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Abstract

This article revisits recently proposed methods to determine the kernel parameter and the number of latent
components for identifying kernel principal component analysis (KPCA) and kernel partial least squares
(KPLS) models. A detailed analysis shows that existing work is neither optimal nor efficient in determining
these important parameters and may lead to erroneous estimates. In addition to that, most methods are not
designed to simultaneously estimate both parameters, i.e. they require one parameter to be predetermined.
To address these practically important issues, the article introduces a cross-validatory framework to optimally
determine both parameters. Application studies to a simulation example and a total of three experimental
or industrial data sets confirm that the cross-validatory framework outperforms existing methods and yields
optimal estimations for both parameters. In sharp contrast, existing work has the potential to substantially
overestimate the number of latent components and to provide inadequate estimates for the kernel parameter.

Keywords: Nonlinear models, cross-validatory framework, optimal parameter estimation, kernel
parameter, number of latent variable sets, combined objective function

1. Introduction

In chemometrics, identifying accurate latent variable models is of fundamental importance (i) for ex-
tracting information from spectra, e.g. obtained by QSAR [1], Raman [2] or IR [3] spectroscopy, and (ii) for
applications to process systems engineering [4], petrochemical processes [5] and process monitoring [6, 7, 8].
The first thrust in research focused on applications of principal component analysis (PCA) and partial least
squares (PLS) [9, 10, 11], which assume linear relationships between the latent and recorded variable sets.
This necessitated the development of their nonlinear counterparts over the past few decades [12, 13, 14, 15].
Kruger et al. [16] showed that KPCA [17, 18] is a generic nonlinear extension of PCA. Generic kernel-based
extensions for PLS, termed KPLS, have also been developed [19, 20].
Establishing KPCA and KPLS models based on a random vector z, and random vectors x and y,

respectively, requires the estimation of the correct number of latent variable sets and the optimal value of
kernel parameters. Without restriction of generality, we assume here that the random vectors x, y and
z are of dimension (Nx × 1), (Ny × 1) and (Nz × 1), respectively, have unknown distributions with zero
mean vectors and bounded covariance matrices. This article develops algorithms to optimally determine
the number of latent sets, n, and the unknown kernel parameter, σ, by utilizing objective functions that
contain both parameters. The next three subsections summarize existing work on how to estimate n and σ
to highlight that the literature has not proposed such an optimal framework.
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1.1. Estimating n and σ for KPCA

To estimate n, the cumulative percent variance (CPV) [21, 22], measuring the variance captured by the
first few PCs, has been proposed. This technique, however, is prone to be subjective. Another technique is
kernel parallel analysis (KPA) [23], which is an automated technique and an extension of parallel analysis
for PCA [24]. More recently, a technique that is based on the reconstruction error was proposed [25], which
determines n such that the residual error is sufficiently small, which is also subjective. Ref [26] proposed
an approach that relies on dividing the data set into 5 segments and determines n using cross-validation. It
should be noted that the methods in Refs [23, 25, 26] require an a priori selection of σ .
To determine σ, Teixeira et al. [27] suggested that it is a function of the maximum distance of the

samples from the sample mean vector. This approach is termed here the maximum distance to mean or
MDM technique. Ni et al. [28] selected σ as the sum of the difference of the maximum and minimum for
each variable in the data matrix, referred to here as the sum of the variable spread or SVS approach. More
recently, Kenig et al. [29] suggested using the 0.2 quantile of the distances between the samples as a guide
to select the kernel parameter, defined here as the sample distance or SD criteria. Finally, Deng and Tian
[30] proposed determining σ as 100 times Nx, referred to here as the PVC technique.

