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Application of a high-order CFD harmonic balance

method to nonlinear aeroelasticity

Weigang Yao, Simão Marques1,

School of Mechanical and Aerospace Engineering

Queen’s University Belfast, Belfast, UK, BT9 5AH

Abstract

An Aeroelastic-Harmonic Balance (A-HB) formulation of the Euler flow equa-

tions using a high-order spatial discretization scheme coupled with structural

dynamic equations is proposed. The main objective of this new approach

is to drammatically reduce the computational cost required to predict un-

steady, periodic problems such as limit cycle oscillations (LCO). To this end,

a new solver based on the Monotonicity Preserving limiter together with the

AUSM+-up flux function is developed for the harmonic balance equations.

The use of high-order CFD schemes allows the reduction of the number of

degrees of freedom required to achieve a given desired accuracy, with respect

to lower order schemes. In this paper, the reduction in degrees of freedom

of the fluid system is exploited in the context of a CFD based Harmonic-

Balance framework using a frequency updating procedure to determine the

limit cycle conditions. The standard A-HB methodology has shown over

one order of magnitude speed-up over time-marching methods; by employing

the proposed high-order scheme in conjunction with coarser grids, the LCO
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computational time is halved without compromising accuracy.

Keywords: Aeroelasticity, Harmonic Balance, Limit Cycle Oscillations,

CFD, High-Order, Nonlinear.

1. Introduction

The stability of aeroelastic dynamic systems can be determined using

several methods. Classical approaches, such as the doublet lattice method

introduced by Albino and Rodden [1] or vortex lattice methods [36] can be

coupled with a structural dynamics model and used to predict the flow re-

sponse in the frequency domain. With the increase of computer power and

advent of reliable Computational Fluid Dynamic (CFD) coupled with Com-

putational Structural Dynamics (CSD) software, it has become possible for

aeroelastic stability analyses to include nonlinear aerodynamic effects, such

as shock-waves at transonic Mach numbers [10]. This has enabled the pre-

diction of the so called transonic dip in the flutter boundary [43]. Flutter

instabilities usually correspond to Hopf-type bifurcations, i.e. for a dynamic

system, stability is lost when a pair of complex conjugate eigenvalues of the

respective Jacobian cross the imaginary axis. The presence of aerodynamic

and/or structural nonlinearities can often limit the growth of these oscilla-

tions, resulting in LCO and a nonlinear dynamic system.

Despite the availability of full order CFD-CSD unsteady simulations and

their general applicability to nonlinear dynamic systems, the computational

cost of this approach, as shown in references [10, 43], prevents their routine

use. The need to model and predict LCO, prompted the development of

nonlinear Reduced Order Models (ROM) techniques, for example: recursive
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neural networks [21, 26, 49], piecewise-linear model [50], Discrete Empirical

Interpolation Model (DEIM) [5]. Typically, ROMs are developed in the time

domain, which is consistent with the unsteady or time dependent nature

of the CFD-CSD system. Therefore, most of these methods require the

computation of the transient response until the system reaches a periodic

motion several times. In many cases, such as for LCOs, the transient is

trivial and unnecessary. An alternative to ROMs is to further manipulate

the full order system solution to reduce the cost of determining the stability

or behaviour of the dynamic system. For example Badcock and Woodgate

[2] and Badcock et al.[3] used eigenvalue analyses to determine the linear

stability (i.e. occurrence of flutter) for a nonlinear CFD-CSD steady-state;

with the critical eigenvalue and eigenvector found, the authors proposed using

Taylor series expansions of the aeroelastic residual and project the terms onto

the critical eigenvector to build a small order nonlinear model for simulating

LCO. For time-periodic problems another alternative method in this category

is the Harmonic Balance (HB) approach [14, 38]. For periodic motions, it

becomes attractive to convert a time dependent model into the frequency

domain through Fourier expansions. In doing this, only the periodic response

is computed using a determined frequency and the transient simulation is

cut off automatically. Fourier expansions can be adequately truncated to a

handful of harmonics and the Fourier coefficients can be solved or balanced

analytically for relative simple systems such as a Duffing oscillator [16, 22],

however it is barely possible to derive corresponding Fourier coefficients for

CFD systems. Hall et al.[14] proposed a high dimension HB formulation,

which casts the Fourier coefficients back into the time domain and the final
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model is evaluated at discrete time slices or sub-levels. Thomas et al.[38]

demonstrated the capability of this HB approach for LCO prediction. Other

applications of the HB method include turbo-machinery flows [8, 33], rotor-

craft flows [46] and forced motions [15, 45].

The application of HB methods requires a priori knowledge of the mo-

tion’s frequency. Hence, for oscillations where the frequency is also unknown,

e.g. LCO, the frequency becomes an additional variable and must be solved

for simultaneously with the remainder of the system variables. Thomas et

al. proposed a Newton-Raphson method to overcome this limitation of HB

methods with success [38, 40]; however, as complexity increases approximat-

ing the Jacobian of the HB system for the Newton-Raphson scheme can

become significantly more difficult. Recognizing this fact, Ekici and Hall [8]

proposed an alternative “one-shot” method to solve for the frequency and

demonstrated the method for a single degree-of-freedom (DoF) rotor. It has

also been found that for structural models with multiple DoF and requiring a

high number of harmonics, the convergence rate of the method deteriorates,

rendering it less attractive. Recently, Yao and Marques proposed an alterna-

tive approach that overcomes this limitation and improves the ability of HB

methods to predict LCO for complex systems [48].

