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Prediction of Limit Cycle Oscillations under

Uncertainty using a Harmonic Balance Method

Richard Hayes, Simão P. Marques1,

School of Mechanical and Aerospace Engineering

Queen’s University Belfast, Belfast, UK, BT9 5AH

Abstract

The Harmonic Balance method is an attractive solution for computing pe-
riodic responses and can be an alternative to time domain methods, at a
reduced computational cost. The current paper investigates using a Har-
monic Balance method for simulating limit cycle oscillations under uncer-
tainty. The Harmonic Balance method is used in conjunction with a non-
intrusive polynomial-chaos approach to propagate variability and is validated
against Monte Carlo analysis. Results show the potential of the approach for
a range of nonlinear dynamical systems, including a full wing configuration
exhibiting supercritical and subcritical bifurcations, at a fraction of the cost
of performing time domain simulations.

Keywords: Aeroelasticity, Harmonic Balance, Limit Cycle Oscillations,
Uncertainty, Bifurcation, Nonlinear.

1. Introduction

As design complexity increases, new materials and novel technologies are
introduced to new airframes, empirical methods become increasingly difficult
to apply, hence a clear need for physics based modelling tools has emerged.
Aeroelasticity in particular is a good illustration of this trend and a need for
physics based modelling tools has been identified by Noll et al [1]. Further-
more, predicting the aeroelastic stability of an aircraft should also identify
the consequences of variability or uncertainty in model parameters, as dis-
cussed by Pettit[2]. Marques et al demonstrated the significant impact of
structural variability on transonic flutter predictions[3, 4]. When nonlinear-
ities are present, the amplitude of oscillations can become limited and limit
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cycle oscillations are observed. This is a problem of considerable practical
interest and is well documented for in-service aircraft[5, 6]. When nonlineari-
ties are de-stabilizing (softening) a subcritical limit-cycle exists. As discussed
by Stanford and Beran[7], unstable LCOs can occur below the flutter speed
and lead to a hysteretic phenomenon. This type of instability is extremely
undesirable because as the flutter speed is reached, the amplitude increases
suddenly and significantly, as the the speed drops below the flutter point,
the LCO will persist.

The presence of nonlinearities, either structural or aerodynamic, poses ad-
ditional challenges both in terms of complexity and computational resources,
these requirements can be exacerbated by the need to quantify the uncer-
tainty due to unknown or variable parameters. Hence, several efforts have
been made to address both these issues.

Reduced order modelling is a technique widely utilised to ease the compu-
tational burden associated with high-fidelity unsteady simulations, required
to capture nonlinear effects. Proper orthogonal decomposition (POD) is
commonly used to compress high order data[8, 9] and has been implemented
in a reliability-based design optimisation framework (RBDO) for aeroelas-
tic problems[10]. Volterra series can be used to model nonlinear responses
with historic consideration, hence suitable for transient problems[11]. Re-
cently, recurrent artificial neural networks (ANN), were applied to replicate
an input-output relationship and can be used for nonlinear problems, such
as LCOs[12], provided the model is sufficiently trained. System identifica-
tion techniques using describing functions are another alternative to capture
unsteady aerodynamic effects in dynamic aeroelastic problems [13, 14]. The
common limitation of the methods mentioned above is the sacrifice of phys-
ical accuracy and parameter space associated with the reduction process,
rendering the ROM unreliable outside the limits of the original data. The
application of ROMs to uncertainty quantification (UQ) problems is in prin-
ciple possible, however, the associated increase in the parameter space would
require additional computational resources to generate suitable ROMs.

Two promising approaches which do not compromise the underlying physics
of the oscillatory behaviour and have been applied to LCOs are: model re-
duction techniques based on the centre manifold theorem[15] and frequency-
based techniques (finite-difference cyclic methods[16], spectral elements in
time[17] and Harmonic Balance (HB) methods[6, 18, 19]). Although the
HB method employs global basis functions resulting in system matrices with
no sparsity, it offers better temporal convergence than spectral element and
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cyclic methods[20]. Additionally, convergence problems can occur for the
spectral element method during the transition between unstable and sta-
ble branches of a subcritical LCO[7], the HB method does not encounter
this problem. An overview of different variations of the Harmonic Balance
method, such as high-dimensional, incremental, or elliptic HB methods is
given by Dimitriadis[21].

The growth in complexity associated with classical HB method for higher
order nonlinear terms render it inefficient for most practical problems[18].
The High-Dimensional Harmonic Balance (HDHB) method can simplify the
treatment of nonlinearities thus making it scalable for more complex problems
and can subsequently offer over one order of magnitude reduction in cost[22].
The benefits of the Harmonic Balance approach deteriorate as the number
of harmonics retained to solve the problem increase[23].

As for flutter, LCOs are sensitive to parametric variability, which makes
the use of stochastic tools attractive to this problem. Beran et al [24] applied
several UQ techniques to an aerofoil LCO problem, where variability was
propagated using time domain and cyclic methods. To overcome the diffi-
culties with applying stochastic methods such as Probabilistic Collocation to
long time integration problem, Witteveen et al [25], re-cast LCO time domain
results as a function of the resultant frequency. More recently, Le Meitour
et al [26] used a non-intrusive, adaptive formulation of a generalised Polyno-
mial Chaos Expansion (PCE) approach to 2-dimensional LCO problems, the
adaptive formulation allowed for the PCE method to give reliable answers in
the presence of discontinuities such as supercritical bifurcations.

