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A comparison of road- and footpath-based walkability indices and their associations 

with active travel 

 

Abstract 

Background: Many studies have used the concept of ‘walkability’ to assess how conducive a 

neighbourhood is to physical activity, especially active travel. Studies in the United States 

and Australia have traditionally used a road-based network system of intersection density to 

derive a walkability index. However, other studies suggest that analyses based on footpath 

networks may provide a more robust basis for assessing the walkability of built environments 

in the European context as they better capture alternative opportunities for physical activity 

such as parks and greenways. To date, no studies have examined whether a road- or footpath-

based network is more closely related to actual physical activity behaviour. Therefore, the 

aims of this paper were to examine associations between active travel and walkability indices 

based on both road- and footpath-based intersection density and to establish which measure 

provided the best fit to the data. Methods: Cross-sectional survey and geographical 

information system (GIS) data were collected from February 2010-January 2011. A series of 

crude and fully adjusted zero-inflated negative binomial regression analyses examined 

associations between road- and footpath-based walkability and the average minutes per week 

of active travel. Results: Model fit indices suggested that the models using road-based 

walkability provided a marginally better fit. However, regression results indicated similar 

findings with respect to the effect of road- and footpath-based walkability on active travel. 

Conclusion: Results suggest that footpath-based indices of walkability are comparable to 

road-based indices in their associations with active travel and are an alternative model, 

particularly for assessing environmental change in non-road-based built environment 

interventions. 
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Highlights 

• First study using both road- and footpath-based walkability to examine active travel. 

• Results indicated that the two measures performed comparably. 

• Footpath-based walkability is acceptable alternative to road-based walkability. 

• Method has key implications for non-road-based environmental change interventions. 

 

  



Road- and footpath-based walkability and active travel   4 
 

1.0 Introduction 

Recent studies have suggested that certain aspects of the built environment can influence 

levels of physical activity (Sallis et al., 2012). In particular, the concept of ‘walkability’ has 

been used as a means of assessing how conducive a neighbourhood is to walking, and more 

generally, physical activity. Walkability has been defined as “the extent to which the built 

environment supports and encourages walking by providing for pedestrian comfort and 

safety, connecting people with varied destinations within a reasonable amount of time and 

effort and offering visual interest in journeys throughout the network” (Southworth, 2005, p. 

248). Attempts have been made to capture those built environment characteristics that are 

associated with this in the form of a single walkability index. This single indicator allows for 

the capture of a range of built environment attributes known to support walking behaviour, 

their variation across space, and links with other factors, such as physical activity, for the 

purposes of research or planning. The most widely used walkability index (see Method 

section for how it is calculated) (Adams et al., 2014; Frank et al., 2010; Leslie et al., 2007) 

combines the following four components: 

 

1. Residential density, residents per km (Adams et al., 2014); 

2. Retail floor area ratio, representing the retail building floor area divided by the retail land 

site area; 

3. Land use mix, based on five categories (residential, retail, entertainment, office, and 

institutional) and calculated using an entropy equation whose normalised outcome was 

between 0 (single use) and 1 (complete even distribution of land use categories); and 

4. Street connectivity, calculated using intersection density based on road centre lines 

calculated as the ratio between the number of road intersections of three or more legs and 

the land area. 
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Intersection density (ID) appears to have the greatest influence over active travel (Leslie et 

al., 2007; Ellis et al., 2016). 

 

The connectivity of any built environment relates to how easy it is to get from point A to 

point B, and is largely derived from the morphological characteristics of the urban form, 

including block size and density of streets and paths. It has been suggested that the more 

connected an urban area, the more conducive it will be to physical activity, independent of 

other variables (Berrigan et al., 2010). As a result, improving connectivity has become a 

focus for active travel interventions (Goodman et al., 2014), and it should, therefore, be 

possible to associate improvement in connectivity with active travel outcomes. Connectivity 

measures included in the index have conventionally been derived from the networks formed 

by the road centre lines and as such, are essentially only proxies for connectivity of 

pedestrian infrastructure. Furthermore, it has been noted that there are a series of common 

errors in road networks (Frizelle et al., 2009), examples of which are noted in Figure 1. There 

is, however, almost universal availability of road network data and they are utilised on the 

assumption that pedestrians primarily use footpaths that run parallel to roads, thus neglecting 

the influence of non-motorised networks such as footbridges, paths through parks, etc. 

