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Abstract:  

An efficient protocol is described for producing cyclic carbonates in good to excellent yields 

under moderate reaction conditions (100.0 °C, 1.0 MPa) by treating epoxides with carbon 

dioxide, promoted by a series of azolate ionic liquids, which are effective recyclable metal-free 

and halide-free catalysts. 

Keywords: Green chemistry, azolate ionic liquids, recyclable catalysts, epoxides, cyclic 

carbonates. 

 

INTRODUCTION 

Carbon dioxide is a greenhouse gas thought to be involved in global warming and climate 

change.1,2 Nevertheless, it offers a virtually inexhaustible, inexpensive, non-flammable and 

readily available C1 feedstock for organochemical processes.3-7 The direct conversion of CO2 to 

five- or six-membered cyclic carbonates8-10 is one of the most promising strategies for producing 

highly desirable solvents for electrolytes in Li-ion rechargeable batteries.11,12 Cyclic carbonates 

are also utilised as monomers in polymerisation reactions,13,14 as intermediates in the synthesis of 

fine chemicals7 and as high boiling aprotic polar solvents.15-17 There have been many varied 

reports of synthetic routes to yield cyclic carbonates, and the most important of these are 

summarised in Scheme 1. In addition, Lewis acidic catalysts including SnCl4
18, cobalt 

porphyrin19 and chromium / zinc / aluminum salen20, 21 have also been reported to catalyze this 

cycloaddition reaction. However, most of these catalyst systems need bases or 

tetraalkylammonium halides as co-catalysts; and in some cases, either the use of expensive 

reagents or harsh reaction conditions were required for an efficient reaction.22-33  
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Entry Substrate “CO” Source Catalyst system Conditions Yield / % Ref 

1 1,2-diols Urea FeBr2 150.0 °C, 18.0 h, 

1,4-dioxane 

92.0 22 

2 1,2-diols (MeO)2CO NHC a 74.0 °C, 6.0 h 58.0 23 

3 1,2-diols CO Pd/C, KI, O2, 
Na[O2CMe] 

100.0 °C, 3.0 h, 1.5 
MPa, 
MeOCH2CH2OMe 

91.0 24-26 

4 1,2-diols CO2 NHC a

/Base/RX 
90.0 °C, 24.0 h, 0.1 
MPa 

81.0 28 

5 Haloalcohol CO2 Basic ionic 
liquids 

25.0 °C,14.0 h, 
1.0 MPa 

90.0 29 

6 Haloalcohol CO2 Cs2CO3 40.0 °C, DMF, 
0.1 MPa 

75.0 30 

a NHC= N-heterocyclic carbene 

Scheme 1. Synthesis of cyclic carbonates from organic precursors. 

Ionic liquids34 have been used for the synthesis of a myriad of organic chemicals.35 Of specific 

interest here, there have been number of attempts to use ionic liquids to make cyclic 

carbonates.36-42 Some key processes, to date, using homogenous ionic liquid systems are 

summarised in Table 1. It is noteworthy, that there have also been a number of solid-supported 

ionic liquid systems41-46 employed for producing cyclic carbonates. Though they produce high 

yields of products, these systems also contain undesirable halides and/or metals. 
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Table 1. Halide ionic liquids catalysed cycloaddition reactions of epoxides and CO2. 

Entry Epoxide IL Conditions Yield % ref 

1 Styrene oxide [ArPPh3]Br 60.0 °C, 24.0 h, 0.1 
MPa 

91.0 36 

2 Propylene oxide [(mim)2Zn]Br2 120.0 °C, 4.0 h, 0.5 
MPa 

78.0 37 

3 Propylene oxide [Urea-Im]Ia 130.0 °C, 3.0 h, 1.0 
MPa 

97.0 38 

4 Propylene oxide [(HOCH2CH2)3NH]I 110.0 °C, 6.0 h, 2.0 
MPa 

91.0 39 

5 Epichlorohydrin [bim-ArOH]Br 120.0 °C, 1.0 h, 1.0 
MPa 

90.0 40 

N NR

H
N

H
N

O

[Urea-Im] =a

 

The work described in this paper, utilises ionic liquids with azolate anions, which in previous 

literature reports refer to as superbasic ionic liquids.47 Even though they are more basic than 

common trialkylamines, the pKa values of their conjugate acids  would not warrant them to 

qualify as superbasic substances.48-50 Nevertheless, their associated anions possess sufficiently 

high nucleophilicity to attach weakly electrophilic CO2, enabling them to be used in CO2 gas 

capture and catalysis.47, 51-55  In this paper, we refer to them as azolate ionic liquids (or salts). 