Applications of high-order CFD methods to dynamic aeroelastic problems

are scarce. In one exception, Wang and Zha employed a 5th order WENO

scheme to predict LCO for the NLR7301 airfoil, where the authors exploit the

high-order scheme low diffusion characteristics to capture very small ampli-

tude oscillations [41]. In the current paper, a different motivation to employ

high-order CFD discretizations in dynamic aeroelastic problems is presented.
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Current efforts aim to implement a CFD high-order scheme, more specifically

the Monotonicity Preserving (MP) scheme described in reference [37], into

the A-HB solver from reference [48] to dramatically reduce computational

cost. By introducing a high-order CFD method, it is possible to reduce the

number of DoFs of the fluid system. Unlike for conventional time integration

methods [18, 35], the reduction in DoFs required to achieve a given accuracy

permitted by the high-order method leads to a significant computational cost

reduction, due to the reduction in size of the HB source term.

The paper is organized as follows: first, the fluid and structural mod-

els and respective discretizations are described; this is followed by the high

dimension HB formulation for CFD-CSD systems and associated LCO pre-

diction strategy. In section 4.1, the high-order based HB solver is validated

against a forced motion case. The high-order HB solver along with the novel

algorithm for LCO predictions is demonstrated in section 4.2, attesting to the

method’s efficiency. Finally, the paper summarizes and assesses the results

obtained and outline the plans for future work.

2. Governing Equations

2.1. Fluid Equations

For aeroelastic problems it is necessary to compute the fluid forces acting

on a structure and reflect the structural deformation in the fluid calculation,

thus the fluid domain is now time dependent. To account for the time-

dependent domains with moving boundaries, the compressible fluid Euler

equations are solved using an Arbitrary Lagrangian-Eulerian (ALE) formu-
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lation:

dw

dt
= −R(w) (1)

R(w) =
∂F

∂x
+

∂G

∂y
+

∂H

∂z
(2)

The fluid domain is divided into non-overlapping cells and by applying the

finite-volume approach, for a control volume Vj with surface dS results in:

d

dt

∫

Vj(t)

wjdV +

∮

∂Vj(t)

Q · n dS = 0 (3)

and

Q · n = (F−wug)nx + (G−wvg)ny + (H−wwg)nz (4)

where w = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved variables and the

over-bar denotes the control volume average quantities, ρ is the density and

E is the energy, (u, v, w) and (ug, vg, wg) are the Cartesian flow and grid ve-

locities components, respectively; n = (nx, ny, nz) is the outward unit normal

of every cell edge. The fluxes, F, G, H, are given by:

F =























ρu

ρuu+ p

ρuv

ρuw

u(ρE + p)























, G























ρv

ρvu

ρvv + p

ρvw

v(ρE + p)























, H =























ρw

ρwu

ρwv

ρww + p

w(ρE + p)























(5)

the pressure, p, is obtained from the ideal gas law:

p = (γ − 1)ρ

[

E −
1

2
(u2 + v2 + w2)

]

(6)
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where γ represents the ratio of specific heats for a diatomic gas (γ = 1.4).

A Transfinite Interpolation (TFI) method is adopted to deform the mesh to

reflect the structural response [7]. The flow problem is completed by using

two types of boundary conditions: inviscid solid wall for surfaces correspond-

ing to the object of interest and a far-field condition. At the invisicid solid

wall, the normal velocity is set to zero, therefore the fluxes are zero; for the

far-field, a non-reflection boundary condition is assigned based on one dimen-

sional Riemann characteristic variables, as described by Jameson et al.[17].

To achieve higher orders of accuracy, the flux variables are interpolated at

the cells’ interface using a MP scheme, described in the following section.

The flux itself is computed using the AUSM+-up flux function described in

section 2.1.2. The time integration is obtained by using the HB method de-

scribed in section 3 or by using a classical explicit third-order Total Variation

Diminishing Runge-Kutta scheme [12].

2.1.1. High-Order reconstruction and the Monotonicity-Preserving scheme

The state-of-the-art linear high-order reconstruction approaches are nor-

mally based on Taylor series expansions and use appropriate stencils to

achieve the desired level of accuracy. Following Suresh and Huynh [37], the

MP limiter or MP scheme is adopted to improve numerical stability in dis-

continuous regions, shock-waves and contact discontinuities. The formula for

an arbitrary order of accuracy interpolation stencil can be described as (for

the sake of simplicity, the over-bar to designate the cell average is omitted

from this point onwards):

wj+1/2 = bm1
wj−m1

+ . . .+ b−1wj−1 + b0wj + b1wj+1 + . . .+ bm2
wj+m2

(7)
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where b,m1 and m2 depend on the order of accuracy and bias required. A

diagrammatic view of the stencils used in this work is shown in Figure 1 and

the coefficients required to complete eq.(7) are given in Appendix A.

j

j+1 j+2 j+3 j+4

j-1j-2j-3j-4

j+5

j+1/2

MP3LMP5LMP7L

MP3R
MP5R

MP7R

Figure 1: MP Scheme left and right stencils for 3rd, 5th, 7th-order accuracy interpolation

Following reference [37], the rest of the formulæ for the MP limiter, to

obtain the final interface value, w̆j+1/2, is as follows:

w̆j+1/2 =







wj+1/2, if
(

wj+1/2 −wj

)

(

wj+1/2 −w
MP
j+1/2

)

< ε

wj+1/2 +minmod
(

w
min
j+1/2 −wj+1/2,w

max
j+1/2 −wj+1/2

)

, otherwise
(8)

with






































































































wMP
j+1/2 = wj +minmod [wj+1 −wj, 4 (wj −wj−1)]

wmax
j+1/2 = min

[

max
(

wj,wj+1,w
MD
j+1/2

)

, max
(

wj,w
UL
j+1/2,w

LC
j+1/2

)]

wmin
j+1/2 = max

[

min
(

wj,wj+1,w
MD
j+1/2

)

