249 
RESTART_PACKAGES 231 

 

 

 

 

 

 

1 The top 20 permissions obtained from our benign set was also similar to the findings in [3], even though a different benign sample set of 

1000 was used in this paper. 



12 

 

Table 3. Top 20 requested permissions from 1000 benign samples.  

Permissions  Frequency 

INTERNET 856 
ACCESS_NETWORK_STATE 651 
WRITE_EXTERNAL_STORAGE 471 
READ_PHONE_STATE 388 
VIBRATE 261 
ACCESS_COARSE_LOCATION 245 
WAKE_LOCK 234 
ACCESS_FINE_LOCATION 221 
RECEIVE_BOOT_COMPLETED 180 
ACCESS_WIFI_STATE 176 
READ_CONTACTS 102 
WRITE_SETTINGS 93 
GET_ACCOUNTS 88 
CAMERA 85 
CALL_PHONE 75 
WRITE_CONTACTS 54 
GET_TASKS 51 
RECORD_AUDIO 51 
READ_HISTORY_BOOKMARKS 41 
WRITE_HISTORY_BOOKMARKS 35 

 

This indicated that permissions attributes would provide discriminative capabilities for training the classifier to distinguish 

between malware and benign applications. In order to evaluate the permissions-based model, we carried out experiments 

designed to determine: (a) How effective the permissions-based features extracted from analysis of our malware and benign 

sample sets are in detecting unknown malware. (b) How well the permission-based model performs compared to the other 

viable models e.g. trained models derived from code properties extracted as features. Section 6 presents experimental results 

that provide some interesting insights.  

These are indeed pertinent questions given that a larger malware sample set covering more recent strains of Android malware 

is employed for our investigations compared to most previous works in Android malware detection that utilize machine 

learning. Also, permission based models provide a relatively lightweight static analysis approach since the need for reverse 

engineering of the .dex files and parsing a large number of files for feature extraction and classification is eliminated, 

resulting in considerable reduction of detection effort and time. Furthermore, permissions-based classification is useful 

because it is not susceptible to disassembly or decompilation failure which can sometimes hamper the reverse engineering 

during static analysis. 

There are around 131 standard Android permissions that govern access to different system and device hardware resources. A 

user that intends to install an app will be prompted to accept or reject all the permissions requested by the app.  In our model, 
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we applied the analysis data for all of the 131 standard Android permissions to the feature selection function. The top ranked 

permissions (according to equation (3)) were subsequently selected for training the permissions-based Bayesian classifier. 

The top 30 ranked permissions and their respective information gain scores are shown in the Table 4.  

Table 4. Top 30 ranked permissions for the permission-based model (according to equation 3). 

Ranked Permissions Benign Malware Total Infogain score 

READ_SMS 20 591 611 0.32920 

WRITE_SMS 11 466 477 0.25053 

READ_PHONE_STATE 388 888 1276 0.20962 

SEND_SMS 24 443 467 0.20709 

RECEIVE_SMS 14 394 408 0.19305 

WRITE_APN_SETTINGS 4 249 253 0.12410 

ACCESS_WIFI_STATE 176 546 722 0.11094 

RECEIVE_BOOT_COMPLETED 180 497 677 0.08335 

INSTALL_PACKAGES 10 199 209 0.08274 

CHANGE_WIFI_STATE 31 251 282 0.08073 

CALL_PHONE 75 324 399 0.07443 

RESTART_PACKAGES 29 231 260 0.07289 

READ_CONTACTS 102 344 446 0.06366 

WRITE_CONTACTS 54 263 317 0.06351 

DISABLE_KEYGUARD 21 155 176 0.04514 

READ_LOGS 18 145 163 0.04382 

SET_WALLPAPER 27 145 172 0.03482 

MOUNT_UNMOUNT_FILESYSTEMS 14 115 129 0.03451 

READ_HISTORY_BOOKMARKS 41 169 210 0.03351 

RECEIVE_WAP_PUSH 1 60 61 0.02747 

WRITE_HISTORY_BOOKMARKS 35 137 172 0.02537 

RECEIVE_MMS 3 63 66 0.02487 

WRITE_EXTERNAL_STORAGE 471 651 1122 0.02386 

READ_EXTERNAL_STORAGE 19 99 118 0.02266 

GET_TASKS 51 154 205 0.02168 

DELETE_PACKAGES 7 61 68 0.01828 

CAMERA 85 18 103 0.01793 

PROCESS_OUTGOING_CALLS 10 66 76 0.01724 

ACCESS_LOCATION_EXTRA_COMMANDS 33 103 136 0.01459 

INTERNET 856 939 1795 0.01386 

 