Azolate 
Ionic Liquid

CO2
O

R
+

N

N
N

O
O

OO

O

R

(1)

 

The key step (see equation 1) in this reaction is the formation of a reactive carbamate 

intermediate by nucleophilic addition of the azolate anion to CO2. This carbamate intermediate 
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also has been shown to react with other substrates, including propargylic alcohols, 

2-aminobenzonitriles, 1,2-phenylenediamines, and 2-aminothiophenol, thereby producing α-

alkylidene cyclic carbonates,53 or α-hydroxy ketones,54 quinazoline-2,4(1H,3H)-diones,55 

benzimidazolones,55 and benzothiazoline,55 respectively. 

[P6 6 6 14] [bzim]

[ P6 6 6 14 ] N

N

[P4 4 4 4] [bzim]

N

N

[N4 4 4 4][bzim]

N

N
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N
NN

[P4 4 4 4] [triz]

N
NN

[P4 4 4 4]

[N4 4 4 4] [ P6 6 6 14 ] [P4 4 4 4]

 

Figure 1. The azolate ionic liquids (or salts) used in this work. 

Herein, we report a protocol involving metal- and halide-free azolate ionic liquid system for 

promoting the cycloaddition of CO2 to epoxides to generate cyclic carbonates. These ionic 

liquids (or salts) contain benzimidazolate (bzim) or triazolate (triz) anions and 

trihexyltetradecylphosphonium (P6 6 6 14), tetrabutylphosphonium (P4 4 4 4) and 

tetrabutylammonium (N4 4 4 4) cations (See Figure 1).  

EXPERIMENTAL SECTION 

Materials. Benzimidazole (98.0%), 1,2,4-triazole (98.0%), tetrabutylammonium hydroxide 

(10.0% in methanol), propylene oxide (99.0%), styrene oxide (99.0%), 1,2-epoxyhexane (99.0%), 

1,2-epoxypentane (99.0%), 1,2-epoxdodecane (99.0%), 1,2-epoxyoctane (99.0%) and 

cyclohexene oxide (99.0%) were purchased from Sigma-Aldrich and TCI. [P6 6 6 14]Cl and 

[P4 4 4 4]Cl were donated from Solvay-Cytec (98.0%). Gaseous carbon dioxide (99.9 %) was 
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obtained from BOC. Amberlite IRN-78 ion exchange resin was purchased from Alfa Aesar. All 

of the materials were used without further purification. 

Instruments. 1H and 13C-NMR spectra were all recorded on a Bruker Ultrashield 400 plus 

spectrometer at 25.0 °C using dimethyl sulfoxide (dmso-d6) or Chloroform (CDCl3) as solvent. 

ESMS-mass spectroscopy measurements were carried out on a Waters LCT Premier instrument 

with an Advion TriVersa NanoMate injection system (cone voltage 50 V, source 120.0 °C). 

Thermogravimetric analyses (TGA) were performed using a TGA/DSC thermogravimetric 

analyser from Mettler-Toledo, Inc. The samples were measured in alumina crucibles, at a heating 

rate of 5 K min-1 under a dinitrogen atmosphere. The onset of the weight loss in each 

thermogram was used as a measure of the decomposition temperature (the point at 5.0 wt% loss 

of the sample).  