, min
(

wj ,w
UL
j+1/2,w

LC
j+1/2

)]

wUL
j+1/2 = wj + 4 (wj −wj−1)

wLC
j+1/2 =

1

2
(3wj −wj−1) +

4

3
dMj−1/2

wMD
j+1/2 = wAV +

1

2
dMj+1/2

wAV =
1

2
(wj +wj+1)

dMj+1/2 = minmod(4dj − dj+1, 4dj+1 − dj, dj , dj+1)

dj = wj−1 +wj+1 − 2wj

(9)
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2.1.2. AUSM+-up Flux Function

In this work, the AUSM+-up flux functions introduced by Liou [23] are

used. The original AUSM scheme and subsequent improvements were mainly

motivated by the need to accurately capture shocks and contact discontinu-

ities. High-order methods based on the AUSM+-up scheme have received

limited attention from the community, but promising results have been re-

ported over a range of problems including high Mach numbers and contact

discontinuities [30]. In this work the AUSM+-up is applied to transonic flows

using the high-order interpolation described in the preceding section.

The flux function is based on extrapolating Left and Right states of the

cells’ interface, referred to by the superscripts (L,R) respectively, and is given

by:

Fj+1/2 =







ṁL
1/2Ψ

L
1/2 + P1/2, if M1/2 ≥ 0

ṁR
1/2Ψ

R
1/2 + P1/2, otherwise

(10)

where

Ψ =























1

u

v

w

(ρE + p)/ρ























; P = p























0

nx

ny

nz

0























;

and

ṁ1/2 = a1/2M1/2







ρL, if M1/2 ≥ 0

ρR, if otherwise
(11)

a1/2 and M1/2 are the speed of sound and Mach number computed at the

interface, the remaining formulæ are provided in Appendix B.
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Previous work has shown that interpolations based on the conservative

and also primitive variables of the Euler equations, lead to excessive under-

and over-shoots in the solution near strong discontinuities, interacting shocks

or near reflecting boundaries [28, 30]. To mitigate any excessive oscillatory

behaviour, the conservative variables are transformed into characteristic vari-

ables before the high-order interpolation [9, 30, 32].

2.2. Structural Dynamics Equations

Consider a generic dynamic system without damping, whose behaviour

can be described using the equation of motion given by:

Mξ̈ +Kξ = f (12)

where M, K, respectively represent the mass and the stiffness of the system,

ω is the frequency of oscillation, ξ is the structural displacement and f is an

external force. In this work the external force corresponds to the aerodynamic

forces and moments, e.g.: lift, pitching moment. The aerodynamic forces are

computed from the CFD solution, by integrating pressure along the solid

wall. Equation12 can be transformed into a state-space form, giving:

Θ̇ = AsΘ+Bsf (13)

where:

As =





0 I

−M−1K 0



 , Bs =





0

M−1



 , Θ =





ξ

ξ̇



 (14)

3. Aeroelastic Harmonic Balance Formulation

This work focuses on the analysis of periodic aeroelastic instabilities or

Limit Cycle Oscillations. Therefore, it is assumed the aeroelastic system is
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vibrating at a fundamental frequency ω, originating a period of oscillation

of T = 2π/ω. This periodicity enables the application of the so called HB

techniques discussed in the introduction. The description of the procedure

followed to analyse a time-dependent periodic system using the HB method-

ology is as follows: consider the semi-discrete form of the fluid equations in

eq.(1),

Ij(t) =
d (Vjwj(t))

dt
+Rj(t) = 0 (15)

assuming the flow, respective residuals and element deformation are periodic

and a function of the fundamental frequency they can be expanded, as a

Fourier series in time with spatially varying coefficients:

wj(t) = ŵj,0 +
∞
∑

n=1

(ŵj,2n−1 cos(nωt) + ŵj,2n sin(nωt)) (16)

Rj(t) = R̂j,0 +
∞
∑

n=1

(R̂j,2n−1 cos(nωt) + R̂j,2n sin(nωt)) (17)

note that wj and Vj can be multiplied together and this product is repre-

sented in eq.(16). The Fourier series can be truncated by retaining the first

NH harmonics. For clarity purposes the cell index j is dropped.

w(t) ≈ ŵ0 +

NH
∑

n=1

(ŵ2n−1 cos(nωt) + ŵ2n sin(nωt)) (18)

R(t) ≈ R̂0 +

NH
∑

n=1

(R̂2n−1 cos(nωt) + R̂2n sin(nωt)) (19)

Hence, the solution to eq.(15) can also be approximated by a truncated

Fourier series,

I(t) ≈ Î0 +

NH
∑

n=1

(Î2n−1 cos(nωt) + Î2n sin(nωt)) (20)
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by considering the time derivative, the following system of equations is ob-

tained:


















Î0 = R̂0

Î2n−1 = ωnŵ2n + R̂2n−1, n = 1, . . . , NH

Î2n = −ωnŵ2n−1 + R̂2n

(21)

Equation (21) represents a system of NT equations (NT = 2NH + 1) for the

Fourier coefficients that can be expressed in matrix form as:

ωAŵ + R̂ = 0 (22)

where A is given by:

A =

















0

J1

. . .

JNH

















NT×NT

, Jn = n





0 1

−1 0



 , n = 1, 2, . . . , NH(23)

Solving eq.(22) becomes increasingly difficult as more harmonics are retained,

due to the difficulty in finding analytical relations between R̂ and ŵ. To cir-

cumvent this problem, Hall et al.[14] proposed to cast the system of equations

back into the time domain, where the flow variables and residual solutions

are split into NT , discrete, equally spaced intervals over the period T .

whb =

















w(t0 +∆t)

w(t0 + 2∆t)
...

w(t0 + T )

















, Rhb =

















R(t0 +∆t)

R(t0 + 2∆t)
...