The impact of the ranking-based feature selection on near similar shared occurrences in permissions like 

ACCESS_NETWORK_STATE, ACCESS_COARSE_LOCATION, WAKE_LOCK, ACCESS_FINE_LOCATION, and 

VIBRATE can be clearly observed by their absence in Table 4, despite being in the top 20 permissions seen in both 

categories. It can also be observed with INTERNET permission being the 30
th

 ranked feature. 
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The top ranked n permissions were used to construct the input feature vectors  1, 2,... nr r r r that characterize each 

application used in the training corpus. As mentioned earlier, ri is binary {0,1} indicating the presence or otherwise of the i
th

 

ranked permission in the feature vector. 

4.4.2 Code-based properties Bayesian classifier 

Unlike the permission-based model described above, the code-based model utilizes features extracted from code-based 

properties. A number of code-based properties were specified as matching criteria for a set of property detectors implemented 

within the apk analyzer. The detectors parse .smali files obtained from disassembled .dex files. In addition, external libraries, 

files within assets folders and resources folders are also scrutinized, if present within a decompressed APK. 

The code-based properties matched by the detectors include: Android and Java API calls, Linux system commands, and some 

Android based commands and notifications. These provided a large feature set which were subsequently reduced to the top n 

most relevant ones using the information gain criterion defined in equation 3. In total, we utilized 58 code-based properties 

for feature extraction. Our selection of these properties were guided by previous work (especially those that utilized similar 

properties for profiling Android apps and risk analysis) [2], [6], [16], as well as malware reports issued by mobile anti-virus 

vendors such as McAfee, and Lookout, detailing characteristics of  malware discovered in the wild through manual analysis 

[32], [33]. Some of the described characteristics of several known malware families enabled us to define several 

corresponding matching properties for the property detectors that we employed for feature extraction. For example, 

concealment of secondary files in the resources or assets folders by sophisticated malware such as Basebridge, Asroot (which 

conceal shell scripts/commands to be executed at runtime), is the basis for defining features based on system commands such 

as ‘chmod’, ‘mount’ , ‘remount’ ‘chown’, etc. The capabilities for dynamic code loading exhibited by families like Plankton 

also informed the choice of ‘DexClassLoader’ API calls and the inclusion of detecting embedded secondary ‘.jar’ and ‘.apk’ 

files as properties; while the use of encryption in malware such as AnserverBot, Beanbot etc., influenced the inclusion of 

cryptography API calls as property features.  

In addition to attributes defined from domain knowledge gathered from the aforementioned sources, we included properties 

defined from observing outline profiles of hundreds of apps generated from our Java based APK analyzer and our lab-based 

study of publicly available malware samples from [30] and [31]. These profiles uncovered a high frequency of occurrences of 

some obvious properties (API calls) that indicated telephony services usage, Internet access, SMS activities, access to user 
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contacts, messages and call logs etc., which facilitate theft of sensitive information and premium rate services access (both  

incentives for malware authors). Other additional properties we included in the feature set relate to the package manager API, 

presence of native code, the use of reflection-related API functions, and functions related to running background child 

processes.  

 In order to build the code-property based model, we applied the 58 properties to the same 2000 apps used for the 

permissions-based model. 10 out of these properties did not yield any match in the benign or malicious sample set, so were 

discarded. The remaining 48 were subsequently applied to the feature selection function which ranked them according to their 

scores. The top 25 ranked code-based properties and their respective frequencies in benign and malware categories are shown 

in Table 5.  

Table 5. Top 25 selected code-based properties and their frequencies in the benign and malware sets containing 1000 

samples  each (ranked using equation 3).  