In this work, an HDHB formulation is exploited to determine the LCO
conditions without incurring the costs of time-accurate simulations; the pa-
per then investigates the practicality of using the HDHB approach to propa-
gate parametric variability using a Non-Intrusive Polynomial Chaos (NIPC)
approach. The paper will first summarize the HDHB formulation, this is fol-
lowed by the description of the probabilistic approach based on non-intrusive
PCE. The impact of variability on the responses amplitudes and motion fre-
quency is assessed and compared against Monte Carlo (MC) results (using
both time domain and HDHB methods).

2. Harmonic Balance Formulation

The HB formulation used in this work was proposed by Hall et al [22]
for time-periodic flow problems, this methodology was adapted to nonlin-
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ear dynamical systems by Liu et al [27] and is summarised next. Consider
a dynamic system with a nonlinearity in stiffness whose behaviour can be
described using a simple equation of motion given by:

Mẍ+Cẋ+Kx+Knl(x) = F(x, ẋ, ẍ, t) (1)

Matrices M, C and K describe the mass, damping and linear stiffness prop-
erties of the system respectively and Knl(x) is the nonlinear component of
the stiffness restoring force. The external force, F can be a function of the
motion of the system and/or time. Here consider the external force to be,
F = sin(ωt). The solution of eq. (1) can be approximated to be a truncated
Fourier series of NH harmonics with a fundamental frequency ω.

x(t) ≈ x̂0 +

NH∑

n=1

(x̂2n−1 cos(nωt) + x̂2n sin(nωt)) (2)

The first and second derivatives of x(t) with respect to time can be found to
be:

ẋ(t) ≈
NH∑

n=1

(−nωx̂2n−1 sin(nωt) + nωx̂2n cos(nωt)) (3)

ẍ(t) ≈
NH∑

n=1

(−(nω)2x̂2n−1 cos(nωt)− (nω)2x̂2n sin(nωt)) (4)

By substituting the Fourier series back into eq. (1) and collecting terms
associated with each harmonic, a system of equations can be assembled that
relate the system’s dynamic properties with the Fourier coefficients. This
algebraic system consists of 2NH+1 equations which can be conveniently
displayed in vector form:

(Mω2A2 +CωA+KI)Q̂+ Q̂nl − FĤ = 0 (5)

where:

Q̂ =







x̂0
x̂1
x̂2
x̂3
...

x̂2NH







2NH+1

, Q̂nl =







K̂nl0

K̂nl1

K̂nl2

K̂nl3
...

K̂nl2NH







2NH+1

and Ĥ =







0
0
1
0
...
0







2NH+1
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Matrix A reconstructs the Fourier series from the harmonic balancing and
is shown in Appendix A. The nonlinear term Fourier coefficients, K̂nl are
computed using discrete Fourier transforms (DFT). Computing these terms
analytically can be cumbersome for certain types of nonlinearities such as
high order polynomial terms or fluxes in CFD problems[22]. The HDHB
method overcomes these issues by casting the problem in the time domain
where the Fourier coefficients are related to 2NH + 1 equally spaced sub-
time levels throughout one temporal period using a constant transformation
matrix which yields:

Q̂ = EQ̃, Q̂nl = EQ̃nl and Ĥ = EH̃ (6)

where:

Q̃ =







x(t0)
x(t1)
...

x(t2NH
)







, Q̃nl =







Knl(x(t0))
Knl(x(t1))

...
Knl(x(t2NH

))







and H̃ =







sin t0
sin t1
...

sin t2NH







and

ti =
i2π

2NH + 1
(i = 0, 1, ..., 2NH) (7)

Expressions for the transformation matrix E and its inverse E−1 which can
be used to relate the time domain variables back to the Fourier coefficients ie.
Q̃ = E−1Q̂ are shown in Appendix A. Using these transformation matrices,
the system in eq. (5) can be cast in the time domain as:

(Mω2D2 +CωD+KI)Q̃+ Q̃nl − FH̃ = 0 = R (8)

where D = E−1AE. Equation (8) represents the HDHB system and can be
solved using either pseudo-time marching or Newton-Raphson approaches.
Here, the latter is employed:

Sn+1 = Sn − λJ−1Rn (9)

where Sn is the solution vector at iteration n, λ is a relaxation parameter for
increased stability. The inverse Jacobian of the system, J−1, is numerically
approximated using finite-differences[28] and Rn is the residual of eq. (8) at
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iteration n, ie.

Sn =







x̂0
x̂1
...

x̂2NH







n

, Rn =







R0

R1
...

R2NH







n

and J =









∂R0

∂x̂0
. . .

∂R0

∂x̂2NH

...
. . .

...
∂R2NH

∂x̂0
. . .

∂R2NH

∂x̂2NH









3. Stochastic Modelling

The system of equations shown in eq. (8) can be used to describe nonlin-
ear time periodic dynamical systems and quantities such as frequency and
amplitude are easily extracted. This enables the HDHB method to be an ef-
ficient way of propagating uncertainties in time periodic, nonlinear systems.
The approach used in this paper is based on a non-intrusive polynomial chaos
method, where sampled points from the parameter space are used to recon-
struct a “polynomial expansion”. Consider a generic system of equations
with random input parameters given by:

L(x, t, θ; u) = f(x, t, θ) (10)

where u = u(x, t, θ) is the solution and f(x, t, θ) is the source term. L

is a general differential operator that may contain spatial, temporal, linear
or nonlinear terms. The θ denotes a random event which may describe a
system parameter, an initial or boundary condition, etc. In general θ ∈
Θ, the set containing all possible outcomes. Therefore, θ can represent M
independent, continuous, uncertain parameters, in the cases reported here
Θ = [0, 1]M , where θ has mean values of 1/2 and is uniformly distributed
over Θ. The solution is now a random process which can be represented as a
truncated series of orthogonal polynomials, referred to as Polynomial Chaos
Expansions[29]:

u(x, t, θ) = a0Γ0 +
∑P

i1=1 ai1Γ1(ϕi1(θ)) +
∑P

i1=1

∑i1
i2=1 ai1i2Γ2(ϕi1(θ), ϕi2(θ)) +

∑P

i1=1

∑i1
i2=1

∑i2
i3=1 ai1i2i3Γ3(ϕi1(θ), ϕi2(θ), ϕi3(θ)) + . . . (11)

where ai are polynomial coefficients, Γp represents basis functions, which
are in fact orthogonal polynomials of order p, based on the random variable
ϕip = {ϕi1(θ), ϕi2(θ), . . . , ϕip(θ)}. Equation (11) is usually written as:

u(x, t, θ) =

nb∑

j=0

ajΨj(ϕ(θ)) (12)
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The order-based indices correspond to each term j in the new summa-
tion. There are several possible ways to obtain solutions to eq. (12), namely
Galerkin Projection, Probabilistic Collocation, Point Collocation among oth-
ers. Le Mâıtre and Knio[30] provide a detailed review of techniques available.
In this work, a regression based Point Collocation method is used, which re-
quires sampling u(x, t, θ) for specific values of θ and forming the following
system of equations:








Ψ0(ϕ0) Ψ1(ϕ0) · · · ΨP (ϕ0)
Ψ0(ϕ1) Ψ1(ϕ1) · · · ΨP (ϕ1)

...
...

. . .
...

Ψ0(ϕP ) Ψ1(ϕP ) · · · ΨP (ϕP )








︸ ︷︷ ︸

Ψ








a0
a1
...
aP








︸ ︷︷ ︸

a

=








u0(θ)
u1(θ)
...

uP (θ)








︸ ︷︷ ︸

u

(13)

The solution of eq. (13) is given by:

a =
(
ΨTΨ

)
−1

ΨTu (14)

For a specified order of the polynomial, P , a set of P + 1 vectors ϕi for
i = 0, 1, 2, ..., P are used in the approximation. The response values, u,
which can describe quantities such as amplitude or frequency, are obtained
from sampling the probabilistic space used to define θ, Hosder et al [31] sug-
gest Latin hypercube sampling, but any sampling or design of experiments
technique can be used. Oversampling is usually required, resulting in an
overdetermined system and a least-squares minimization problem.

The orthogonal polynomials used to define the basis functions, Ψ, de-
pend on type of the random variables, for example in the case of normal
distributions, Hermite polynomials are typically used, whereas for uniformly
distributed inputs Legendre polynomials are chosen[32]. With the regression
model built, Monte Carlo analysis can be used with the regression model to
obtain the statistic quantities of interest, usually 104−106 samples suffice to
converge the mean and standard deviation to engineering accuracy.

4. Results

In this study, the effects of uncertainties in initial conditions and struc-
tural parameters of various models exhibiting periodic oscillations is investigated:-
a one degree of freedom (dof ) Duffing oscillator, a two dof aerofoil and a wing
configuration.
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4.1. Duffing Oscillator

The problem defined in Liu et al [27] based on the Duffing oscillator serves
as an initial test case to validate the current HDHB implementation. It
contains one nonlinear parameter, a cubic stiffness variation. Following eq.
(1), the terms are:

M = m, C = 2ζ
√
km, K = k, Knl(x) = βx3 and F = F sin(ωt) (15)

where β and ζ are the cubic stiffness and damping coefficients respectively.
This system is is solved using an ordinary differential equation solver in
MatLab (ODE45) and provides the reference time domain results used to
assess the HDHB method. The application of the HDHB method yields the
following system:

(mω2D2 + 2ζ
√
kmωD+ kI)Q̃x + βQ̃3

x − F H̃ = 0 (16)

where Q̃x and H̃ are the solutions of displacement and the external force
respectively at each time level. As before, D = E−1AE with matrices A and
E shown in Appendix A. Equation (16) is solved using the Newton-Raphson
scheme shown in section 2.

The impact of the number of harmonics employed by the HDHB method
is demonstrated by the deterministic simulation of a Duffing oscillator as
shown in Figure 1. It is clear that the HDHB solution will converge to
the time domain result as the number of harmonics is increased and seven
harmonics are sufficient in this case.

In the stochastic analysis of the Duffing oscillator two uncertain parame-
ters are of interest, the magnitude and frequency of the external force. The
additional structural parameters used here are: mass, m = 1kg, linear and
cubic stiffness coefficients, k = β = 1 and damping ratio, ζ = 0.1. The
non-dimensional force magnitude, F and frequency, ω, were assigned mean
values of 1.25 and 0.6 respectively and given a variation of ±10% using a
uniform distribution.

Table 1 shows the convergence rate of the MC simulation, using the
HDHB solver and the motion’s the peak-to-peak amplitude as the output
measure; the samples were obtained using Latin hypercube sampling (LHS),
104 samples give results of acceptable accuracy for this work and will be
employed throughout this work.

The described PCE model was compared with the MC analysis using both
time domain and HDHB approaches. A 5th order polynomial expansion was
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Figure 1: Number of harmonics convergence, ω = 0.5 and F = 1.25

implemented requiring 44 samples. Figure 2 compares the response surface
generated from the time accurate MC results with the HDHB-PCE. It can
be seen that the amplitude of the response is affected by both the magnitude
and frequency; it appears an increase in frequency, attenuates the impact of
increases in the force magnitude. The histograms in Figure 2(c) show the
frequencies of the amplitude and highlights the level of agreement between
time domain MC and HDHB-PCE methods.