 Preparation of ionic liquids.57, 58 In a typical reaction, [P4 4 4 4]Cl  (19.9 g, 67.5 mmol) was 

dissolved in absolute ethanol (25.0 cm3) and passed through a column packed with at least three 

equivalents (in terms of the number of OH-exchange groups) of anion exchange resin (Amberlite 

IRN-78, OH-form, which had been prewashed with absolute ethanol to wet sufficiently and 

remove any air from the resin). The eluent was passed through the same column a further two 

times and then passed through a fresh column once more. The resultant ethanolic solution of 

[P4 4 4 4][OH] was tested for the absence of remaining halide ions, using standard acidification 

and treatment with silver(I) nitrate. The amount of [P4 4 4 4][OH] in its ethanol solution was then 

determined by 1H NMR. The necessary amount of benzimidazole (7.8 g, 66.1 mmol) was added 

into the solution and stirred for 24 h at room temperature. Solvent was removed in vacuo and the 

product was dried for at least 24 h under high vacuum (~10-2 bar) at 60.0 oC, yielding the 

[P4 4 4 4][bzim] as a pale yellow viscous liquid. The other ionic liquids, [P6 6 6 14][bzim]56, 
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[P6 6 6 14][triz] 51 and [P4 4 4 4][triz] 54 were prepared by an analogous route. [N4 4 4 4][bzim] was 

prepared as a white solid by mixing equimolar quantities of tetrabutylammonium hydroxide 

(10.0% in methanol) and benzimidazole. 

General experimental procedure for the cycloaddition reaction of CO2 and epoxide. All 

the reactions were carried out in a stainless-steel autoclave (16.0 cm3) equipped with an 

automatic stirrer (600 rpm) and temperature control system. The selected epoxide (5.0 mmol) 

and ionic liquid (0.25 mmol) were added into the autoclave successively. CO2 (1.0 MPa) was 

charged in the reactor at ambient temperature. The reaction was carried out in the range 25-

100 oC under autogenous conditions, for the appropriate time (up to 24 h) with continuous 

stirring.  The autoclave was cooled to room temperature and then the excess of pressure was 

released, the product was analysed by 1H NMR spectroscopy.  

The detailed results of the reaction between propylene oxide and CO2 are reported in Table 2, 

which led to the establishment of optimal conditions. The reactions of other epoxides were 

studied under these conditions, and these results are detailed in Table 3. 

 

RESULTS AND DISCUSSION 

Preparation of ionic liquids  

Typically, tetraalkylphosphonium chloride was added to an excess of OH-anion exchange 

resin, to produce aqueous tetraalkylphosphonium hydroxide solutions, which were then 

neutralized by the addition of stoicheiometric amounts of either a diazole or triazole.56-58 1H and 

13C NMR spectroscopy established both the purity and stoichiometry of the product ionic liquids, 

and the presence of anions and cations was confirmed by high resolution mass spectrometry. The 

characteristics of the prepared ionic liquids compared well with earlier literature reports.56-58 All 
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the products were viscous pale yellow liquids, except [N4 4 4 4][bzim], which was a white powder, 

and [P4 4 4 4][bzim], which was an immobile glass. 

Reaction of propylene oxide with CO2 The reaction of propylene oxide with carbon dioxide 

was studied, in detail, under a wide variety of conditions, viz temperature, pressure, mol % of 

ionic liquids and reaction time (see Figure 2, 3 and Table 2). Under all conditions, only a single 

reaction product, propylene carbonate, was identified, as shown in Equation 2.  

O
+ CO2

Azolate Ionic Liquid

P (CO2) = 0.25-1.0 MPa 
      25.0-120.0oC

OO

O

(2)

 

A series of experiments were performed in order to find the optimal conditions for the reaction 

above and then, these conditions were later used to study the reactions of a range of other 

epoxides (see Table 3).  

In specific detail, when the reaction was conducted under ambient conditions using 

[P6 6 6 14][bzim],  only trace amounts of propylene carbonate were observed by NMR 

spectroscopy (Table 2, entry 2). When the reaction was carried out at 80.0 oC and 1.0 MPa CO2 

pressure, the product yield was elevated to 74.0% (Table 2, entry 3). In a blank experiment, no 

product was observed in the absence of azolate ionic liquids (Table 2, entry 1). For comparison, 

the other ionic liquids, including [P4 4 4 4][bzim], [N4 4 4 4][bzim], [P6 6 6 14][triz], and [P4 4 4 4][triz] 

were examined for this reaction, as well. The results indicated that [P4 4 4 4][bzim] and 