Indeed, this could mean that road-based walkability indices are not useful at capturing change 

in non-road based opportunities for physical activity, such as parks, footbridges, greenways, 

and cycle lanes. Recent guidelines on the environment and physical activity from the 

National Institute for Health and Care Excellence (NICE, 2008) in the UK have identified the 

need for the creation of appropriate methodologies to measure how environmental policies 

and projects can help increase people’s physical activity levels. Therefore, the creation of 

indices that better capture the types of environmental features targeted in these interventions 
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are required, demonstrating the need to assess a footpath-based walkability index. Given the 

need for built environment interventions (Hunter et al., 2015), such a model would have 

important implications for assessing non-road-based environmental change interventions. 

 

Some studies (Chin et al., 2008; Ellis et al., 2016; Tal and Handy, 2012) have suggested that 

a network that reflects all potential route choices for pedestrians has a much greater 

resolution and potentially provides a better representation of connectivity, which intuitively 

should offer a more accurate basis for determining the walkability of built environments than 

those based on road centre lines alone. One study (Ellis et al., 2016) has tested how different 

measures of connectivity should be used in footpath-based assessments of walkability and has 

concluded that intersection density is as applicable for measuring connectivity in footpath 

networks as it is for road networks. 

 

To the best of our knowledge, Ellis et al. (2016) remains the only study to date that has used 

both non-motorised networks and actual observed physical activity data to empirically test 

these relationships. However, there are still no studies to date that have empirically compared 

road- and footpath-based walkability indices and their associations with physical activity. 

Therefore, the key aim of this paper was to examine associations between active travel and 

walkability indices based on both road- and footpath-based intersection density and to 

establish which measure provides the best fit to the data. 

 

2.0 Methods 

2.1 Respondents 

A cross-sectional, interviewer-administered self-report survey was conducted and 

geographical data collected during the period February 2010 to January 2011 as part of a 
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natural experiment examining the health and health behaviours of a sample population 

experiencing a programme of urban regeneration in East Belfast, Northern Ireland (Tully et 

al., 2013). A representative stratified random sampling of 1209 households (representative of 

the Northern Ireland population based on age, gender, and 2001 Census deprivation 

indicators), resulted in one adult in the household (aged 16 and over) being randomly selected 

and surveyed (see Tully et al., 2013, for further details of sampling and recruitment). The 

survey will be repeated in 2017 following the construction of 9km of new greenway 

infrastructure that includes footbridges, pedestrian paths, and road crossings. 

 

2.2 Measurements 

2.2.1 Dependent variable – active travel 

Respondents completed the Global Physical Activity Questionnaire (GPAQ; Bull, Maslin, 

and Armstrong, 2009). Minutes of active travel per week were calculated using the validated 

method whereby average number of days per week and minutes per day spent in some mode 

of active travel (e.g., walking or cycling) were aggregated to derive a continuous summary 

variable (Bull et al., 2009) that was used for the inferential statistical analysis (see section 2.4 

Analytic strategy) (missing data for 1 respondent [<0.1%]). For the purposes of descriptive 

statistics (see Table 1), and to establish the extent of zero counts in active travel, the GPAQ 

continuous summary score was dichotomised to derive a binary ‘active travel’ variable, with 

scores of ‘0’ coded as ‘none’ and scores greater than ‘0’ coded as ‘some’. 

 

2.2.2 Primary covariate – walkability indices 

Continuous measures of road- and footpath-based walkability indices were derived using 

standardised measures of residential density, retail floor area ratio, land use mix, and 

intersection density, with the latter being based on both road- and footpath-based networks 
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respectively. The index was derived using the formula validated in previous studies (Frank et 

al., 2010; Leslie et al., 2007): Walkability = [(2x z-scores of intersection density) + (z-scores 

of net residential density) + (z-scores of retail floor area ratio) + (z-scores of land use mix). 

These were calculated for two areas around each respondent’s residential address (in Excel), 

using both 5- (500 metre) and 10-minute (1000 metre) network defined buffer zones. 