Properties Benign malware Total Infogain score 

getSubscriberId (TelephonyManager) 42 742 784 0.42853 

getDeviceId       (TelephonyManager) 316 854 1170 0.22919 

getSimSerialNumber   (TelephonyManager) 35 455 490 0.19674 

.apk      (secondary payload) 89 537 626 0.18202 

chmod           (system command) 19 389 408 0.17989 

abortBroadcast   (intercepting broadcast 

notifications) 4 328 332 0.17323 

intent.action.BOOT_COMPLETED 69 482 551 0.16862 

Runtime.exec( )      (Executing process) 62 458 520 0.16163 

/system/app 4 292 296 0.15036 

getLine1Number    (TelephonyManager) 111 491 602 0.13116 

/system/bin 45 368 413 0.12779 

createSubprocess    (creating child process) 0 169 169 0.08615 

remount              (system command ) 3 122 125 0.05502 

DexClassLoader       (stealthily loading a class) 16 152 168 0.04953 

getSimOperator   (TelephonyManager) 37 196 233 0.04811 

pm install         (installing additional packages) 0 98 98 0.04725 

chown            (system command) 5 107 112 0.04325 

getCallState     (TelephonyManager) 10 119 129 0.04142 

/system/bin/sh 4 90 94 0.03647 

.jar           (secondary payload) 87 252 339 0.03616 

mount         (system command) 29 152 181 0.03605 

KeySpec                (code encryption) 99 254 353 0.03067 

SMSReceiver 3 66 69 0.02634 

getNetworkOperator   (TelephonyManager) 202 353 555 0.02071 

SecretKey             (code encryption) 119 248 367 0.02039 

 

The table shows that some of the code-based properties such as ‘pm install’ and ‘createSubprocess’ were only found to be 

present in the malware sample set. References to system commands were also found mainly in the malware samples. 
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References to .apk and .jar files which the detectors use to discover possible presence of secondary apps are found in both 

categories, but with more occurrences in the malware samples. Whilst secondary apps can be used to hide malicious payload, 

some legitimate apps such as popular ad and mobile payment frameworks are also know to utilize them [2]. As with the 

permissions-based model, the top ranked n code-based properties were used to construct the input feature vectors 

 1, 2,... nr r r r that characterize each application used in the training corpus, after the feature selection stage. 

4.4.3 Classifier based on combined ranked permissions and code-based peoperties 

The third data mining approach that was implemented in the analyzer utilized a combination of permissions and code 

properties. The feature selection function was used to simultaneously rank the permissions and properties obtained from the 

code, using our 1000 benign and 1000 malware samples. The highest ranked from both were subsequently selected as input 

feature vectors for the Bayesian classifier model. The top 25 ranked from both permissions and code property-based feature 

selections are shown in Table 6. The top ten ranked had 5 permission-based and 5 code property-based properties. As can be 

seen from Table 6, the code properties were generally ranked higher within the top 25 than the permissions. This was because 

overall, more of the code property-based attributes had clearer discrepancies in their frequency in both categories than the 

permission based attributes. For this reason, code properties were likely to generate higher ranking scores than permissions. 
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Table 6. Top 25 selected mixed features and their frequencies (ranked using equation 3). 

 

Mixed Permission and code properties Benign malware Total Infogain score 

getSubscriberId (TelephonyManager) 42 742 784 0.42853 

READ_SMS 20 591 611 0.32920 

WRITE_SMS 11 466 477 0.25053 

getDeviceId       (TelephonyManager) 316 854 1170 0.22919 

READ_PHONE_STATE 388 888 1276 0.20962 

SEND_SMS 24 443 467 0.20709 

getSimSerialNumber   (TelephonyManager) 35 455 490 0.19674 

RECEIVE_SMS 14 394 408 0.19305 

.apk       89 537 626 0.18202 

chmod            19 389 408 0.17989 

abortBroadcast    4 328 332 0.17323 

intent.action.BOOT_COMPLETED 69 482 551 0.16862 

Runtime.exec( )       62 458 520 0.16163 

/system/app 4 292 296 0.15036 

getLine1Number    (TelephonyManager) 111 491 602 0.13116 

/system/bin 45 368 413 0.12779 

WRITE_APN_SETTINGS 4 249 253 0.12410 

ACCESS_WIFI_STATE 176 546 722 0.11094 

createSubprocess     0 169 169 0.08615 

RECEIVE_BOOT_COMPLETED 180 497 677 0.08335 

INSTALL_PACKAGES 10 199 209 0.08274 

CHANGE_WIFI_STATE 31 251 282 0.08073 

CALL_PHONE 75 324 399 0.07443 

RESTART_PACKAGES 29 231 260 0.07289 

READ_CONTACTS 102 344 446 0.06366 
 

4.5 Feature extraction times comparison 

The ranking and selection of top relevant features for training the models will significantly reduce computational overhead 