[N4 4 4 4][bzim]  showed the highest reactivity compared with [P6 6 6 14][bzim] (Table 2, entries 3, 

4, 5). While [P4 4 4 4][triz] exhibited lower activity than [P4 4 4 4][bzim] (Table 2, entries 4, 7). The 

significant differences in the chemical structure of these azolate ionic liquids leading to different 

basicities of the associated anions (pKa of benzimidazole = 16.4,54  pKa of triazole = 13.9 51,54)  

could be mainly responsible for their capricious catalytic performances. In a previous report,56 

the azolate ionic liquids with the same anion, [bzim], displayed the highest CO2 uptake ability 

due to it’s high nucleophilicities, which is in accord with it’s basicity. [P4 4 4 4][bzim] and 

[P6 6 6 14][bzim], with the same [bzim] anion, the catalytic activity was decreased with increasing 
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the hydrocarbon chain length of cations (Table 2, entries 3, 4). The same trend was observed in 

[P4 4 4 4][triz] and [P6 6 6 14][triz] (Table 2, entries 6, 7), which may be ascribed to the strong 

interactions between their anions  and cations inducing changes in nucleophilicities of anions. 

The nucleophilicities are seen to be in accord with their basicities. The role of ionic liquid, in 

here is to activate CO2 through nucleophilic addition to the anion whilst the organic cation may 

help solubilization of substrates.  

In all cases, the selectivity was > 99.0 %, no by-products were found in 1H NMR spectroscopy, 

within its detectable limits, except propylene carbonate, with conversion to propylene carbonate 

varying between 14.0 and 98.0 %. The best conversion rates were obtained with the most basic 

anion, benzimidazolate, and at highest temperatures (see Figure 2A). Notably, the yield of 

propylene carbonate increased dramatically with increasing temperatures. The increase of 

reaction temperature from 60.0 to 90.0°C, not only shorten the reaction time but also improve the 

conversion to cyclic carbonate greatly (Table 2, entries 11-15). On increasing the reaction 

temperature to 100.0 °C, 93 % conversion was achieved within 2h (entry 16). 

 

Figure 2. Effect of (A) reaction temperature and (B) CO2 pressure on the yield of propylene carbonate using 
[P4 4 4 4][bzim] ionic liquid. The red lines correspond to selectivity. Reaction conditions are given in Table 2. The 
errors associated with measuring (i) temperature was ± 0.1 C; (ii) pressure was ± 0.02 MPa; (iii) NMR 
spectrometric integrals were ± 2 % 
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Although higher pressures favored good conversions (see Figure 2B), the yield was not overly 

sensitive to the CO2 pressure. The propylene carbonate conversion increased smoothly as the 

CO2 pressure increased from 0.25 to 0.75 MPa, while the CO2 pressure had little effect on 

propylene carbonate conversion from 0.75 to 1.0 MPa. This indicates that there is a optimum 

CO2 pressure influencing the efficiency of the reaction. 

Table 2. Conversion of propylene oxide and CO2 into the corresponding propylene carbonate by 
azolate ionic liquidsa.  

Entry Ionic Liquid  Amount of 
IL/ mol% 

T /°C Time / h Conversion to cyclic 
carbonate / % b 

1 - - 80.0 5.0 - 

2 [P6 6 6 14][bzim] 5.0 25.0 24.0 trace 

3 [P6 6 6 14][bzim] 5.0 80.0 5.0 74.0 

4 [P4 4 4 4][bzim] 5.0 80.0 5.0 94.0 

5 [N4 4 4 4][bzim] 5.0 80.0 5.0 80.0 

6 [P6 6 6 14][triz] 5.0 80.0 5.0 70.0 

7 [P4 4 4 4][triz] 5.0 80.0 5.0 75.0 

8 [P4 4 4 4][bzim] 5.0 40.0 24.0 14.0 

9 [P4 4 4 4][bzim] 5.0 50.0 24.0 54.0 

10 [P4 4 4 4][bzim] 5.0 50.0 3.0 4.0 

11 [P4 4 4 4][bzim] 5.0 60.0 24.0 62.0 

12 [P4 4 4 4][bzim] 5.0 60.0 3.0 20.0 

13 [P4 4 4 4][bzim] 5.0 70.0 3.0 41.0 

14 [P4 4 4 4][bzim] 5.0 80.0 3.0 55.0 

15 [P4 4 4 4][bzim] 5.0 90.0 3.0 81.0 

16 [P4 4 4 4][bzim] 5.0 100.0 2.0 93.0 

17 [P4 4 4 4][bzim] 5.0 120.0 2.0 96.0 

18 [P4 4 4 4][bzim] 1.0 100.0 3.0 57.0 
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19 [P4 4 4 4][bzim] 3.0 100.0 2.0 85.0 

