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ABSTRACT

Collisions are a vital part of the function of musical instru-
ments. They occur in various forms and during different phases
of oscillation, including transient and steady-state regimes.
The non-smooth nature of the nonlinearity inherent to objects
coming into contact and decoupling again poses several diffi-
culties when it comes to formulating numerical models. Be-
sides issues regarding numerical stability – that have recently
been handled using energy methods – questions arise about
how accurately different numerical schemes can approximate
the trajectories of colliding objects. This paper presents a
comparative analysis of two particular types of time-stepping
algorithms (namely a two-point, two-variable and a three-point,
one-variable scheme) employed to simulate contact between
a mass and a barrier. Focusing largely on cases for which the
exact solution is known, the schemes are evaluated in terms
of their ability to simulate the correct duration of contact.

1. INTRODUCTION

Many musical instruments feature mechanical collisions that
can be assumed elastic or semi-elastic, with the contact char-
acteristics determined mostly by the impact velocity and the
material and geometrical properties of the colliding objects.
Such collisions can be modelled by defining a repelling force
that is non-zero only for negative inter-object distance, which
corresponds to object compression. In music acoustics, this
contact force is often defined in power law form, the param-
eters of which determine the duration and level of the com-
pression. Having a physical basis in Hertzian contact theory,
it provides simpleandeffectivecontrolover the collision char-
acteristics, ranging from soft (e.g. hammer-string interaction
[1]) to hard collisions (e.g. string-bridge contact [2]).

Incorporation of power-law contact into time-stepping sche-
mes requires to observe the energy balance of the underlying
continuous-domain system, as otherwise numerical stability
issues may arise. Several methods for deriving energy-stable
schemes have been proposed recently, with the discretisation
performed over either a first-order [3, 4, 5] or a second-order
[6, 7, 8] form. A recent study on modelling distributed string-
barrier contact [9] has reported indications that the latter type
is more prone to spurious oscillations. The present study
makes further inroads into the understanding of the accuracy
of these schemes by investigating impactive contact between
a single mass and a barrier, focusing on errors in the contact
duration.
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Figure 1. Left: mass-wall collision where the penetration
argument y − yc is defined; Right: the equivalent physical
setting, showing the compression of the mass and the wall.

2. MASS-WALL COLLISION

Consider a (lumped) mass approaching a wall from below.
The collision force can be modelled using a one-sided power
law [10]. This may be formulated as

f(y) = −kc⌊(y − yc)⌋α, (1)

where y is the mass displacement, kc the collision stiffness, α
a power-law constant, yc the location of the wall and ⌊χ⌋α =
h(χ)χα, h(χ) being the Heaviside step function. Hence y−yc

corresponds to the compression of the colliding objects (see
Figure 1, noting that both the moving mass and the wall are
assumed to get compressed during collision). The net amount
of compression is controlled in the model by the contact pa-
rameters kc and α. For simplicity, in what follows yc is set
equal to zero. Defining the collision force potential as

V (y) =
kc

α + 1
⌊y⌋α+1 :=

kc

α + 1
G(y) (2)

the equation of motion for the mass m reads

m
d2y

dt2
= −∂V

∂y
(3)

hence the Hamiltonian (total energy) of the system is

H(y, p) =
p2

2m
+

kc

α + 1
⌊y⌋α+1, (4)

where p is the conjugate momentum, with

dH

dt
=

∂H

∂y

dy

dt
+

∂H

∂p

dp

dt
= kc⌊y⌋α p

m
+

p

m
m

d2y

dt2
(3)
= 0

(5)
so, in the absence of damping terms, the energy of the system
remains constant.
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Figure 2. Three-point (top) and two-point (bottom) temporal
stencils.

2.1. Discretisation

Two different starting points may be used for the discretisa-
tion of the above problem. Either Newton’s equation of mo-
tion (3) can be directly discretised, or the problem can be
first written using Hamilton’s equations [11]. The former ap-
proach requires the numerical solution of a single, second-
order differential equation, whereas the latter is based on the
solution of two first-order equations, namely

dy

dt
=

∂H(y, p)

∂p
=

p

m
, (6a)

dp

dt
= −∂H(y, p)

∂y
= −∂V (y)

∂y
. (6b)

Note that this first order form can be also obtained from the
Newtonian description, by reducing the single second-order
differential equation (3) to two first-order ones (see, e.g. [12]).