during the classification of applications, since the lower ranked ‘redundant features’ will not be utilized. This can be deduced 

from the time taken by our APK analyzer to extract the properties and construct feature vectors for training each of the 

models. In table 7, the average times taken to extract features from 516 reverse engineered apps using different feature 

settings are illustrated. The tests were performed on an Ubuntu 10.04 Linux PC running on 2.26 GHz Intel Xeon processor 

with 6GB of memory. When using top 25 mixed properties alone, the feature vectors were extracted from the 516 apps in 319 

seconds (5 min 19s). In contrast, it took 1392 seconds (23 min 12s) for the analyzer to extract feature vectors consisting of all 

58 code-based properties plus all the 131 permissions. Extracting the feature vectors for code-based properties alone took 

1339 seconds (22 min 19s), while the vectors for the 131 permission based properties alone took 64 seconds to extract. 

Hence, at least 77% reduction in computational time can be achieved by feature reduction through the ranking and selection to 
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reduce the entire feature space to the top 25 mixed features alone.  The comparatively lower time taken to extract 131 

permissions feature vectors for the 516 apps illustrates the characteristic of permissions based learning and classification as a 

relatively lightweight approach. 

Table 7. Feature vector extraction times from 516 apps for various attributes settings. 

Attributes settings 
Feature extraction 

time (seconds) 

25 top mixed attributes 319 

131 permissions only 64 

58 code properties only 1339 

All 131 permissions and 58 

code properties 

1392 

 

5. METHODOLOGY AND EXPERIMENTS 

As discussed earlier, our implementation of an APK analyzer includes the steps illustrated in Figure 1. The three models 

subsequently built were trained and tested under different feature selection settings in order to gain insight into their 

respective performances.    

5.1 Bayesian Classifier training 

For the training of the three Bayesian classification models, the same set of 2000 samples comprising 1000 malware and 1000 

benign apps were used. In order to provide for testing and evaluation according to the evaluation criteria in equations (6) to 

(12) defined in the next sub-section, 5-fold cross validation was employed. Thus, 1600 samples (800 each of benign and 

malware) were used in the training, while the remaining 400 (200 each of benign and malware) were used for testing. Hence, 

the experiments undertaken used 5 different training and testing sets each containing a different testing portion with samples 

outside of its own training portion. This strategy was chosen to provide a wider range of samples for the testing of the 

classifiers’ ability to detect unknown malware.  

5.2 Evaluation measures 

Several measures have been proposed in the literature for evaluating the predictive accuracy of machine learning based 

classifiers. These efficiency measures have been utilized in previous machine learning work [22], [28], [29], for example. In 

the context of our problem, the relevant measures utilized in our experiments are given below. 
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Let ben benn  be the number of benign applications correctly classified as benign,  ben susn   the number of misclassified 

benign applications, sus susn   the number of suspicious applications correctly identified as suspicious while sus benn   

represents the number of misclassified suspicious applications. Accuracy and Error Rate are respectively given by: 

ben ben sus sus

ben ben ben sus sus ben sus sus

Acc
n n

n n n n
 

   




  
        (6)   

ben sus sus ben

ben ben ben sus sus ben sus sus

Err
n n

n n n n
 

   




  
        (7)   

The accuracy measurement indicates the overall proportion of correctly classified instances, whether suspicious or benign, 

during the testing phase of the particular model. The error rate given by (7) is the complementary measure to the accuracy, 

which can also be computed from Err =1-Acc. We also define the false positive rate (FPR), false negative rate (FNR), true 

positive rate (TPR), true negative rate (TNR) and precision (р) as follows: 
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                                 (12) 