R(t0 + T )

















(24)
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The time increment is defined as ∆t = T/NT . It is possible to relate the

frequency domain variables to their HB time domain counterpart by a trans-

formation matrix, E , such that:

ŵ = Ewhb R̂ = ERhb (25)

Returning to eq.(22) and using the terms from eq.(25):

ωAŵ + R̂ = 0 = ωAEwhb + ERhb = ωE−1AEwhb +Rhb =

= ωDwhb +Rhb = 0 (26)

where D = E−1AE, the elements in matrix D are given by, [45]:

Di,k =
2

NT

NH
∑

n=1

n sin

(

2πn(k − i)

NT

)

(27)

Expressions for the transformation matrix E and its inverse E−1 are given

in Appendix C. To solve eq.(26), a pseudo time variable, τ, is introduced

leading to the following equation:

dwhb

dτ
+ ωDwhb +Rhb = 0 (28)

Equation (28) can be solved iteratively using standard steady-state CFD time

marching methods. In this work an explicit four-stage Runge-Kutta scheme

is employed. The solution to eq.(28) corresponds to the flow solution at NT

equally spaced time sub levels. The Fourier coefficients can be obtained by

applying the transformation matrix E, and the flow field can be recovered at

any time level by using Fourier expansions on the flow variables.

The process to obtain the HB equations for the fluid problem can also be

applied to eq.(13), originating the following system:

ωDΘhb + (AsΘhb +Bsfhb) = 0 (29)
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Recall that in this work the fluid and structural systems are coupled through

the displacements predicted by the structural equations of motion and fluid

forces, f , hence ω and D in eq.(29) are the same as the terms in eq.(28).

3.1. Prediction of Limit Cycle Oscillations

The quantification of LCO characteristics requires determining the fre-

quency and amplitude of the motion, i.e. [ω,Θ], while satisfying the aeroe-

lastic equations described in the preceding section. As discussed in the intro-

duction, Yao and Marques [48] proposed a new method to predict LCO for

systems with multiple structural degrees-of-freedom, which is summarised

next. The objective is to converge the aeroelastic equations to the LCO

condition by updating the frequency using a fixed point algorithm. The

frequency is updated by minimizing the L2-norm of the structural residual,

Rs:

Ln =
1

2
Rs

TRs =
1

2
[ωDΘ− (AsΘ+Bsf)]

T [ωDΘ− (AsΘ+Bsf)] (30)

using the first order derivative:

∂Ln

∂ω
=

(

DΘ−Bs
∂f

∂ω

)T

[ωDΘ− (AsΘ+Bsf)] (31)

For a given vector [Θ, f ], the frequency can be solved directly by manipu-

lating the small matrices in eq.(31). Numerical experiments show that the

aerodynamic derivative term,
(

∂f
∂ω

)

, is critical to the efficiency of this method.

At each iteration new residuals are computed using the new estimate for the

frequency, until a convergence criteria is met. The algorithm is depicted in

the flow chart shown in Figure 2.
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Figure 2: LCO prediction algorithm.
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4. Numerical Examples

4.1. AGARD CT5

Several test cases have been developed to assess the ability of flow solution

methods to capture unsteady flows. In this section, the scheme implemented

in the HB framework is tested using the forced motion case AGARD CT5.

This case describes a sinusoidal pitching NACA 0012 aerofoil about the

quarter chord, and it has been used extensively for code validation [6]. Flow

conditions are summarised in Table 1, where M∞ is the free stream Mach

Table 1: AGARD-CT5 Case Parameters

Case M∞ αm α0 k xm

CT5 0.755 0.16◦ 2.51◦ 0.0814 0.25

number, αm, α0 represent the mean and initial angles of attack respectively,

k is the reduced frequency and xm is the pivot location.

As illustrated by Figure 4, an O-type grid is adopted for all calculations

with three levels of refinement. First, a standard second order method using

a second order MUSCL scheme (MUSCL2) with the van Albada limiter [19]

is employed to determine the minimum number of harmonics required for this

problem using the medium size grid with 61× 21 points (61 points along the

surface, 21 points in the normal directions to the surface) - the grid conver-

gence for this problem was performed by the authors in reference [48]; time

domain results obtained using a second order backward Euler algorithm with

dual time stepping are also included. The comparison with the experiment

results from reference [6] and shown in Figure 4, indicates that 5 harmonics
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are required to represent the pitching moment orbit, using a medium size

grid, results obtained using a fine grid are included for completeness.

This case was also computed using the MP scheme on a coarser grid

(31×11 points). A comparison with results from the second order scheme are

presented in Figure 5. All methods are able to provide reasonable predictions

for the lift coefficient, CL; however, a clear discrepancy in the moment coef-

ficient, CM , is observed when using the coarse grid for the MUSCL scheme.

Results computed by third and fifth-order MP scheme (MP3, MP5) show

a gradual improvement in accuracy, and the MP5 result is considered to be

sufficient to resolve this problem. The convergence of the integrated loads for

this case is provided in Figure 6 and the L2-norm for the lift coefficient for

different orders of accuracy with respect to the fine grid (121× 41) solution

obtained with the MUSCL scheme is shown in Figure 7.