Table 2 shows the first two statistical moments for the motion’s amplitude

Table 1: Amplitude mean and standard deviation for Duffing oscillator - Monte Carlo
sample convergence

No. of Samples Mean Std Deviation

100 1.088160 4.835522× 10−2

1,000 1.087853 4.631601× 10−2

10,000 1.088065 4.701828× 10−2

100,000 1.088070 4.702010× 10−2
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Figure 2: Comparison of time domain MC analysis (MatLab ODE45) with HDHB PCE
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Table 2: Amplitude mean and standard deviation for Duffing oscillator

Time domain HDHB method

MC mean 1.088173 1.088065
PCE mean 1.088032 1.088066
MC std deviation 4.701390× 10−2 4.701828× 10−2

PCE std deviation 4.703094× 10−2 4.707843× 10−2

obtained by the different methods, confirming the ability of the HDHB-PCE
approach to capture the uncertainty in this system. Table 3 shows the com-
putational cost of the problem.

4.2. Pitch-Plunge Aerofoil

In this section a typical aerofoil section restricted to pitching and plunging
motions is analysed. The equations of motion for a pitch/plunge aerofoil with
nonlinear restoring forces are shown in reference [33]. They can be displayed
in the form of eq. (1), the terms are given as:

M =






xα 1

1
xα
r2α




 , C =






0
2ζξω

V ∗

2ζα
V ∗

α̇ 0




 , K =






0
kξω

2

V ∗2

kα

V ∗2
0




 ,

x =







α

ξ







, Knl =







0
βξω

2

V ∗2

βα

V ∗2
0













α3

ξ3







+






0
γξω

2

V ∗2

γα

V ∗2
0












α5

ξ5







,

F =







−CL(τ)

πµ
+
bP (τ)

mV 2

2CM(τ)

πµr2α
+

Q(τ)

mV 2r2α







where ξ is the non-dimensional plunge displacement of the elastic axis, α is
the pitch, CL and CM correspond to the lift and pitching moment coefficients
respectively, P (τ) and Q(τ) are external forces and moments respectively.
After the introduction of four new variables, w1, w2, w3, w4 which partially
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describe the aerodynamic and external forces characterised by F, the equa-
tions of motion can be written as:

c0ξ
′′+c1α

′′+c2ξ
′+c3α

′+c4ξ+c5βξ
3+c5γξ

5+c6α+c7w1+c8w2+c9w3+c10w4 = f(t∗)
(17)

d0ξ
′′+d1α

′′+d2α
′+d3α+d4βα

3+d4γα
5+d5ξ

′+d6ξ+d7w1+d8w2+d9w3+d10w4 = g(t∗)
(18)

where f(t∗) and g(t∗) represent the remainder of the generalised aerodynamic
forces and damp out with time hence are not part of the periodic solution.
The time domain solutions are obtained by an explicit, fourth-order Runge-
Kutta scheme[34, 35, 24, 36]. The nonlinearity is considered only in the pitch
dof (c5β = c5γ = 0). Expressions for the of the remainder coefficients can be
found in [34]. Implementing the HDHB approach to eqs. (17) and (18), a
system in the frequency domain can be created:







(c0ω
2A2 + c2ωA+ c4I)Q̂ξ + (c1ω

2A2 + c3ωA+ c6I)Q̂α + c7Q̂w1
+

+c8Q̂w2
+ c9Q̂w3

+ c10Q̂w4
= 0

(d0ω
2A2 + d5ωA+ d6I)Q̂ξ + (d1ω

2A2 + d2ωA+ d3I)Q̂α + d7Q̂w1
+

+d8Q̂w2
+ d9Q̂w3

+ d10Q̂w4
+ d4βQ̂βα

+ d4γQ̂γα = 0

(ωA+ ǫ1I)Q̂w1
− Q̂α = 0

(ωA+ ǫ2I)Q̂w2
− Q̂α = 0

(ωA+ ǫ1I)Q̂w3
− Q̂ξ = 0

(ωA+ ǫ2I)Q̂w4
− Q̂ξ = 0

(19)
By substituting the last 4 equations of system 19 into the first 2 and replacing

Q̂βα
with E(E−1Q̂α)

3
and Q̂γα with E(E−1Q̂α)

5
the system can be further

reduced to[27]:

(A2 −B2B1
−1A1)Q̂α + d4βE(E

−1Q̂α)
3
+ d4γE(E

−1Q̂α)
5
= 0 (20)

where the matrices A• and B• are given by eqs. A.1-A.4.

4.2.1. Supercritical Bifurcations

Unlike the Duffing oscillator, the frequency of the response is not con-
strained, hence it must be treated as a variable in conjunction with the
amplitude properties in order to capture the behaviour of the system. This
is achieved by setting α̂1 = 0 which will affect only the phase of the solution

12



thus creating a system of 2NH + 1 equations with 2NH + 1 unknowns. The
frequency can then be simultaneously solved along with the Fourier coeffi-
cients using the Newton-Raphson scheme. The solution and residual vectors
are now given by:

Sn =







ω
α̂0

α̂2
...

α̂2NH







n

, Rn =







R1

R0

R2
...

R2NH







n

The system parameters used for this case are ω̄ = 0.2, µ = 100, ah =
0.5, xα = 0.25, rα = 0.5, ζα = ζξ = 0 and γα = 0. A ±10% variation
following a uniform distribution was imposed on the linear and cubic stiffness
coefficients, with nominal values of 1.0 and 3.0 respectively. This nominal
case was simulated over a range of velocities for different lengths of time, to
determine convergence of the time domain solver as shown in Figure 3. As the
velocity increases towards the the bifurcation point, the time domain solver
requires increasingly longer time integration periods to damp out residual
oscillations. For conditions beyond the bifurcation point, 2500 seconds suffice
to achieve the final periodic orbit, hence this value was used for the non-
deterministic calculations. Note that for the HDHB method, one harmonic
is shown to be adequate for this investigation.