The false positive rate FPR, with respect to the suspicious class is measured by the proportion of misclassified true benign 

samples to the total number of benign sample instances during the testing phase. This is complementary to the true negative 

rate TNR, given by the proportion of the overall benign set that is correctly classified, illustrated by (11).  Thus, true positive 

rate, TPR refers to truly malicious samples classified as suspicious divided by the overall number of malicious samples in the 
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testing set. We also use the TPR and ‘detection rate’ interchangeably, since this measure represents the model’s capability to 

detect ‘unknown’ malicious samples. FNR measures the models tendency to misclassify suspicious apps as benign and is 

complementary to the detection rate. The precision reflects the precision of the model when it makes a decision to classify a 

sample as suspicious. Lastly, in our experiments, we also measured the AUC (Area under the Receiver Operator 

Characteristics (ROC) curve), i.e. the total area under the plot of TPR vs. FPR for every possible detection cut-off known as 

ROC. A perfect classifier will have an AUC of 1. Thus, the closer the AUC is to 1, the greater the model’s predictive power.  

6. RESULTS AND DISCUSSIONS 

Figures 2 to 7 depict the results of experiments undertaken to evaluate the three implemented data mining approaches with 

Bayesian classifiers. The chart legends are suffixed with P, C and M to denote results from Permission-based, Code property-

based and Mixed attributes respectively. Five different feature selection settings were used containing 5, 10, 15 and 20 

features. Thus, 10f, 15f and 20f, represent the top 10, 15 and 20 ranked features according to the information gain from 

equation (3). 5fT refers to the 5 top features while 5fL refers to five lowest ranked from the top 20 (i.e. 16
th

 to 20
th

 ranked). 
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Figure 2: Average ACC for the three Bayesian models 
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Figure 3: Average ERR for the three Bayesian models 

From Figure 2, the results show that average accuracy improves with number of features selected for the C- and M-based 

models, while that of the P-based model peaks at 10 features. Correspondingly, Figure 3 depicts the average error rate 

decreasing for C- and M-based models as the features were increased, while P-based model recorded lowest error rate at 10 

features. Overall, the best accuracy and error performance occurred when 15 features were used with the M-based Bayesian 

classifier. These are given in Table 9 as 0.931 and 0.069 respectively. 

There was a large difference between the 5fL and 5fT results for P- and C based classifiers as seen in Figures 2 and 3. This 

highlights the effective selectivity of the feature selection function, since the same number of features but of different rankings 

were present in 5fL and 5fT feature sets. The 5fL features of the M-based model generally have a higher ranking than the 5fL 

features of both P- and C-based models; hence, its significantly better performance compared to the other two at the 5fL 

setting. As shown in table 8, the combined MI score for the 5fL features in the P-based model is 0.17413, while the 5fL 

features of the C-based model have a combined MI score of 0.2165. For the M-based model, the combined MI score of the 

5fL features is 0.53172. This also accounts for the 5fL accuracy and error being relatively closer to that of 5fT for the M-

based model when compared to the case with the P- and C-based models. 

Table 8. Information gain score comparison for the 5fL models. 

Model P-based 5fL C-based 5fL M-based 5fL 

Combined Information gain 
score 

0.17413 0.21650 0.53172 
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Figures 2 and 3 also show that 15f accuracy/error performance is better than that of 20f for the M-based model. The plausible 

explanation for this can be found in Table 6. We notice that ACCESS_WIFI_STATE, RECEIVE_BOOT_COMPLETED, 

which form part of the 20f feature set, have a good number of occurrences in the benign category. The absence of these in the 

15f set has the overall effect of reducing classification error rate. (This also accounts for the better TNR and FPR results of 

15f than 20f for the M-based in Figures 6 and 7)  
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Figure 4: Average TPR for the three models. 
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Figure 5: Average FNR for the three models. 

Figure 4 depicts the TPR results for the three models with different feature settings. That is, the average rate of unknown 

malware detection by the trained models. The P-based model has lower detection rate than the M- and C- models at all feature 

settings, except at 5fL setting where C-based model is the lowest. The detection rates are quite similar for the 15f and 20f sets 

in C-based and M-based models. The actual values are shown in Table 9. 

Overall, the best detection rate and hence lowest false negative rate were recorded with 15f used in the M-based model. In the 

context of our problem of filtering large app sample collections, a low false negative rate is highly desirable since this 
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represents the proportion of ‘missed’ malware apps which may subsequently be installed as ‘benign’ apps. On that basis, the 

models based on M- or C-based features with the higher features settings should be preferred over the P-based model.   
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Figure 6: Average TNR for the three models. 
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Figure 7: Average FPR for the three models. 