 

In the case of the footpath-based network used here, intersection points were inserted 

wherever two or more network elements met, and route decisions were modelled based on the 

assumption that when faced with any footpath-based junction, a decision must be made by an 

individual to either continue in the same direction, return the way they came, or to select one 

of the other available elements open to them. In the case of a footpath meeting a road, it was 

assumed that one choice would be to cross the road taking the shortest route to intersect a 

footpath on the other side of the road. No formal pedestrian crossings were mapped due to 

incomplete data, but it is assumed that most of these coincided with the mapping strategy 

described above. The different resolution of the road- and footpath-based networks is shown 

graphically in Figures 1 and 2 respectively. Once the walkability indices were calculated, 

quartiles were calculated for each of the continuous indices for road- and footpath-based 

walkability for both the 5- and 10-minute buffers in order to provide a 4-category variable 

(low [1], low-medium [2], medium-high [3], high [4]) for each. 

 

Component information for calculation of the walkability indices was unavailable for 182 

(15.1%) households/respondents meaning that data for these respondents were excluded from 

subsequent inferential analyses. Examination of the distribution of the sociodemographic and 

health characteristics of these respondents (as captured in the present study – see covariates in 

Section 2.2.4) in comparison to the remainder of the sample indicated no significant 
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differences. Of the two indicators of socioeconomic status (i.e., housing tenure and economic 

strain – see covariates in Section 2.2.4), there was a significantly higher proportion of 

homeowners in the group who were excluded (79% in the excluded group vs 69% in the 

analytic group, p<0.05), but no significant difference between the excluded group and the 

analytic group in economic strain. 

 

< INSERT FIGURES 1 AND 2 HERE > 

 

2.2.3 Other covariates 

All regression models were adjusted for a number of sociodemographic, socioeconomic, and 

health variables. Sociodemographic variables included gender (male [0], female [1]) and age 

(categorical for descriptive analyses: 16-29 [0], 30-44 [1], 45-59 [2], 60-74 [3], 75+ [4]; 

continuous for inferential analyses; missing data for 17 respondents [1.4%]). Socioeconomic 

variables included tenure (house owner [0], tenant [1]; missing data for 11 respondents 

[0.9%]) and economic strain (single-item self-report measure of how the respondent copes 

financially: comfortable [1], can manage [2], have to be careful [3], strained [4]; missing data 

for 4 respondents [0.3%]). Health variables included having a long-term illness (no [0], yes 

[1]) and body mass index (BMI; categorical for descriptive analyses: underweight/normal [0], 

overweight [1], obese [2]; continuous for inferential analyses; missing data for 67 

respondents [5.5%]). Models were also adjusted for whether the respondent owns a bicycle 

(yes [1], no [0]; missing data for 1 respondent [<0.1%]) and the number of cars available to 

the household (categorical for descriptive analyses: none [0], 1 or more [1]; continuous for 

inferential analyses: from 0 onwards). Reasons for adjustment for bicycle ownership were as 

follows: use of a bicycle may act as a facilitator to active travel, just as car ownership may act 

as an inhibitor; however, bicycle users may make use of either road or footpath networks (or 
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both), and as such, use of a bicycle may influence the relationship between road- and/or 

footpath-based indices of walkability and active travel. Finally, as data were collected 

throughout the calendar year, regression models were adjusted for season (spring [1], summer 

[2], autumn [3], winter [4]) as the seasonal effects of weather may influence active travel 

(Tucker and Gilliland, 2007). 

 

2.3 Ethics 

The PARC study was reviewed and granted ethical approval by the Office for Research 

Ethics Committees Northern Ireland (ORECNI) (Reference number: 09/NIR02/66). All 

aspects of the project were carried out in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki) for research involving humans, and all 

respondents provided written consent before taking part in the study. 

 

2.4 Analytic strategy 

Weighted frequency and cross-tabulation analyses were initially conducted to examine the 

distribution of active travel by walkability and by the sociodemographic and socioeconomic 

characteristics of the sample. Two Wilcoxon signed-rank sum tests were conducted 

(walkability was non-normally distributed) in order to examine differences between the road- 

and footpath-based walkability indices in the 5-minute buffer zones and the 10-minute buffer 

zones. 