20 [P4 4 4 4][bzim] 7.0 100.0 2.0 97.0 

21 [P4 4 4 4][bzim] 10.0 100.0 2.0 98.0 

a Reaction conditions: Propylene epoxide: 5.0 mmol, IL mol %: with respect to epoxide, stainless-steel autoclave 
(16.0 cm3), initial CO2 pressure: 1.0 MPa; b Conversion to cyclic carbonate was determined by 1H NMR 
spectroscopy. The errors associated with measuring (i) temperature was ± 0.1 C; (ii) pressure was ± 0.02 MPa; (iii) 
NMR spectrometric integrals were ± 2 % 

Since these reactions were best performed at elevated temperatures (80.0-100.0 oC), the 

thermal stability of azolate ionic liquids was assessed by TGA. The decomposition temperatures 

of the two triazolate ionic liquids ([P6 6 6 14][triz], 245.0 oC; [P4 4 4 4][triz], 241.0 oC) were below 

those of their benzimidazolate analogues ([P6 6 6 14][bzim], 289.0 oC56; [P4 4 4 4][bzim], 317.0 

oC57,58). However, the tetrabutylammonium salt, [N4 4 4 4][bzim], decomposed around 170.0 oC 

lower than its phosphonium analogue, indicative of the well-known base-initiated Hoffmann 

elimination.59-61 Thus, for reactions at elevated temperatures, tetraalkylammonium salts should 

be avoided. 

Finally, the effect of the mole ratio of epoxide: ionic liquid was studied. Demonstrably, the 

ionic liquid performs the role of a basic catalyst, as the epoxide is in significant excess. The 

almost quantitative conversion of propylene epoxide with a [P4 4 4 4][bzim] loading of 7.0% 

(Table 2, entry 20) decreased to 57% when the concentration of [P4 4 4 4][bzim] was 1.0% (Table 

2, entry 18). The conversion to propylene carbonate did not increase with further increase in the 

catalyst loading from 7.0% to 10.0% (entries 20, 21). This indicates requirement of an optimum 

catalyst loading for efficient reaction. From data in Table 2 and Figure 3, it can clearly be seen 

that increasing the amount of ionic liquid increases the yield of product when other variables are 

kept constant. The yield of the cyclic carbonate levels out at 7.0-10.0 mol %, and even at 5.0 

mol% the yield is only marginally reduced. 
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Figure 3. Effect of the amount of [P4 4 4 4] [bzim] on the conversion to propylene carbonate.  

Moreover, not only minimising the quantity of catalyst is important, but also the catalyst needs 

to be recyclable. Recycling experiments were carried out under the optimum reaction conditions 

(100.0 oC, 2.0 h, 1.0 MPa). After vacuum removal of propylene carbonate, the recovered ionic 

liquid, [P4 4 4 4][bzim], was reused for a further cycle under the same reaction conditions. After 

four cycles, only a slight lowering of conversion to cyclic carbonate (ca. 10.0 %) was observed 

(See ESI). 

The optimal conditions were found to be 100.0 oC, 1.0 MPa CO2 pressure, 2.0 h and with 

[P4 4 4 4][bzim] (5.0 mol %), and these conditions were later used to study the reactions of a range 

of other epoxides (see Table 3).  