To examine the ability of the proposed new scheme to predict flow fea-

tures, the surface pressure coefficient is plotted for the maximum lift position

in Figure 8 and at three different times instances of the motion cycle. Re-

sults in Figure 8-(a) indicate that the MP5 and MUSCL2 schemes on the

medium grid to be converged and the solution deteriorates slightly for the

MP5 scheme on a grid with 31× 11 points. Increasing the order of accuracy

on the coarsest grid, has limited impact on the solution at this point on the

cycle, Figure 8-(b). Figure 9 shows the surface pressure coefficient distribu-

tion obtained with a medium and coarse grid, clearly showing the differences

when using the higher order scheme on the coarse grid. The above results

validate the high-order MP scheme implementation in the HB solver and lay

the foundations for the following aeroelastic computations.
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Figure 3: NACA 0012 Aerofoil O-grid - 61× 21 grid points

Figure 4: Harmonic convergence study - 61× 21 grid points
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Figure 5: Lift and moment coefficient computed by using different grid sizes retaining 5

harmonics

Figure 6: Lift and pitching moment coefficients convergence history - MP5-HB retaining

5 harmonics
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4.2. LCO Computations

4.2.1. Pitch/Plunge Aerofoil

A two-DoF aeroelastic system based on the symmetric NACA 64A010

aerofoil is used to investigate the prediction of LCO using the high-order A-

HB solver. Following Thomas et al. [38] the non-dimensional form of eq.(12)

for this problem becomes:

MΘ̈+
1

V 2
KΘ =

4

πµ
f (32)

the pitch-plunge aerofoil structural parameters are given by:

M =





1 xα

xα r2α



 , K =







(

ωh

ωα

)2

0

0 r2α






, f =





−Cl

2Cm



 ,

Θ =





h

b

α



 , V =
U∞

ωαc

with the remainder parameters given in Table 2. The plunge direction is

represented by h and pitch by α with the respective frequencies ωh and ωα,

21



Sα, Iα being the first and second moments of inertia of the aerofoil about the

elastic axis, m is the structure’s mass and b is the half chord, V and U∞ are

the reduced and original free stream velocities, respectively.

In the current work, LCO at different conditions (dynamic pressure, al-

titude, etc) can be obtained based on the variation of the velocity index,

Vs = U∞

ωα
√
µ
. Given Vs, eq.(32) is determined and can be coupled with the

fluid equations to compute the system’s response. The effectiveness and

accuracy of the approach presented in section 3 has been shown to reduce

computational cost approximately by an order of magnitude and increasing

the number of harmonics and structural DoF does not impact the robustness

of the method [48]. An O-type grid is used in this case and is shown in Figure

10. These results are compared in Figure 11 with predictions obtained using

the A-HB solver in conjunction with the MUSCL2 scheme on the same grid

and against results obtained with the MP5 scheme. To assess the conver-

gence of the results a finer grid containing 241×81 points was also tested. All

A-HB results retained three harmonics and are in excellent agreement with

the time-marching result. The impact of using higher order discretizations

for this case is shown Figure 12, here the MP5 and MP7 schemes produce

identical results, hence the MP5 scheme is retained for the subsequent cal-

Static unbalance, xα = Sα/mb 0.25

Radius of gyration about elastic axis, r2α = Iα/mb2 0.75

Frequency ratio, ωh/ωα 0.5

Mass ratio, µ = m/πρ∞b2 75

Table 2: Pitch/Plunge Aerofoil Parameters
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culations. It is also worth noting that unlike the fixed motion problem, the

MUSCL2 scheme on the 61× 21 grid shows a large discrepancy with respect

to the finer meshes. This stems from the dependence of the displacement on

the aerodynamic forces coefficients CL and CM in eq.(32); for the coarse grid

the errors in the aerodynamic prediction accumulate and become significant,

leading to smaller amplitudes in both pitch and plunge. The shock and aero-

foil motion’s are illustrated in Figure 13 by the pressure field at the different

sub-levels obtained by the MP5 A-HB method on the 61 × 21 grid. For su-

percritical LCO, as in this case, by increasing Vs, the amplitude of the LCO

increases, Figure 14 shows the development of the LCO branches obtained

using the MP5 A-HB and the baseline time-marching methods, results show

the ability of this approach in replicating time-marching results at a fraction

of the cost.

Figure 10: NACA 64A010 Aerofoil O-grid - 61× 21 grid points

The overall computational cost of introducing higher-order discretizations

is described in Table 3. The baseline computational effort corresponds to
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Figure 13: Pressure field at seven time sub-levels obtained by MP5 A-HB, Vs = 0.8

25



V
s

h

0.6 0.65 0.7 0.75 0.8 0.85
0

0.1

0.2

0.3

0.4 Time marching

HB_MP5

V
s

α[
o
]

0.6 0.65 0.7 0.75 0.8 0.85
0

0.5

1

1.5

2

2.5

3

ω/ωα

h

0.6 0.65 0.7 0.75
0

0.1

0.2

0.3

0.4

ω/ωα

α[
o
]

0.6 0.65 0.7 0.75

0.5

1

1.5

2

2.5

3

Figure 14: NACA 64A010 LCO amplitude obtained by MP5 A-HB, Vs = 0.8

26



Method Grid Size CFL Wall Clock [min.] Speed-Up

Time Marching - MUSCL2 (121× 41) 0.5 313.0 1.0

Time Marching - MP5 (61× 21) 0.15 250.4 1.25

A-HB - MUSCL2 (121× 41) 0.5 59.0 5.3

A-HB - MP3 (61× 21) 0.5 31.0 10.1

A-HB - MP5 (61× 21) 0.5 32.8 9.54

A-HB - MP7 (61× 21) 0.5 33.2 9.43

Table 3: LCO computation at Vs = 0.8 - HB calculations used three harmonics

conventional time-marching results obtained using a second order discretiza-

tion, 121×41 points grid and time step of 2.5×10−4 - these parameters were

considered to give converged solutions in reference [48]. The time-marching

results employ the same time-step and 300 dual-iterations to achieve tem-

poral accuracy; the MP5 calculation was limited by a CFL value of 0.15.