 

This was followed by a series of crude and fully adjusted zero-inflated negative binomial 

(ZINB) regression models examining the effects of road- and footpath-based walkability (in 

the 5- and 10-minute buffer zones) on active travel. ZINB regression analysis was selected as 

the most appropriate analytic technique as the dependent variable (active travel) included a 
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large proportion of zero count data (i.e., respondents whose GPAQ score indicated no active 

travel) and was over-dispersed (i.e., the variance of the dependent variable exceeded the 

mean) (Afifi et al., 2007; Cheung, 2002; Long and Freese, 2003; Zaninotto and Falaschetti, 

2011). Furthermore, nested comparisons with zero-inflated Poisson models (ZIP) using the 

Likelihood Ratio test (Long and Freese, 2003), and non-nested comparisons with negative 

binomial models using the Vuong test (Vuong, 1989) indicated that the ZINB provided the 

best fit for the data given the distribution of the dependent variable. ZINB regression analysis 

comprises two stages: i) the dependent variable is regressed (using Poisson regression with 

robust standard errors; Cameron and Trivedi, 2009) onto the primary covariate and any other 

covariates that are included for the purpose of adjustment in order to examine associations 

between the levels of the dependent variable (in this case, the number of minutes of active 

travel per week) and levels of the primary covariate (walkability); ii) the analysis derives a 

latent binary variable (respondents who never have excess zero counts vs respondents who 

may have excess zero counts) and runs a logit model using the same covariates as those 

selected for the first stage (or whichever covariates are deemed relevant) in order to examine 

the odds of being in the ‘excess zeros’ active travel group based on levels of walkability. All 

analyses were conducted in Stata12 (StataCorp, 2011). 

 

3.0 Results 

3.1 Sample characteristics 

The sample comprised 1209 respondents aged 16-94 (mean: 50.4; SD: 18.9; 17 did not 

provide age), of whom 719 (59.5%) were female. Less than one-third of the sample (31.0%) 

reported a long-term illness, but more than half (56.2%) were in the overweight/obese BMI 

category (see Table 1). Nearly two-thirds of the sample were homeowners (70.5%), and more 

than half (51.0%) reported being economically able to manage/being comfortable. Two-thirds 
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of the sample reported having a bicycle (66.7%) and three-quarters (75.1%) reported owning 

at least one car (see Table 1). 

 

< INSERT TABLE 1 HERE > 

 

3.2 Active travel 

The range of values for average number of minutes of active travel per week was 0-3360, 

with a median of 80 (25% lower bound=0; 75% upper bound=240). There were 473 (39.2% 

unweighted; 37.8% weighted for gender and age; 37.7% weighted for gender, age, and 

season) respondents who reported zero active travel in the previous seven days. 

 

3.3 Walkability 

Prior to calculating quartiles for the road- and footpath-based walkability indices in the 5- and 

10-minute buffers, descriptive statistics and inferential statistical tests were conducted in 

order to examine the distribution of, and differences between road- and footpath-based 

measures of walkability (see Table 2). Results of Wilcoxon signed-rank sum tests indicated 

significant differences between the road- and footpath-based walkability indices in both the 

5- minute (Z=-2.414, p<0.05) and 10-minute (Z=-2.499, p<0.05) network buffer zones (see 

Table 2). 

 

< INSERT TABLE 2 HERE > 

 

3.4 Zero-inflated negative binomial regressions (ZINB) 

Results of the first stage of the crude ZINB analysis (i.e., analysis of count data) indicated a 

gradient of increasing levels of active travel with increasing levels of walkability (e.g., 
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(exp)B=1.05 (SE=0.12) for those in the low-medium road-based walkability area in the 5-

minute buffer compared to (exp)B=1.51 (SE=0.13) for those in the high road-based 

walkability area; see Table 3). This gradient was evident for the road- and footpath-based 

walkability indices in both the 5- and 10-minute buffer zones, and although the effects 

attenuated somewhat in the fully adjusted model (e.g., (exp)B=1.05 (SE=0.22), (exp)B=1.15 

(SE=0.11), (exp)B=1.22 (SE=0.12) for the low-medium, medium-high, and high road-based 

walkability areas respectively), a gradient was still evident, with stronger effects for the 10-

minute buffer zone (see Table 3 and online supplementary Table S1). 