Discretising Newton’s equation of motion (as in [6]) yields
the following numerical scheme

yn+1 − 2yn + yn−1 = −β3
G(yn+1) − G(yn−1)

yn+1 − yn−1
, (7)

where β3 =
(
kc∆t2

)
/
(
m(α + 1)

)
and yn denotes the value

of variable y at time n∆t, with ∆t = 1/fs (fs being the sam-
pling rate). Equation (7) can be said to form a three-point,
one-variable scheme, since its temporal stencil encompasses
three grid points (see Figure 2 top). On the other hand, dis-
cretising Hamilton’s equations using mid-point derivative ap-
proximations and setting qn = pn∆t/(2m) (see [4]) yields

yn+1 − yn = qn+1 + qn (8a)

qn+1 − qn = −β2
G(yn+1) − G(yn)

yn+1 − yn
, (8b)

which is a two-point, two-variable scheme1 (see Figure 2 bot-
tom) with β2 = β3/2. Both schemes (7) and (8) are written
in terms of two parameters, namely α and βκ, κ = 2, 3, and
can be shown to be second order accurate2 for α > 1, as well
as numerically stable for βκ ≥ 0 (see [4, 10]) which holds
unconditionally. The equations are nonlinear due to the pres-
ence of the collision term and may be solved using an iterative

1Note that, as explained in [4], under linear conditions this scheme is
equivalent to both the trapezoidal rule and the implicit mid-point rule. How-
ever, in the presence of nonlinear forces, such as those acting during colli-
sions, all three schemes are distinct (and only (8) is energy conserving).

2for α = 1 only first order accuracy can be inferred, since G(y) is not
twice differentiable at y = 0.
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Figure 3. Mass displacement for a ‘soft’ (left) and a
‘hard’ collision (right). The red dashed curve corresponds to
the three-point scheme and the blue curve to the two-point
scheme, whereas the black line represents the exact solution.

method (such as Newton’s method). Figure 3 shows simula-
tions of a softer (α = 1, kc = 109) and a harder collision
(α = 1, kc = 1010) of a 1 kg mass approaching a barrier
from below with initial displacement y(0) = −0.1 mm and
velocity v(0) = 1 m/s. The sampling rate is fs = 50 kHz.

In both plots, a difference in the contact duration τc is
observed. This appears to be a systematic phenomenon that
is particularly significant for hard impacts. One way to get
insight into what causes these differences is to consider, for
each scheme, whether it is possible to ‘exit’ the wall immedi-
ately after entering it. For the three-point scheme, this amounts
to investigating the mapping in equation (7). Exiting the wall
one time step after entering implies { yn−1 ≤ 0, yn >
0 } ⇒ yn+1 ≤ 0. Defining yn−1 = −δ and yn = ǫ, with
δ ≥ 0, ǫ > 0, equation (7) can then be written as

yn+1 = 2ǫ + δ − β3
G(yn+1) − G(−δ)

yn+1 + δ
. (9)

Considering the form of the collision potential and requiring
yn+1 to be nonpositive yields yn+1 = 2ǫ + δ > 0 which is a
contradiction. Hence, under the three-point scheme the mass-
wall interaction can never be confined to a single time-step.
On the other hand, if both yn−1, yn > 0 then the resulting
equation (assuming yn+1 ≤ 0 and setting yn−1 = η > 0)
reads

yn+1 = 2ǫ − η − β3
G(η)

η − yn+1
, (10)

which is of indeterminate sign. Hence, after having remained
within the barrier for two time steps, the mass has the possibil-
ity to exit at the next time step. Hence, the minimum contact
duration that this scheme can simulate is equal to 2∆t, (i.e.
τc ≥ 2∆t).

For the two-point scheme a similar calculation can be per-
formed to show that τc ≥ ∆t. The numerical scheme (8) may
be written as

yn+1 = yn + 2qn − β2
G(yn+1) − G(yn)

yn+1 − yn
. (11)

The condition for a collision to occur is that, in the absence
of a contact force, the mass will ‘enter’ the barrier at the next
time step, which is equivalent to
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Figure 4. Detail of the mass displacement across the barrier
in the case of a hard collision. Notice that only the two-point
scheme simulates an impact force of a single time step.

{ yn ≤ 0, qn > 0 } ⇒ ŷn+1 > 0, where ŷn+1 is the virtual
displacement at the next time step had the collision force not
been present (i.e. for β2 = 0). Defining yn = −ζ and qn = µ,
with ζ ≥ 0, µ > 0 leads to

ŷn+1 = 2µ − ζ > 0. (12)

We proceed to show that in the presence of a contact force the
mass will spend at least one time instant within the barrier (i.e.
yn+1 > 0). Assume that this is false and yn+1 ≤ 0. Then

yn+1 = 2µ − ζ − β2
G(yn+1) − G(−ζ)

yn+1 + ζ
= 2µ − ζ

(12)
> 0,

(13)
which is a contradiction. Hence yn+1 > 0 and τc ≥ ∆t.

Furthermore, it can be shown that after having spent one
time instant within the barrier, the mass has the possibility to
exit the barrier (with the following displacement value being
of indeterminate sign). So any contact duration higher than
∆t may be simulated by the two-point scheme. This is visu-
alised in Figure 4, which shows the details of a contact with
(α = 1, kc = 1011), the remaining parameters being as in
Figure 3. The fact that the two-point scheme may simulate
shorter contact durations results in a smaller error compared
to the three-point scheme. This error comparison is further
discussed in the next section where the possibility of simulat-
ing the correct contact duration is explored.