For a given velocity the system undergoes a supercritical Hopf-bifurcation,
this is shown in Figure 4. The time domain and HDHB method show good
agreement with exception to the bifurcation region due to the large cost
associated with achieving a well-defined discontinuity. The presence of the
bifurcation point requires a higher order polynomial capable of capturing the
abrupt change in behaviour adequately. The effects of PCE order near the
bifurcation point is shown by Figure 5, hence, an 11th order PCE requiring
194 samples was employed in the aerofoil investigation. The response fre-
quency is shown in Figure 4. Note that there is a linear relationship between
the linear stiffness coefficient and frequency for low values of linear stiffness,
where LCOs exist. When no LCO exists, ie. amplitude is zero, frequencies
with no physical meaning are generated which can have an adverse affect on
the PCE performance. The histograms in Figure 6 reflect this limitation by
the PCE when discontinuities are present.

Figure 7(a) shows the reference time domain response with respect to the

13
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Figure 3: Convergence of time domain solver

deterministic case computed by a velocity sweep. It is evident that there is
more variation present at lower velocities, this is due to increased sensitivity
of the system close to the flutter speed (represented by the region of highest
gradient). In this region, the linear stiffness has a larger effect on the stability
of the system. The cubic stiffness impacts the amplitude as velocity increases
because of the cubic relationship with displacement, but in this case the linear
stiffness is the dominant factor. The HDHB method shows variations at all
the velocities which are very similar to the time domain results. The PCE is
shown to perform better at the higher velocities where only smooth behaviour
is exhibited. The mean values extracted form the PCE analysis agree well
with the MC time domain samples. The computational times for the aerofoil
are shown in Table 3.

4.2.2. Subcritical Bifurcations

The subcritical case investigated here is similar to that used by Millman
et al [37]. The desired subcritical behaviour is exhibited when the nonlinear
term consists of a hardening pentic term, (+) and a softening cubic term, (-).
The uncertain variables are the pentic stiffness coefficient, γα, and the initial
pitch amplitude, α0, with nominal values of 20 and 15◦ respectively. A ±10%
variation from a uniform distribution was assigned to the pentic stiffness
coefficient, γα, and a ±50% variability of initial pitch amplitude, α0, was
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also added using a uniform distribution. The cubic stiffness coefficient was
now softening, ie. βα = −3. PCE was not employed in the subcritical case
as the hysteresis provides three disconnected response surfaces which cannot
be sufficiently modelled without the partitioning of the random space[26].
Only the HDHB method was employed here as the time integration scheme
that was implemented was unable to converge to the unstable branch of
the subcritical LCO. Results are shown in Figure 8. The distribution of
samples coincides with the different branches of the deterministic case, a
large proportion of samples exhibit LCO behaviour below the bifurcation
point. The variability in the chosen uncertain parameters has a more limited
impact on the LCO amplitude than in the supercritical case, as shown by
Figure 8. For a velocity ratio of 0.96, Figure 9(a) shows how lower values
for the pentic stiffness coefficient lead to a wider range of initial pitch values

(a) Time domain MC (b) HDHB method MC

(c) TD MC scatter (d) HDHB MC scatter

Figure 4: Supercritical Bifurcation at Linear Flutter Speed
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Figure 5: Histogram for Monte-Carlo and PCE, Supercritical Bifurcation at
V elocity Ratio = 1.02

(a) Time domain (b) HDHB method

Figure 6: Frequency Variation - Supercritical Bifurcation at Linear Flutter Speed
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(a) Time domain MC (b) HDHB method response

Figure 7: Supercritical Bifurcation Response

Figure 8: Subcritical Bifurcation, Monte-Carlo from HDHB
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(a) LCO Amplitude (b) LCO Frequency

Figure 9: Amplitude and Frequency Response, V elocity Ratio = 0.96

to converge to the unstable branch, this subcritical behaviour is observed
in the vicinity of the nominal initial pitch value. Figure 9(b) shows the
LCO frequency response of the aerofoil where the two LCO branches are
characterised by the same frequency. Contrary to secondary bifurcations
where two stable LCOs exist with different frequencies[19], the subcritical
branch is unstable and is not a true physical solution, hence any point on
this branch subsequently jumps to the stable upper branch.

4.3. Goland wing

The Goland wing provides a relatively simple 3D model exhibiting several
complex aeroelastic phenomenon that are challenging to engineering predic-
tion methods. The wing has a rectangular plan-form with a span of 20ft and
6ft chord. The finite element model of the heavy version of the Goland wing
is described in [38] and is shown in Figure 10(a). The structural model used
in this work includes localised nonlinearities between the tip store attachment
stiffness and the wing. The nonlinearities are in the form of polynomial laws
for spring elements in the translational z-direction (Kz), and the rotational
y-direction (Kry) degrees of freedom which were shown to be the most sen-
sitive by reference[15]. The equations of motion for the Goland wing take
the same form as eq. (1). The external forces, F acting on the wing are
aerodynamic in nature. NASTRAN computes these forces in the modal do-
main using Doublet-Lattice method. Thus the wing is analysed in the modal
domain, this also significantly reduces the complexity of the problem[39].
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(a) Structural model (b) First 4 mode shapes

Figure 10: Goland wing

The transformation between the physical and modal space[40] is given as
{x} = [Φ] {q}, where Φ is the truncated matrix of eigenvectors, (nm modes,
extracted from NASTRAN) and q is a vector of nm modal coordinates.