 

Results of the second stage of the crude ZINB analysis (i.e., analysis of active travel as a 

latent binary variable) did not show the same pattern of gradients for increasing levels of 

walkability in the road-based 5-minute buffer. For example, respondents living in the low-

medium walkability area based on road-based walkability were 38% ((exp)B=0.62 (SE=0.18) 

less likely to be in the ‘zero physical activity’ group than in the ‘non-zero physical activity’ 

group than respondents living in the low walkability area, compared to 20% ((exp)B=0.80 

(SE=0.18) when walkability was calculated using path-based indices (see Table 3). This 

pattern of results was also evident in the adjusted model. For example, those in the low-

medium walkability area based on road-based walkability in the adjusted model were 44% 

((exp)B=0.56 (SE=0.20) less likely to be in the ‘zero physical activity’ group than in the 

‘non-zero physical activity’ group than respondents living in the low walkability area, 

compared to 27% ((exp)B=0.73 (SE=0.20) when walkability was calculated using path-based 

indices (see Table 3). However, such differences were less evident in the estimates from 

crude and adjusted models using the 10-minute buffer, with road- and path-based estimates 

being very similar, and demonstrating the expected gradients of decreased likelihood of being 
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in the ‘zero physical activity’ group as levels of walkability increased (see Table 3 and online 

supplementary Table S1). 

 

< INSERT TABLE 3 HERE > 

 

3.5 Comparison of model fit 

Examination of the Wald χ2, Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC) model fit statistics for the crude and adjusted models using road- and 

footpath-based walkability in the 5-minute buffer zone indicated that road-based walkability 

provided a better model fit (see Table 3). However, comparison of the exponentiated beta 

coefficients for the road- and footpath-based models in the 5-minute buffer zone were 

virtually identical. Examination of the fit statistics for the crude and adjusted models using 

road- and footpath-based walkability in the 10-minute buffer zone also indicated a better fit 

for the road-based model, though the differences here between the fit statistics for the road- 

and footpath-based walkability were marginal, and once again, the exponentiated beta 

coefficients of the two models were comparable (see Table 3). 

 

3.6 Sensitivity analyses 

We ran a series of sensitivity analyses in order to establish if footpath-based intersection 

density provided a better fit to the model than the full footpath-based walkability index, and 

also if footpath-based intersection density provided a better fit than road-based intersection 

density. Results indicated that whilst both road- and footpath-based intersection density 

captured variance in active travel more effectively than the full walkability index (as would 

be expected from the findings of previous research, e.g., Leslie et al., 2007, Ellis et al., 2016), 
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there was little difference in results regardless of whether road- or path-based intersection 

density measures were used (results available on request). 

 

Additionally, in order to adjust for the possibility that bicycle and car ownership were acting 

as moderators, we re-ran the models including interaction terms (bicycle ownership x 

walkability/intersection density; car ownership x walkability/intersection density) (results 

available on request). However, although inclusion of the interaction terms attenuated their 

direct effects on active travel, the interaction terms themselves were not significant, and the 

overall pattern of results did not differ from the models without interaction terms. 

 

4.0 Discussion and Conclusions 

The aim of the present study was to compare the utility of road- versus footpath-based 

walkability indices and their associations with active travel among a cross-sectional sample 

of adults in an urban conurbation in Northern Ireland, UK. Results of Wilcoxon signed-rank 

sum tests (unadjusted analyses) suggested there were significant differences between road- 

and footpath-based measures of walkability for both buffer zones. However, in the regression 

analyses the two measures performed comparably as regards their associations with active 

travel, with only marginal differences in model fit. 

 

Previous road-based walkability measures have proved useful in determining the association 

between neighbourhood characteristics and physical activity (Grasser et al., 2013). However, 

they do have their drawbacks: we have demonstrated that a road-based network may not 

accurately capture the available space for physical activity due to errors in the classification 

of roads (Figure 1) or failure to capture pedestrian infrastructure that does not run parallel to 

the road, such as footbridges and footpaths in parks. This may be particularly relevant for 
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areas with greater access to green space, which may subsequently have more infrastructure 

that supports walking. It has been recognised that there is a need to account for these possible 

errors in order to improve assessment of environmental support for physical activity such as 

access to public open space for physical activity (Koohsari et al., 2015; Schipperijn, 

Stigsdotter, Randrup, & Troelsen, 2010). 