Reaction of other epoxides with CO2 Under the optimal reaction conditions (100.0 oC, 

PCO2 = 1.0 MPa, 5.0 mol % [P4 4 4 4][bzim], solvent-free), a range of different epoxides were 

investigated (Table 3). Remarkably, given the diversity of the precursors, conversion greater than 

70.0 % were observed in all cases, with most of the products obtained in greater than 90.0 %.  
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Even though the yields of cyclic carbonates obtained using other methodologies (see Table 1; 

alternative reaction conditions and catalysts)36-46 are comparable to the yields obtained in this 

work, the catalyst system that is employed here is devoid of metal salts or halides. The novel 

route reported here is significantly greener and more sustainable than any of the literature 

alternatives. In particular, the system can be recycled and offers facile product separation. It was 

noteworthy that, even with a sterically hindered, disubstituted symmetrical substrate such as 

cyclohexene oxide (Table 3, entry 7), the reaction could still proceed well, giving a reasonable 

conversion to the corresponding cyclic carbonate. Furthermore, epichlorohydrin (Table 3, entry 2) 

which carries an additional electrophilic centre also furnished a single product, viz cyclic 

carbonate, emphasising the superior selectivity. 

Table 3. Formation of cyclic carbonates from diverse epoxides and CO2 in the presence of ionic 

liquid [P4 4 4 4][bzim] a 

Entry Substrate Product Time / h Conversion to cyclic 
carbonate / % b 

    Ref 

1 O
 

O
O

O

 

2.0 90.3 c 19 

2 O
Cl  

O
O

O

Cl
 

3.0 88.4 19 

3 O

2  

2

O
O

O

 

3.0 90.2 18 

4 O

3  

3

O
O

O

 

3.0 95.4 62 
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5 O

5  

5

O
O

O

 

3.0 89.1 63 

6 O

9  

9

O
O

O

 

4.0 88.3 19 

7 
O

 O

O
O

 

3.0 71.2 18 

8 

Ph

O

 

Ph
O

O
O

 

3.5 90.4 19 

a Reaction conditions: Epoxide (5.0 mmol), [P4 4 4 4][bzim] (0.25 mmol, 93.8 mg), CO2 (1.0 MPa) at 100.0 °C. b 
Isolated yield. c Conversion to cyclic carbonate was determined by 1H-NMR spectroscopy. The errors associated 
with measuring (i) temperature was ± 0.1 C; (ii) pressure was ± 0.02 MPa; (iii) NMR spectrometric integrals were 
± 2 % 

Postulated reaction mechanism. Based on the above data, a plausible mechanism for the 

reaction of epoxides with carbon dioxide, in the presence of basic ionic liquids, is proposed in 

Scheme 2. The first step in the mechanism would involve activation of carbon dioxide via 

nucleophilic attack of the azolate anion, producing an anionic carbamate intermediate. The 

oxygen of the carbamate group is electron rich, and undergoes a nucleophilic attack on the 

epoxide, causing it to ring-open. This is followed by an intramolecular cyclisation to produce a 

cyclic carbonate, whilst regenerating the original azolate anion. Alternatively, the azolate anion 

might attack the epoxide producing an oxo-nucleophile which then further reacts with carbon 

dioxide to yield the same final product. However, as there is no significant reaction observed 

between the azolate anion and the epoxide in the absence of CO2, this alternative mechanism 

would appear to be less likely. 
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Scheme 2. A plausible mechanism for cyclic carbonate formation catalysed by [P4 4 4 4][bzim]. 
For simplicity, the spectator cation [P4 4 4 4]+ is omitted. 

CONCLUSION 

In conclusion, several azolate ionic liquids were synthesised and tested as promoters in the 

cycloaddition reaction of CO2 and epoxides. Using this protocol, a wide range of epoxide 

substrates, bearing alkyl, phenyl and halide groups, could be converted to the corresponding 

cyclic carbonates in good to excellent yields. The catalytic activity of the azolate ionic liquids is 

influenced significantly by the basicities of the anion, whereas the cation has largely a spectator 

role. Moreover, the ionic liquid could be recycled for several runs with little loss of activity. This 

suggests that treating epoxides with carbon dioxide in the presence of, in particular, 

tetrabutylphosphonium benzimidazolate, represents a new generic approach to the synthesis of 

cyclic carbonates. Moreover, the procedure not only utilises CO2, but is also highly efficient, 

green, halide- and metal- free, recyclable, and catalytic.  
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