In Figure 6, the average TNR results are illustrated. The exceptionally good performance shown by the 5fT for the P-based 

model can be attributed to ‘sparse feature vectors’ (as a result of fewer features used in model training) that will occur in a 

high proportion of benign samples (and also many of the malware samples). This leads to classifier bias towards benign class 

and hence high TNR; but, on the other hand it also results in higher FNR as can be seen clearly in Figure 5. Thus, we can 

conclude on that basis that M- or C-based models will still be preferable. Moreover, 5fT P-based model only yields about 

70% detection rate. 
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Similarly, the exceptionally high FPR with 5fT for C-based model as seen in Figure 7 can be attributed to classifier bias due 

to ‘sparse feature vectors’ resulting from low number of features used for the model training. Again, from Table 9, 15f used 

with M-based model (which has the overall best accuracy/error performance) gave a reasonable low FPR of 0.051. 

Table 9. Summary of experimental results for the three models. 

  ERR-P ERR-C ERR-M ACC-P ACC-C ACC-M 

5fL 0.330 0.350 0.175 0.670 0.650 0.826 

5fT 0.142 0.155 0.124 0.859 0.845 0.876 

10f 0.101 0.082 0.103 0.899 0.918 0.897 

15f 0.112 0.079 0.069 0.889 0.921 0.931 

20f 0.147 0.079 0.079 0.853 0.921 0.921 

  
   

  
 

  

  TPR-P TPR-C TPR-M FNR-P FNR-C FNR-M 

5fL 0.429 0.335 0.744 0.571 0.665 0.256 

5fT 0.701 0.799 0.803 0.299 0.201 0.197 

10f 0.844 0.906 0.851 0.156 0.094 0.149 

15f 0.843 0.904 0.909 0.157 0.096 0.091 

20f 0.774 0.906 0.895 0.226 0.094 0.105 

              

  TNR-P TNR-C TNR-M FPR-P FPR-C FPR-M 

5fL 0.911 0.954 0.947 0.089 0.046 0.053 

5fT 0.968 0.890 0.953 0.032 0.110 0.047 

10f 0.954 0.932 0.943 0.046 0.068 0.057 

15f 0.934 0.939 0.949 0.066 0.061 0.051 

20f 0.932 0.937 0.911 0.068 0.063 0.089 

 

Table 10 shows the AUC (Area Under the ROC Curve) recorded for the three models at the various feature settings. An ROC 

curve plots the TPR against FPR for every possible detection cut-off. The total area under the ROC curve (AUC) indicates the 

classifier’s predictive power. An AUC value of 1 implies perfect classification (i.e. 100% TPR and 0% FPR). Therefore, as 

mentioned earlier, an AUC value closer to 1 denotes better classifier predictive power. It can be observed from Table 9 that 

with the highest AUC of 0.97731, the M-based model with 15f setting is deemed the most predictive of all. Generally, lower 

AUC values were obtained by the P-based model compared to the C- and M-based models. 
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Table 10. Area Under ROC curve and precision for all models. 

  AUC-P AUC-C AUC-M Pre-P Pre-C Pre-M 

5fL 0.67103 0.61709 0.89217 0.825 0.860 0.894 

5fT 0.91377 0.94437 0.93859 0.960 0.880 0.940 

10f 0.93722 0.97428 0.96264 0.948 0.931 0.938 

15f 0.94259 0.97232 0.97731 0.927 0.937 0.950 

20f 0.94087 0.97223 0.97151 0.922 0.935 0.945 

 

Precision results are also given for the three models in Table 10.  Precision, as expressed in equation (11), denotes the 

precision of the model(s) when classifying samples as suspicious.  It is therefore influenced by the number of false positives; a 

model with zero false positives will record 100% precision. From Table 9, it can be observed that the M-based model with 

15f setting had precision of 0.950. Only 5fT with P-based model had a higher precision value. This, as mentioned earlier, can 

be attributed to classifier bias arising from ‘sparse vectors’ (due to the relatively small number of feature vectors) which 

enables relatively low false positive rate for the P-based model at 5fT setting as depicted in Figure 7. 