 

In addition, using road-networks ignores the fact that some routes are unsuitable (e.g., 

motorways) or undesirable for walking and physical activity. Therefore, in certain 

circumstances roads may be of limited value for non-motorised users. In a stated preference 

survey, respondents indicated that they would be willing to cycle up to twenty minutes longer 

in order to switch from cycling on the road to an off-road bicycle trail as part of their journey 

(Tilahun, Levinson, & Krizek, 2007). This indicates that road-networks may not be 

accurately capturing the potential influence an environment may exert on choices to be 

physically active. 

 

Finally, given that both road- and footpath-based measures of walkability were similar, our 

data suggests that footpath-based walkability measures may be useful when the use of road-

based walkability is not appropriate. For example, footpath-based walkability could be used 

to further explore how wider neighbourhood design might influence the findings of non-road-

based environmental interventions, such as urban greenways (New South Wales Health 

Department, 2002), in addition to the impact of interventions to improve pedestrian 

connectivity, such as the addition of urban trails (Fitzhugh, Bassett, and Evans, 2010). Given 

the emphasis that the World Health Organisation (WHO, 2016) have placed on the need for 

access to urban greenspace to improve public health, improving methods to evaluate the 
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influence of changes in green space on health and health-related behaviours remains a 

priority, and the proposed footpath-based walkability measures may be useful in that context. 

 

The present study has a number of strengths: it utilised a large, representative sample, across 

a wide (adult) age span; active travel was measured using a reliable and well-validated 

measure (i.e., the GPAQ); the study utilised two objective measures of the built environment, 

both road- and footpath-based indices of walkability, an approach which has been adopted as 

a protocol by the International Physical Activity and the Environment Network (IPEN) 

(Adams et al., 2014), and the design of the study and large sample size allowed for the 

adjustment of a range of sociodemographic and socioeconomic variables when modelling the 

effect of walkability on active travel. 

 

The limitations of the present study were: the subjective assessment of active travel 

(compared to more objective measures such as accelerometers); the data were cross-sectional; 

and the study was restricted to one area of Belfast that is known to be socially and 

economically deprived. It would be important to assess the generalisability of the findings by 

examining a greater distribution of urban forms and a broader spectrum of the population. It 

is also noted that in basing the connectivity measure on intersection density, results will differ 

according to the assumptions made in mapping intersections. For example, different studies 

(Ellis et al., 2016; Tal and Handy, 2012) have adopted alternative approaches for defining 

intersections of footpaths, particularly when they cross highways, while also being influenced 

by the specific type of street network design (Marshall et al., 2014). 

 

In conclusion, results of the study suggest that road- and footpath-based walkability networks 

are comparable in their associations with active travel, and therefore could be used in future 
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studies where road-based network data is not available. Given the call for built environment 

interventions (Hunter et al., 2015), such a model has important implications for assessing 

non-road-based environmental change interventions. 
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Figure 1 
 
 

 
Note: The illustration above shows the relative resolution of the road network compared to the footpath 
network (see Fig. 2), while also highlighting some of the issues of ambiguity and potential errors that can arise 
when using road networks, with the bottom right quadrant showing an oval cycling track (A) as a digitised road 
and private roads around a school (B) included incorrectly in the road network. 

 
 
Figure 1 Visual resolution of the road-based network in the Belfast case study 
 
  

Road-based Network 
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B. 
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Figure 2 
 
 

 
 
 
Figure 2 Visual resolution of the footpath-based network in the Belfast case study 
  

Footpath-based Network 



Road- and footpath-based walkability and active travel   26 
 

TABLES 

 

Table 1 Distribution of respondents by active travel, walkability, sociodemographic, 

health, and socioeconomic characteristics, and other covariates 

    

   N (%) 

Active travel  None 473 (39.2) 

  Some 735 (60.8) 

Built environment Walkability Low 257 (25.0) 

  Low-medium 257 (25.0) 

  Medium-high 257 (25.0) 

  High 256 (25.0) 