3. EXACT SOLUTION FOR α = 1

For α = 1, and initial conditions y(0) = −d, v(0) = v0, an
exact solution can be obtained in the form of a continuous,
twice differentiable piecewise function

y(t) =





−d + v0t : 0 ≤ t < t1
v0

ωc
sin

(
ωc(t − t1)

)
: t1 ≤ t < t2

−v0(t − t2) : t ≥ t2

, (14)

where t1 = d/v0 and t2 = t1 + τc are the time of impact
and release, respectively, and where ωc =

√
kc/m is the nat-

ural frequency that would occur if the potential in (2) was
always ‘active’, i.e. if V (y) = 1

2kcy
2. The contact duration is

τc = π/ωc, which corresponds to a half cycle of a sinusoidal
waveform of frequency ωc.

Both schemes presented in the previous section can – within
certain limits – be made exact in terms of this contact dura-
tion (i.e. having the correct natural frequency ωc). For the

two-point scheme this is achieved via the substitution

β2 → β∗
2 =

1 − cos(ωc∆t)

1 + cos(ωc∆t)
, (15)

with the constraint that ωc < π/∆t, as otherwise the natu-
ral frequency exceeds the Nyquist frequency (i.e. is aliased).
This substitution, that can be derived using frequency-domain
analysis (see, e.g. Sec. 2.3 in [5]), ensures that the numerical
scheme has the correct contact duration. Note that numerical
stability is not affected, because the condition β∗

2 ≥ 0 is still
satisfied unconditionally. The non-aliasing constraint trans-
lates to a lower bound τc > ∆t on the contact duration.

For the three-point scheme the equivalent substitution to
obtain the correct contact duration (again for α = 1) is

β3 → β∗
3 =

1 − cos(ωc∆t)

cos(ωc∆t)
. (16)

However another, more severe constraint ωc < 1
2π/∆t ap-

plies now, because otherwise β∗
3 is not guaranteed to be non-

negative. This stability constraint translates to a lower bound
τc > 2∆t on the contact duration. Hence both schemes can
be made exact in terms of their oscillatory behaviour (see Fig-
ure 5) up to a minimum contact duration (for a given sampling
rate) which is twice as small for the two-point scheme, in com-
parison to the three-point scheme. When it is required to sim-
ulate contacts with durations shorter than this lower bound
this substitutions can only be performed to the limit that alias-
ing is avoided and βκ remains non-negative. Hence an error is
introduced which can be quantified as the difference between
the exact and the simulated contact duration.

Note that these lower bounds on τc are in agreement with
those calculated in the previous section from the discrete up-
date equations, for arbitrary values of α. Figure 6 shows (for
the parameters of the hard collision in the previous section)
the minimum contact duration that may be exactly simulated
using each scheme, as a function of the sampling rate. The
bottom plot shows the error that is introduced by each approx-
imation when shorter durations need to be simulated.

From the above analysis it can be extracted that (1) the
two-point scheme can exactly simulate contacts of durations
twice as short as the three-point scheme and (2) when even
shorter contact durations need to be simulated the error intro-
duced by the three-point scheme is significantly larger.
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Figure 5. Detail of the mass displacement across the barrier
when the corrected values β∗

2 and β∗
3 are used for ωc = 44700

rad/s.
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line indicates an example target duration. Bottom: the error
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simulated exactly for a given sampling rate.

4. CONCLUSIONS

In this paper two different schemes (that have recently seen
much application in simulation of musical instrument contact
dynamics) have been analysed, based on their ability to sim-
ulate the colliding mass trajectory. In particular, it has been
shown that different results are obtained, especially for hard
collision cases, where the reference contact duration is of the
order of the sampling interval.

In the context of music acoustics research, the ability of
a numerical scheme to accurately model the contact duration
time can be important. Note onsets are often related to im-
pactive excitations, so simulations of transients may be af-
fected by inaccuracies in the underlying collision model. Fur-
thermore, when repeated impacts are simulated (as is the case
for example in instruments involving string-barrier collisions,
such as a sitar or a snare drum) the periodicity and/or spec-
tral evolution are affected by the contact duration (see, for
example, [13]). So in general, the time step has to be cho-
sen sufficiently small to enable to compute the results for a
particular study without significant error. As such it is advan-
tageous if the required accuracy can be achieved with a lower
sample rate, which is what the two-point scheme offers over
the three-point scheme.

An interesting future research direction would be to inves-
tigate whether and how model parameters could be set to bet-
ter approximate contact durations for cases when α > 1. An-
other question that arises from this study is to what extent the
differences between two-point, two-variable and three-point,
one-variable schemes are potentially significant for other types
of musical instrument nonlinearity and/or for time-variant com-
ponents of musical instruments.
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