The aerodynamic data is only computed for a range of discrete reduced
frequencies so it is represented as a rational function to maintain validity for
all values within this range[41]. For this investigation only four structural
modes are considered and are shown in Figure 10(b). The system in the
modal domain with modal coordinates, q is given as[15, 19]:

M̃φq̈+ C̃φq̇ + K̃φq +Knl(q) =
ρV 2

2

nl∑

i=1

[Ai+2] q̇ai (21)

where M̃φ, C̃φ and K̃φ are the aeroelastic system mass, damping and lin-
ear stiffness matrices, given by eq. B.1-B.3. Knl(q) is the nonlinear force
given by eq. B.4, A• represents the rationally approximated components of
the generalised aerodynamic matrix extracted from NASTRAN. q̇ai are aug-
mented terms arising from the Laplace domain treatment of the generalised
aerodynamic matrix and have the relationship:

q̈ai = q̇− V

b
ηiq̇ai (22)

The state space equation which is solved in the time domain is constructed
by combining eqs. (21) and (22), leading to:

ẇ +Asw + u = 0 = R (23)
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where

w =







q

q̇

−A3q̇a1

−A4q̇a2
...

−Anl+2q̇anl







, u =







0

M̃−1
φ ΦTKnl(q)

0

0
...
0







and

As =













0 −I 0 . . . . . . 0

M̃−1
φ K̃φ M̃−1

φ C̃φ M̃−1
φ

ρV 2

2
I . . . . . . M̃−1

φ
ρV 2

2
I

0 A3
V
b
η1I 0 . . . 0

0 A4 0 V
b
η2I

. . .
...

...
...

...
. . .

. . . 0

0 Anl+2 0 . . . 0 V
b
ηnl

I













Applying the HDHB method to eq. (21) yields the system:

[

M̃φE
−1
acc + C̃φE

−1
vel + K̃φE

−1
def

]

Q̂φ + E−1
defK̂nl −

ρV 2

2

nl∑

i=1

[Ai+2]E
−1
defQ̂ai = 0

(24)
E−1

acc, E
−1
vel and E−1

def are transformation matrices shown in Appendix B.

The complexity of both the nonlinear stiffness force, {K̂nl} and the decom-
posed generalised aerodynamic vectors, {Q̂ai} prevent the straightforward
representation of these terms in the frequency domain. Subsequently system
(24) is a time domain representation of the problem, where the nonlinear
terms are represented as reconstructed Fourier series, the Fourier coefficients
are formed using discrete Fourier transforms (DFT), computed numerically
from the expressions shown in eqs. B.9-B.14. Equation (24) is solved si-
multaneously for 2NH + 1 equally spaced time steps across one period with
ti =

i2π
2nH+1

, (i = 0, 1, ..., 2NH) to maintain temporal accuracy. A Newton-
Raphson scheme is employed and as in the previous cases; the response fre-
quency is maintained as a variable by locking the cosine Fourier coefficient
of the first harmonic of the first mode to zero.

4.3.1. Supercritical Bifurcations

Although global properties of the structure remain within a reasonably
small tolerance, localised structural properties between different units can
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vary substantially[42]. The cubic stiffness nonlinearity is varied to represent
this variability and is consistent with reference[15] where values over a range
of orders of magnitude are chosen.

For this case the linear stiffness matrix, K̃φ is multiplied by a scalar linear
stiffness coefficient given a value of 1 ± 10%, the cubic stiffness coefficient
in the rotational dof about the y axis was given a value of 1010. The cubic

stiffness in the z direction, βz is defined by the expression, 10
a
β
z , where the

exponent, aβz was the second uncertain parameter with a uniform distribu-
tion resulting in a variation of 10.95±5%. The damping matrix, C̃φ is given
a damping coefficient of 0.1. The response surfaces defined by these uncer-
tainties are displayed in Figure 11. As in the aerofoil case, the time domain
method does not reach a fully periodic state within the allowed computational
time, shown by the scatter of points in the response surface. Despite this,
there is good agreement between the time domain and the HDHB method.
It should be mentioned that, similar to the aerofoil case, the cubic stiffness
nonlinearity has no impact on the frequency behaviour of the LCO.

Figure 12 shows the response of the Goland wing with respect to the cor-
responding deterministic case. One harmonic was used in the HDHB method
for speed although fractionally smaller amplitudes are observed. In this case
a 5th order PCE was used, requiring 74 samples. Figure 12(b) shows the
HDHB-PCE agreeing with the MC results based on the time-integration for-
mulation. As before the mean values of the response are accurately predicted.
The simulations are ran for 100 seconds which is sufficient capture the impor-
tant, high amplitude points. Results near the bifurcation point are slightly
degraded, where the number of stable points is not well captured. The range
of cubic stiffness values has resulted in a distribution of amplitudes which
is skewed due to the concentration of stable points. It is also noted that
the amplitude mode value remains almost constant, not necessarily following
the increase in mean and deterministic results. Computational times for the
Goland wing are shown in Table 3.

4.3.2. Subcritical Bifurcations

The subcritical behaviour is obtained by including a pentic stiffness term
in the nonlinear restoring force vector as shown in eq. B.5. Note the cubic
terms are now also softening terms as in the aerofoil case. In this case the

pentic stiffness is given as: γz = 10
a
γ
z with a variation of aγz = 16.5 ± 5%.