The convergence history of the frequency, displacement and structural equa-

tions is illustrated in Figure 15; the MUSCL2 A-HB takes 2305 iterations

to converge, whereas the MP5 solution requires 1060 cycles. By using the

MP5 A-HB method the computational time can be reduced by one order of

magnitude compared with time domain results and reduced to half of the re-

quirements of the MUSCL2 A-HB method while maintaining the same level

of accuracy. Note the marginal effect of performing time domain simulation

using the MP5 scheme on the coarser grid. The limited impact of the high-

order discretization when using the time domain method is consistent with

the results reported by Sjögreen and Yee [35] and Kroll [18]. In contrast, the

ability to exploit the coarse grid with the A-HB results in more significant
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gains. Examination of Figure 15-(a) shows that the frequency updating be-

comes more efficient for the MP5 scheme on the coarse grid. The frequency

updating is a function of eq.(31) and occurs at every nf iterations (typically

10), Figure 15-(a) also shows the faster convergence of the displacement (the

same occurs for the aerodynamic forces). The average CPU time per iter-

ation of the MP5 with respect to the MUSCL2 scheme on the same mesh

121 × 41 is 3.5 times higher, however the MP5 computational cost on the

61 × 21 mesh becomes similar to the MUSCL2 scheme using the 121 × 41

mesh. For the coarser mesh, the A-HB pseudo-time step for the MP5 solution

is about 2.5 times the values found on the MUSCL2 scheme on the 121× 41

grid. Hence, after the nf iterations, the high-order solution on the coarse

grid has converged further, leading to a better estimate of the frequency, the

final result is an overall faster convergence.

A closer examination of eq.(28) shows that, as for time-marching methods,

the additional complexity of the residual calculation Rhb is off-set by a

reduction in DoF, however the additional term introduced by the Fourier

expansion of the conserved variables (ωDw) is now much smaller due to the

reduction in DoF, originating the computational savings reported in table 3.

4.2.2. Delta Wing

A delta wing is used to exercise the proposed method in a more realistic,

three-dimensional, problem. The objective here is to explore the robustness

of the method when applied to larger and more complex models. The wing

was proposed as a test case in reference [48]; it has a leading edge sweep

angle of approximately 16◦ and a span of just under 4m. The wing uses

a NACA 65A004 aerofoil. An O-H type grid, shown in Figure 16 contain-
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(a) (b)

Figure 15: LCO convergence history comparing MUSCL2 and MP5 schemes using three

harmonics, Vs = 0.8

ing about 20000 points was used for the high-order CFD calculations. The

wing structure is represented by a finite-element model, coupled with the

CFD mesh. The structural model is built in MSc/Nastran, using 2D shell

elements; the wing material is based on the AGARD 445.6 wing. The first

four normal modes are retained for this analysis and have frequencies in the

range of 4Hz − 30Hz. The modes shapes and natural frequencies are given

in Figure 17. Infinite Plate Spline is used to extrapolate structural modal

displacements from the CSD model to the CFD grid, as shown in Figure 17.

Further details about the test case, including the flutter response are given in

reference [48]. It was found that the onset of flutter at M∞ = 0.91, α = 0◦,

occurs at a dynamic pressure of q = 0.759qsl, where qsl is the dynamic pres-

sure at sea level conditions. The initial disturbances for the LCO prediction,

in modal coordinates and for each mode are: [1, 0.5, 0.1, 0.1]T , and the initial
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Figure 16: CFD grid - 41× 21× 21

Mode 1 - 3.94Hz Mode 2 - 12.88Hz Mode 3 - 15.82Hz Mode 4 - 27.56Hz

Figure 17: Structural modes projected onto the CFD grid.
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(a) sub-level 1 (b) sub-level 2 (c) sub-level 3

Figure 18: Delta Wing Pressure Contours snapshots during LCO cycle, q = 0.850qsl

reduced frequency used is 0.07.

The wing undergoes significant oscillations at the wing tip, as demon-

strated by Figure 18 and 19 (here η1 and η2 correspond to points at the wing

tip’s leading and trailing edges, respectively). This leads to the formation

and elimination of a strong shock in this region. However, when applying sec-

ond order methods to the grid shown in Figure 16, the relevant flow features

are not captured and no LCO is observed. To compute the LCO using second

order methods, a finer grid with approximately twice as many points in each

direction was produced. Table 4 shows the computational time required

to solve this problem. Time-marching results required a non-dimensional

time step of 10−5 to converge the cycle amplitude, taking 8.5 days on a sin-

gle processor. The proposed method to capture LCO based on the A-HB

formulation is able to predict the LCO conditions accurately using one har-

monic, reducing the computational time to just over 8 hours, requiring just

over 700 iterations to reach convergence; the application of the high-order

scheme on the coarser grid reduces this to 3.7h, reaching convergence after
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Figure 19: Delta Wing LCO Response with A-HB Method - q = 0.850qsl

300 iterations.