Sociodemographic Gender Male 490 (40.5) 

characteristics  Female 719 (59.5) 

 Age group 16-29 191 (16.0) 

  30-44 320 (26.9) 

  45-59 279 (23.4) 

  60-74 240 (20.1) 

  75+ 162 (13.6) 

Health characteristics Long-term illness (LTI) No 834 (69.0) 

  Yes 375 (31.0) 

 Body mass index (BMI) Underweight 18 (1.6) 

  Normal 482 (42.2) 

  Overweight 412 (36.1) 

  Obese 230 (20.1) 
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Socioeconomic House tenure Owner 845 (70.5) 

characteristics  Tenant 353 (29.5) 

 Economic strain Comfortable 168 (13.9) 

  Can manage 447 (37.1) 

  Need to be careful 495 (41.1) 

  Strained 95 (7.9) 

Other covariates Has a bicycle No 402 (33.3) 

  Yes 806 (66.7) 

 Number of cars None 301 (24.9) 

  At least 1 908 (75.1) 

 Season Spring 236 (19.5) 

  Summer 241 (19.9) 

  Autumn 298 (24.7) 

  Winter 434 (35.9) 
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Table 2 Descriptive statistics for road- and footpath-based walkability indices in the 5- 

and 10-minute buffer zones, and results of Wilcoxon signed-rank sum test 

 
Descriptives 

Wilcoxon signed-rank 

sum test 

 Range Median (25% 

lower bound-75% 

upper bound) 

Z p 

Road-based; 5-minute buffer -7.15 – 8.80 0.74 (-2.81-2.75)   

Footpath-based; 5-minute buffer -6.61 – 8.36 0.78 (-2.90-2.68) -2.414  0.016 

Road-based; 10-minute buffer -9.14 – 8.00 -0.03 (-3.20-3.20)   

Footpath-based; 10-minute buffer -8.70 – 7.58 0.01 (-3.26-3.05) -2.499 0.013 
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Table 3 Results and fit statistics of crude and fully adjusted zero-inflated negative 

binomial regression models examining associations between road- and footpath-based 

indices of walkability and active travel in the 5- and 10-minute buffers 

   5-minute buffer 10-minute buffer 

   RBW PBW RBW PBW 

   B (SE) B (SE) B (SE) B (SE) 

Crude Count Walkability (low is ref)     

  Low-medium 1.05 (0.12) 1.05 (0.12) 1.14 (0.12) 1.13 (0.12) 

  Medium-high 1.23 (0.12) 1.21 (0.12) 1.29 (0.11)* 1.32 (0.11)* 

  High 1.51 (0.13)*** 1.51 (0.13)*** 1.76 (0.12)*** 1.75 (0.12)*** 

 Inflate Walkability (low is ref)     

  Low-medium 0.62 (0.18)** 0.80 (0.18) 0.74 (0.18) 0.80 (0.18) 

  Medium-high 0.76 (0.18) 0.67 (0.18)* 0.66 (0.18)* 0.68 (0.18)* 

  High 0.61 (0.18)** 0.66 (0.18)* 0.60 (0.18)** 0.61 (0.18)** 

 Fit  Wald χ2 (df3) 15.30 14.80 26.93 26.38 

 statistics AIC 9881.88 9885.02 9865.37 9866.89 

  BIC 9926.29 9929.43 9909.78 9911.30 

Fully  Count Walkability (low is ref)     

adj§  Low-medium 1.05 (0.11) 1.04 (0.11) 1.08 (0.11) 1.07 (0.11) 

  Medium-high 1.15 (0.11) 1.15 (0.11) 1.15 (0.11) 1.18 (0.11) 

  High 1.22 (0.12) 1.20 (0.12) 1.37 (0.12)** 1.35 (0.12)* 

 Inflate Walkability (low is ref)     

  Low-medium 0.56 (0.20)** 0.73 (0.20) 0.64 (0.20)* 0.69 (0.20) 

  Medium-high 0.80 (0.20) 0.72 (0.21) 0.70 (0.21) 0.70 (0.21) 

  High 0.73 (0.22) 0.78 (0.22) 0.72 (0.23) 0.73 (0.23) 