The initial tip deflection, x0 is also varied, ie. x0 = 0.75in±100%. The other
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(a) Time domain MC (b) HDHB method MC

Figure 11: Goland wing response at 690fts−1

(a) Time domain MC (b) HDHB

Figure 12: Goland Wing Supercritical LCO
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Figure 13: Goland Wing Subcritical LCO Amplitude, HDHB-MC

nonlinear stiffness coefficients are defined as: βz = 1011.5, βry = 1010 and
γry = 1016.5. As in previous cases the variability is obtained from uniform
distributions.

The MC response of the subcritical Goland wing is shown in Figure 13.
The dashed line represents the unstable branches of the response. The light
colour bars show the response magnified by a factor of 10, to help clarify the
upper branch. Note that finite amplitude LCOs can still be encountered at
lower velocities than possible in the deterministic case, furthermore it is at
this velocity that the maximum amplitude is found, highlighting the impact
of variability on the LCO subcritical behaviour. In some ways the subcriti-
cal behaviour of the wing is analogous to the aerofoil: as the pentic stiffness
reduces, samples converge to the unstable branch, as shown by Figure 14.
The samples that converge to the stable branch are localised within a small
vicinity of the nominal value of the pentic stiffness. These samples are re-
sponsible for the largest variations in amplitude, emphasising the sensitivity
of the LCO to this parameter.

5. Conclusions

The influence of uncertainties in three nonlinear dynamical systems was
investigated, a one dof Duffing oscillator, a two dof aerofoil and a multiple
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Figure 14: Goland Wing Subcritical LCO response at 645fts−1

dof 3D wing. Each system was simulated using time domain and High-
Dimensional Harmonic Balance methods where a non-intrusive polynomial
chaos method was implemented and compared with Monte Carlo results.
The HDHB method showed strong potential by modelling the system at
a small fraction of the cost associated with time domain methods. The
PCE method proved extremely effective for smooth response surfaces and
showed significant reductions in cost in comparison with the Monte Carlo
simulation. The limitations of PCE were highlighted when discontinuous
behaviour was encountered as reproducing the bifurcation feature proved
difficult, stability issues were encountered at the variable space boundaries.
The subcritical behaviour of the aerofoil and Goland wing was investigated
using the HDHB method which could reproduce the hysteretic unstable LCO
branch. The unstable branch was characterised by lower values of the pentic
stiffness and the same frequency as the stable upper branch as it is not a true
physical solution. The variability of pentic stiffness can create the undesirable
behaviour whereby large amplitude oscillations are found at velocities below

Table 3: Computational times

Wall Clock (s)

Case Duffing Aerofoil Goland wing
Method MC PCE MC PCE MC PCE
Time domain 9984 272 8042 142 83410 621
HDHB, NR 123 5 136 9 27511 206
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the bifurcation point.
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Appendix A. Aerofoil Formulation

The A matrix used in eqs. (5) and (19) is given as:

A =










0
N1

N2

. . .

NNH










(2NH+1)×(2NH+1)

,Nn = n

[
0 1
1 0

]

, n = 1, 2, . . . , NH

The E and E−1 transformation matrices used in eqs. (6) and (20) are:

E =
2

2NH+1
















1/2 1/2 . . . 1/2
cos t0 cos t1 . . . cos t2NH

sin t0 sin t1 . . . sin t2NH

cos 2t0 cos 2t1 . . . cos 2t2NH

sin 2t0 sin 2t1 . . . sin 2t2NH

...
...

...
cosNHt0 cosNHt1 . . . cosNHt2NH

sinNHt0 sinNHt1 . . . sinNHt2NH
















and

E−1 =








1 cos t0 sin t0 . . . cosNHt0 sinNHt0
1 cos t1 sin t1 . . . cosNHt1 sinNHt1
...

...
...

...
...

1 cos t2NH
sin t2NH

. . . cosNHt2NH
sinNHt2NH








Q̂wi
, i = (1, 2, 3, 4) denote the Fourier coefficients of the aerodynamic force

generalising variables from system (19) where:

Q̂wi
=







ŵi
0

ŵi
1

ŵi
2
...

ŵi
2NH







and

w1 =
∫ t∗

0
e−ǫ1(t∗−σ)α(σ)dσ

w2 =
∫ t∗

0
e−ǫ2(t∗−σ)α(σ)dσ

w3 =
∫ t∗

0
e−ǫ1(t∗−σ)ξ(σ)dσ

w4 =
∫ t∗

0
e−ǫ2(t∗−σ)ξ(σ)dσ
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where ǫ1 = 0.0455 and ǫ2 = 0.3, also ψ1 = 0.165 and ψ2 = 0.335. The
matrices A1, B1, A2 and B2 from system (20) are given as:

A1 = c1ω
2A2 + c3ωA+ c6I+ c8(ωA+ ǫ1I)

−1 + c9(ωA+ ǫ2I)
−1 (A.1)

B1 = c0ω
2A2 + c2ωA+ c4I+ c10(ωA+ ǫ1I)

−1 + c11(ωA+ ǫ2I)
−1(A.2)

A2 = d1ω
2A2 + d2ωA+ d3I+ d7(ωA+ ǫ1I)

−1 + d8(ωA+ ǫ2I)
−1 (A.3)

B2 = d0ω
2A2 + d5ωA+ d6I+ d9(ωA+ ǫ1I)

−1 + d10(ωA+ ǫ2I)
−1(A.4)

Appendix B. Modal Models

The aeroelastic mass, damping and stiffness matrices are given as:

[

M̃φ

]

=

[

Mφ −
ρV 2

2

(
b

V

)2

A2

]

(B.1)

[

C̃φ

]

=

[

Cφ −
ρV 2

2

b

V
A1

]

(B.2)

[

K̃φ

]

=

[

Kφ −
ρV 2

2
A0

]

(B.3)

The nonlinear restoring force in the spatial domain for the supercritical and
subcritical cases respectively are given as:

Knl(q) =







0
...
0

−βz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})3
−βry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})3

0
...
0

βz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})3
βry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})3

0
...
0







(B.4)
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and

Knl(q) =







0
...
0

−γz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})5 + βz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})3
−γry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})5 + βry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})3

0
...
0

γz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})5 − βz([Φ(q1, :)] {q} − [Φ(q2, :)] {q})3
γry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})5 − βry([Φ(q3, :)] {q} − [Φ(q4, :)] {q})3

0
...
0







(B.5)
The transformation matrices used in eq. (24) are given as:

E−1
def =








[edef ]1 0 . . . 0

0 [edef ]2
. . .