The results suggest that mixed- based and code property-based models are a better choice than the permissions-only model. 

With overall accuracy values reaching approximately 0.9, 0.92, and 0.93 for the permission-based, code property-based, and 

mixed attributes models respectively, the three models recorded good performance. However, our comparative analyses with 

several metrics showed that mixed-based approach is the most promising of the three in the context of our problem, with 

potential for improvement. Note that the detection rates obtainable from all three models significantly exceed the best case of 

79.6% with signature-based scanning recorded for the same malware sample set utilized in our experiments as reported in [3].  

Another noteworthy aspect of our study is the excellent AUC performance of the best case model (i.e. 0.97731, from the 15f 

M-based model). The ROC plot is shown in Figure 8 below. The implication of a high AUC is that better detection rate 

performance can be obtained by trade-off with higher false positive rates which may be tolerable in some implementation 

scenarios. For instance, as part of an overall anti-malware system with further analysis stages, or in filtering apps to prioritize 

samples for further manual scrutiny, or as an input stage to drive decisions such as length and depth of further analysis 

processes. Figure 8 depicts the model’s ability to operate at 94.8% detection rate with 10% FPR. 
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Figure 8: The ROC curve for the 15f M-based model (AUC=0.97731) 

The results of this paper compare favourably with related works in the literature, thus highlighting the significance of our 

approach. Previous related work which employed static analysis used different sample sizes than ours, so a direct comparison 

is not straightforward (although some of the malware samples across these studies overlap). For instance, [29] employed 238 

malware samples while [22], [34] and [35] based their experiments on 249, 378 and 121 malware samples respectively. Our 

study, on the other hand, utilized 1000 malware samples but nevertheless performed competitively and for most performance 

metrics outperformed the previous models. For instance, our 15f M-based model had a detection rate of 0.91 compared to 

0.873 in [29] and was close enough to the best case of 0.92 in [22] despite using a much larger sample set. On the other hand 

the AUC of our model is significantly higher (0.97731) compared to 0.92 best case obtained in [22], which accounts for their 

false positive rate of 0.21 being much higher than the false positive rate of  0.051 obtained with our 15f M-based model. In 

Figure 9 we compare AUC results from this paper with previous work, highlighting the excellent predictive power of our (M-

based model) approach. The AUC from our 15f C-based model was 0.972, also higher than previously published results. Our 

15f P-based model, which was the best case for the permissions only scenario, also performed very well with an AUC of 

0.9426.  
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Figure 9: AUC results comparison with related work. 

7. CONCLUSION 

In this paper, we investigated three data mining based methods for detecting unknown Android malware. These utilized 

Bayesian classification models built from mining data generated by automated reverse engineering of the Android application 

packages using a Java implemented custom package analyzer. The three models investigated were built from static analysis of 

(a) Standard Android permissions in the Manifest files (b) Code properties indicative of potential malicious payload (c) both 

standard permissions and code properties. The models were built by extracting these properties from a set of 1000 samples of 

49 Android malware families together with another 1000 benign applications across a wide variety of categories. 

Extensive experiments were undertaken to study the performance of the models in terms of error rate, accuracy, true negative 

rate, true positive rate, false positive rate, false negative rate, precision and also area under ROC curve. The results suggest 

that mixed- based and code property-based models are a better choice than the permissions-only model. With overall accuracy 

values reaching approximately 0.9, 0.92, and 0.93 for the permission-based, code property-based, and mixed attributes 

models respectively, the three models recorded good performance. However, our comparative analyses with several metrics 

showed that mixed-based approach is the most promising of the three in the context of our problem. With this method, an 

excellent predictive power evidenced by AUC result of about 0.977 is achievable, exceeding previous similar approaches in 

the published literature.  
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Our results not only demonstrate practically the potential of data mining for unknown Android malware detection, but also the 

effectiveness of the Bayesian classification models for tackling this problem. Thus, the models provide a complementary 

approach to signature-based scanning or dynamic analysis, and fast filtering capabilities for large scale analyses to uncover 

unknown malware. The malware samples used in our experiments were from the largest publicly available collection at the 

time of writing. Hence, future work would investigate the models’ performance with larger sample sets as more malware 

samples are discovered in the wild.  
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