 Fit  Wald χ2 (df12) 63.47 63.00 69.37 69.32 

 statistics AIC 8979.40 8985.15 8977.30 8979.58 

  BIC 9110.52 9116.28 9108.42 9110.70 

RBW: road-based walkability; PBW: footpath-based walkability; B: exponentiated beta coefficient; SE: standard error 
[robust]; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; *p<0.05, **p<0.01, ***p≤0.001; χ2: chi 
square; df: degrees of freedom; §Model adjusted for: gender, age, long-term illness (LTI), body mass index (BMI), housing 
tenure, economic strain, bike ownership, car ownership, and season 
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ONLINE ONLY SUPPLEMENTARY TABLE 

 

Table S1 Results of fully adjusted zero-inflated negative binomial regression models 

showing the effects of road- and footpath-based walkability in the 5- and 10-minute 

buffer zones on average minutes per week of active travel 

  5-minute buffer 10-minute buffer 

  RBW PBW RBW PBW 

  B (SE) B (SE) B (SE) B (SE) 

Count  Walkability (low is reference)       

model Low-medium 1.05 (0.11) 1.04 (0.11) 1.08 (0.11) 1.07 (0.11) 

 Medium-high 1.15 (0.11) 1.15 (0.11) 1.15 (0.11) 1.18 (0.11) 

 High 1.22 (0.12) 1.20 (0.12) 1.37 (0.12)** 1.35 (0.12)* 

 Covariates     

 Gender 0.94 (0.08) 0.95 (0.08) 0.95 (0.08) 0.95 (0.08) 

 Age 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

 Long-term illness 0.79 (0.09)* 0.79 (0.09)* 0.79 (0.09)** 0.78 (0.09)** 

 Body mass index 0.99 (0.01)* 0.99 (0.01)* 0.99 (0.01)* 0.99 (0.01)* 

 Housing tenure 1.23 (0.10)* 1.24 (0.10)* 1.20 (0.10) 1.20 (0.10) 

 Economic strain 1.10 (0.05)* 1.10 (0.05)* 1.09 (0.05) 1.09 (0.05) 

 Owns a bicycle 1.13 (0.09) 1.13 (0.09) 1.13 (0.09) 1.13 (0.09) 

 Car ownership 0.89 (0.05)* 0.89 (0.05)* 0.90 (0.05)* 0.90 (0.05)* 

 Season 0.95 (0.03) 0.95 (0.04) 0.96 (0.04) 0.96 (0.04) 

Inflate  Walkability (low is reference)       

model Low-medium 0.56 (0.20)** 0.73 (0.20) 0.64 (0.20)* 0.69 (0.20) 

 Medium-high 0.80 (0.20) 0.72 (0.21) 0.70 (0.21) 0.70 (0.21) 

 High 0.73 (0.22) 0.78 (0.22) 0.72 (0.23) 0.73 (0.23) 

 Covariates     

 Gender 1.04 (0.15) 1.05 (0.15) 1.04 (0.15) 1.05 (0.15) 

 Age 1.01 (0.00)* 1.01 (0.00)* 1.01 (0.00)* 1.01 (0.00)* 
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 Long-term illness 2.50 (0.16)*** 2.51 (0.16)*** 2.56 (0.16)*** 2.54 (0.16)*** 

 Body mass index 1.02 (0.01) 1.02 (0.01) 1.02 (0.01) 1.02 (0.01) 

 Housing tenure 1.01 (0.19) 1.03 (0.19) 1.03 (0.19) 1.03 (0.19) 

 Economic strain 0.97 (0.09) 0.98 (0.09) 0.98 (0.09) 0.98 (0.09) 

 Owns a bicycle 0.56 (0.18)*** 0.56 (0.18)*** 0.54 (0.18)*** 0.54 (0.18)*** 

 Car ownership 1.73 (0.10)*** 1.71 (0.10)*** 1.69 (0.10)*** 1.69 (0.10)*** 

 Season 0.99 (0.07) 0.98 (0.07) 0.97 (0.07) 0.96 (0.07) 

RBW: road-based walkability; PBW: footpath-based walkability; B: exponentiated beta coefficient; SE: standard error 
[robust]; *p<0.05, **p≤0.01, ***p≤0.001 
 