Method CFL Wall Clock [hours] Speed-Up

Time Marching (81× 41× 41) 0.5 207 1.0

A-HB MUSCL2 (81× 41× 41) 0.5 8.4 24

A-HB MP5 (41× 21× 21) 0.5 3.7 56

Table 4: Delta-Wing LCO computation – A-HB calculations used one harmonic

5. Conclusions

In this study a high-order method based on the Monotonicity-Preserving

scheme has been implemented in a CFD based, A-HB framework, designed

for the prediction of transonic limit-cycle oscillations. The MP scheme is im-

plemented using the AUSM+-up flux function. Results using the high-order

CFD solver in conjunction with the HB time integration method show good
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agreement with experimental and established numerical methods. Through

the introduction of a high-order scheme into the HB methodology, it is pos-

sible to reduce the number of DoF in the fluid system without deteriorating

the solution, the additional calculations required by the MP scheme are off-

set by the reduction in DoF. The high-order methodology is extended to an

aeroelastic framework based on the HB method capable of predicting LCO

characteristics. The improvements in efficiency are demonstrated for a tran-

sonic aerofoil forced motion exhibiting a moving normal shock-wave. The

application of the MP scheme to a pitch/plunge aerofoil allows a significant

reduction on the number of grid points required to capture the LCO, even

when using a third-order accurate scheme. This produces considerable sav-

ings in computational time. A transonic delta wing is used to demonstrate

the robustness and maturity of the high-order A-HB framework and a similar

trend is observed: a reduction in grid size of 1
2d
, where d is the spatial dimen-

sion (2 or 3), reduces the computational cost of the A-HB by approximately

half without impacting the accuracy of the solution.
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Appendix A. Monotonicity-Preserving Scheme Coefficients

The coefficients for cells (j −m), for a scheme of order (2r − 1) are:
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m r = 4 r = 3 r = 2

-3 −3/420

-2 25/420 2/60

-1 −101/420 −13/60 −1/6

0 319/420 47/60 5/6

1 214/420 27/60 2/6

2 −38/420 −3/60

3 4/420
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Appendix B. AUSM+-up Scheme Additional Functions

M1/2 = M+
4 (ML) +M−

4 (MR)−Mp (B.1)

M4(M) =











1

2
(M ± |M |), if |M | > 1

±
1

4
(M ± 1)2

[

1∓ 2

(

∓
1

4
(M ∓ 1)2

)]

, otherwise
(B.2)

Mp =
1

4fa
max(1−M

2
, 0)

pR − pL

ρ1/2a
2
1/2

(B.3)

ML/R =
qL/R

a1/2
(B.4)

fa(M0) = M0(2−M0) ∈ [0, 1] (B.5)

M2
0 = min

[

1,max(M
2
,max(M2

L,M
2
R))

]

∈ [0, 1] (B.6)

M
2

=
q
2
L + q

2
R

2a21/2
(B.7)

a1/2 = max

(

a∗2L
max(a∗L, qL)

,
a∗2R

max(a∗R,−qR)

)

(B.8)

ρ1/2 =
ρL + ρR

2
(B.9)

a∗L/R =

√

HL/R
2(γ − 1)

γ + 1
(B.10)

qL/R = uL/R + vL/R (B.11)

HL/R =
γpL/R

ρL/R(γ − 1)
+

u2L/R + v2L/R

2
(B.12)

Appendix C. Harmonic Balance Transformation Matrices

The E and E−1 transformation matrices used in eqs. (25) and (26) are:
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E =
2

2NH+1









































1/2 1/2 . . . 1/2

cos t0 cos t1 . . . cos t2NH

sin t0 sin t1 . . . sin t2NH

cos 2t0 cos 2t1 . . . cos 2t2NH

sin 2t0 sin 2t1 . . . sin 2t2NH

...
...

...

cosNHt0 cosNHt1 . . . cosNHt2NH

sinNHt0 sinNHt1 . . . sinNHt2NH









































and

E−1 =

















1 cos t0 sin t0 . . . cosNHt0 sinNHt0

1 cos t1 sin t1 . . . cosNHt1 sinNHt1
...

...
...

...
...

1 cos t2NH
sin t2NH

. . . cosNHt2NH
sinNHt2NH

















References

[1] Albino, E., Rodden, W., A doublet-lattice method for calculating lift

distributions on oscillating surfaces in subsonic flows, AIAA Journal,

7(2), (1969), 279–85.

[2] Badcock, K.J. and Woodgate, M.A., Bifurcation Prediction of Large-

Order Aeroelastic Models, AIAA Journal Vol. 48, (6), (2010), 1037–1046

[3] Badcock, K., Timme, S., Marques, S., Khodaparast, H., Prandina, M.,

Mottershead, J., Swift, A., Da Ronch, A., and Woodgate, M., Transonic

36



aeroelastic simulation for instability searches and uncertainty analysis,

Progress in Aerospace Sciences 47, no. 5 (2011), 392–423.

[4] Bunton, R., Denegri, C., Limit Cycle Oscillation Characteristics of

Fighter Aircraft, Journal of Aircraft 37 (5) (2000) 916–918.

[5] Chaturantabut, S., Sorensen, D., Discrete empirical interpolation for

Nonlinear model reduction, SIAM J. Sci. Comput., Vol. 32, No. 5,

(2010), 2737–2764

[6] Davis, S., NACA 64A010 (NASA Ames Model) Oscillatory Pitching, in

Compendium of unsteady aerodynamic measurements, AGARD-R-702,

AGARD, 1982

[7] Dubuc, L., Cantariti, F., Woodgate, M., Gribben, B., Badcock, K.

Richards, B., A grid deformation technique for unsteady flow computa-

tions International Journal for Numerical Methods in Fluids, 32, (2000),

pp. 285311

[8] Ekici, K., Hall, K., Harmonic Blance Analysis of Limit Cycle Oscillations

in Turbomachinery, AIAA Journal, Vol. 49 (7), (2011), 1478–1487.

[9] Fang, J., Li, Z., and Lu, L., An Optimized Low-Dissipation

Monotonicity-Preserving Scheme for Numerical Simulations of High-

Speed Turbulent Flows, Journal of Scientific Computing, 56(1), (2013),

67–95. doi:10.1007/s10915-012-9663-y

[10] Farhat, C., Geuzaine, P., Brown, G., Application of a three-field non-

linear fluidstructure formulation to the prediction of the aeroelastic pa-

37



rameters of an F16 fighter, Computers & Fluids, Vol. 32, No. 1, (2003),

3–29.