...
...

. . .
. . . 0

0 . . . 0 [edef ]nm







, [edef ] = [1 cosωt . . . sinNHωt]

E−1
vel =








[evel]1 0 . . . 0

0 [evel]2
. . .

...
...

. . .
. . . 0

0 . . . 0 [evel]nm







, [evel] = [0 − ω sinωt . . . ωNH cosNHωt]

E−1
acc =








[eacc]1 0 . . . 0

0 [eacc]2
. . .

...
...

. . .
. . . 0

0 . . . 0 [eacc]nm







, [evel] =

[
0 − ω2 cosωt . . . − (ωNH)

2 sinNHωt
]
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The convolution integral of the inverse Laplace transform of the gener-
alised aerodynamic matrix yields:

q̇ai =

∫ t

0

q̇e−
V
b
ηi(t−t∗)dt∗, i = 1, . . . , nl (B.6)

Evaluating the integral gives

q̇ai = q̇
b

V ηi

(

1− e−
V
b
ηit

)

(B.7)

Here we are interested in the periodic solution only so the exponential term
is damped out which yields:

q̇ai = q̇
b

V ηi
, i = 1, . . . , nl (B.8)

The discrete Fourier transforms used in eq. (24) for the jth mode can be
given as:

q̂ai,j0 =
1

2π

∫ 2π

0

b

V ηi
(

NH∑

n=1

(−ωnq̂j2n−1 sinωnt+ ωnq̂j2n cosωnt))dt (B.9)

q̂ai,j2m−1 =
1

π

∫ 2π

0

b

V ηi
(

NH∑

n=1

(−ωnq̂j2n−1 sinωnt+ ωnq̂j2n cosωnt)) cosmt dt

(B.10)

q̂ai,j2m =
1

π

∫ 2π

0

b

V ηi
(

NH∑

n=1

(−ωnq̂j2n−1 sinωnt+ ωnq̂j2n cosωnt)) sinmt dt (B.11)

f̂ j
0 =

1

2π

∫ 2π

0

[Φ]TKnl(q)dt (B.12)

f̂ j
2m−1 =

1

π

∫ 2π

0

[Φ]TKnl(q) cosmt dt (B.13)

f̂ j
2m =

1

π

∫ 2π

0

[Φ]TKnl(q) sinmt dt (B.14)

for m = 1, ..., NH, {f̂j} =
[

f̂ j
0 f̂

j
1 . . . f̂ j

2NH+1

]T

and K̂nl =
[

f̂1 f̂2 . . . f̂nm

]T

.

The DFTs are computed numerically due to their complexity using a trape-
zoidal rule[43].
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Appendix C. Nomenclature

Appendix C.1. Roman Symbols

a polynomial coefficients for polynomial chaos expansions

b semi-chord

C structural damping matrix

CL lift coefficient

CM pitching moment coefficient

E time/frequency domain transformation matrix

F generalised external force matrix

J Newton-Raphson system Jacobian

k linear stiffness coefficient

K structural linear stiffness matrix

m structural mass

M number of independent continuous uncertain parameters

M structural mass matrix

nl Goland wing, number of lag variables in rational approximation

NH number of harmonics

q vector of modal deflections

qai decomposed generalised aerodynamic vectors, i = 1, ..., nl

Q solution vector

rα radius of gyration

Rn Newton-Raphson system residual vector at iteration n

Sn Newton-Raphson solution vector at iteration n
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t time

V freestream velocity

wi Wagner variables, i = 1, 2, 3, 4

x solution

xα distance between mass centre and elastic axis

x̂i Fourier coefficient of displacement, i = 1, ..., NH

Appendix C.2. Greek Symbols

α aerofoil pitch displacement, angle-of-attack

β cubic stiffness coefficient

γ pentic stiffness coefficient

Γ polynomial chaos basis functions

ǫi constants in Wagner’s function, i = 1, 2

ϕ polynomial chaos random variable

ζ damping ratio

η Goland wing, term from rational approximation of generalised aerody-
namic forces, i = 1, ..., nl

λ Newton-Raphson relaxation parameter

µ aerofoil air mass ratio

ξ aerofoil non-dimensionalised plunge displacement

ρ air density

Φ truncated matrix of eigenvectors

θ uncertain parameters

ω fundamental solution frequency

ω̄ aerofoil, frequency ratio, ω̄ = ωξ/ωα

31



Appendix C.3. Subscripts, Superscripts and Oversets

()ai decomposed generalised aerodynamic vectors

()L coefficient of lift

()M coefficient of pitching moment

()nl nonlinear force

()ry rotation about y axis dof

()wi
Wagner function representative aerodynamic variables

()x Duffing oscillator displacement

()z translation about z axis dof

()α aerofoil pitch dof

()ξ aerofoil plunge dof

()φ quantity in modal domain

()0 initial condition (when specified)

()∗ non-dimensionalised quantity

(̂) Fourier coefficient

(̃) equally spaced time domain solution
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