[11] Ghosh, D., Baeder, J., Compact Reconstruction Schemes with Weighted

ENO Limiting for Hyperbolic Conservation Laws, SIAM J. SCI. Compu.

Vol. 34 (3), (2012), 1678-A1706

[12] Gottlieb, S., and Shu., C.-W., Total variation diminishing Runge-Kutta

schemes, Mathematics of Computation of the American Mathematical

Society 67(221), (1998), 73–85.

[13] Hall, K., Thomas, J., Dowell, E., Proper orthogonal decomposition tech-

nique for transonic unsteady aerodynamic flows, AIAA Journal, Vol. 38,

No. 10, (2000), 1853–1862.

[14] Hall, K., Thomas, J., Clark, W., Computation of Unsteady Nonlinear

Flows in Cascades Using a Harmonic Balance Technique, AIAA Journal,

Vol. 40, No. 5, (2002), 879–886.

[15] Hassan, D., Sicot, F., A time-domain harmonic balance for dynamic

derivatives predictions, in 49th AIAA Aerospace Sciences Meeting, Or-

lando, Florida, (2011)

[16] Hayes, R., Marques, S., Prediction of Limit Cycle Oscillations under

Uncertainty using a Harmonic Balance Method, submited to Computers

& Structures (2014)

[17] Jameson, A. and Schmidt, W. and Turkel, E., Numerical solutions

of the Euler equations by finite volume methods using Runge-Kutta

38



time-stepping schemes, AIAA paper 1259, 14th Fluid and Plasma Dy-

namics Conference, Fluid Dynamics and Co-located Conferences, 1981.

doi:10.2514/6.1981-1259

[18] Kroll, N., ADIGMA – A European Project on the Development of

Adaptive Higher-Order Variational Methods for Aerospace Applications,

Aeronautics Days, (2011), Madrid, Spain

[19] van Leer, B., Towards the ultimative conservative difference scheme, A

second order sequel to Godunov’s method, Journal of Computational

Physics, Vol. 32, (1979), 101–136.

[20] Lieu, T., Farhat, C., Lesionne, M., Reduced-Order Fluid/Structure

Modeling of a Complete Aircraft Configuration, Computer Methods in

Applied Mechanics and Engineering 195 (2006) 5730–5742.

[21] Lindhorst, K., M. C. Haupt, and P. Horst., Efficient surrogate modelling

of nonlinear aerodynamics in aerostructural coupling schemes, AIAA

Journal, Vol.52, No.9, (2014), 1952–1966, doi: 10.2514/1.J052725

[22] Liu, L., Thomas, J., Dowell, E., Attar, P., Hall, K., A comparison of

classical and high dimensional harmonic balance approaches for a Duff-

ing oscillator, Journal of Computational Physics 215 (1) (2006) 298–320,

doi:10.1016/j.jcp.2005.10.026.

[23] Liou, M.-S., A sequel to AUSM, Part II: AUSM+-up for all speeds,

Journal of Computational Physics, Vol. 214 (1), (2006), 137–170,

doi:10.1016/j.jcp.2005.09.020

39



[24] Lucia, D., Beran, P., Silva, W., Aeroelastic System Development Using

Proper Orthogonal Decomposition and Volterra Theory, AIAA Journal,

Vol. 42, No. 2, (2005), 509–518.

[25] Marques, S., Badcock, K., Khodaparast, H., Mottershead, J., Transonic

Aeroelastic Stability Predictions Under the Influence of Structural Vari-

ability, Journal of Aircraft 47 (4) (2010) 1229–1239.

[26] Mannarino, A. and Mantegazza, P., Nonlinear aeroelastic reduced order

modeling by recurrent neural networks, Journal of Fluids and Structures,

Vol. 48, (2014), 103–121, doi:10.1016/j.jfluidstructs.2014.02.016.

[27] Munteanu, S., Rajadas, J., Nam, C., Chattopadhyay, A., Reduced-

order-model approach for aeroelastic analysis involving aerodynamic and

structural nonlinearities, AIAA Journal 43 (3) (2005) 560–571.

[28] Qiu, J., and Shu, C. W., On the construction, comparison, and lo-

cal characteristic decomposition for high-order central WENO schemes,

Journal of Computational Physics, Vol. 183 (1), (2002), 187–209,

doi:10.1006/jcph.2002.7191

[29] Rowely, C., Model reduction for fluids using balanced proper orthogonal

decomposition, Int. J. Bifurcation Chaos, Vol. 15, No. 3, (2005), 997–

1013.

[30] Scandaliato, A. and Liou, M.S., AUSM-based high-order solution for

Euler equations, in 48th AIAA Aerospace Sciences Meeting, Orlando,

Florida, (2010)

40



[31] Shu, C.-W., Osher, S., Efficient implementation of essentially non-

oscillatory shock-capturing schemes II, Journal of Computational

Physics, Vol.83(1), (1989), 32–78

[32] Shu, C.-W., Essentially Non-Oscillatory and Weighted Essentially Non-

Oscillatory Schemes for Hyperbolic Conservation Laws, NASA CR-97-

206253, ICASE Rep. No. 97-65, 1997.

[33] Sicot, F., Gomar, A., Dufour, G. and Dugeai, A. Time-Domain Har-

monic Balance Method for Turbomachinery Aeroelasticity, AIAA Jour-

nal, Vol. 52, No. 1 (2014), pp. 62-71., doi: 10.2514/1.J051848

[34] Silva, W., Identification of Nonlinear Aeroelastic System Based on the

Volterra Theory: Progress and Opportunities, Nonlinear Dynamics,

Vol.39, No.1-2, (2005), 25–62
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