1.2. Estimating n and σ for KPLS

To estimate n, the literature advocated a 5-fold cross-validatory approach [31, 32, 33]. This approach,
however, requires predetermining σ and may not work well for small data sets. For estimating σ, a heuristic
and subjective approach was proposed in Ref [20], referred to here as dimension and variance or DaV criteria,
selecting σ as a product of the variable variances, the number of variables in the input space and a constant
between 1 and 10. Monte Carlo cross-validation (MCCV) was proposed by Shinzawa et al. [34], which is
based on a resampling technique that randomly selects sets of testing samples. Both, the selection of the total
number of resampling and calibration sets, which must be pre-defined, however, is still an open question.
Moreover, the random resampling is computationally expensive and may lead to certain samples being used
more than once for assessing model performance or not being used for model identification. Finally, a
simulated annealing (SA) method was proposed to automatically select σ [35]. As a global optimal solution,
SA can successfully avoid local minima but it is time-consuming and requires setting initial parameters. As
for KPCA, each of these methods require n to be predetermined.

1.3. Other more general methods for estimating σ

Kernel target alignment (KTA) [36] is a kernel matrix evaluation criteria used to measure the degree of
linear dependency between the kernel matrix and a target. Another technique is the feature space-based
kernel matrix (FSM) evaluation measure [37]. Both KTA and FSM, however, may not work well for small
sample sizes and have a tendency of overfitting [38]. Addressing these deficiencies, Yang et al. [38] developed
a technique based on the largest variance criteria (LVC) to estimate the kernel parameter. Unlike PCA,
however, a maximum variance may not guarantee that the extracted components strongly correlate to z and
y. A grid search strategy is widely used to optimally determine σ. However, it may yield a local minima if
the range is selected to be too small [34, 35]. To examine the data distribution more closely, Zhang et al.
[39] suggested selecting the median value of the reciprocal distances between each sample and the sample
mean as the optimal σ, which is referred to here as the MID criteria. Other research streams are more
closely related to performance measures and include the distance of reference samples to the furthest and
nearest neighbors (DFN) [40], and include intelligent optimization, e.g. genetic algorithms (GA) [41, 42].
Each method, however, requires a preestimate of n.

1.4. Motivation for this work

Following from the preceding discussion and based on the application of existing work in Sections 4 and
5, the literature has not proposed an optimal estimation of both parameters that is based on an objective
function that includes both parameters, necessitating the work in this article. The core contribution here is
the development of an optimal cross-validatory framework for identifying KPCA and KPLS models, based
on an objective function that relies on the average prediction error for samples removed (KPCA/KPLS) and
variables removed (KPCA). The optimal parameter set results in the best model prediction, i.e. a minimum
of the objective function. It should be noted that the use of the model prediction error is in line with the
properties of KPCA/KPLS, which Subsection 5.4 further elaborates upon.
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1.5. Organization of this article

A brief summary of KPCA and KPLS is given in the next section. Then, Section 3 introduces the cross-
validatory framework for KPCA and KPLS to optimally estimate n and σ. Sections 4 and 5 compare the
performance of this framework to existing work on the basis of a simulation example and three industrial or
experimental data sets, respectively. Finally, a concluding summary is given in Section 6.

2. Preliminaries

This section provides a brief summary of KPCA and KPLS in Subsections 2.1 and 2.2, respectively.

2.1. Kernel principal component analysis

KPCA first maps a set of L data points of z, drawn independently, onto a high-dimensional feature
space f , being of dimension M ≤ ∞, based on the nonlinear transformation f = φ(z), which yields
ΦT = [ φ(z1) φ(z2) · · · φ(zL) ] (M ×L). Based on Cover’s theorem [43], the transformed data points
fall in the vicinity of an nf dimensional plane in the feature space. The estimated covariance matrix of f is:

Ĉf =
1

L−1Φ
T
Φ (M ×M). (1)

Here, · and ·̂ denote a matrix which stores data points of a random vector that are mean centered and a
parameter estimate, respectively. Secondly, as φ(·) is usually unknown, the KPCA model is determined
based on the centered Gram matrix:

Gf = Φ Φ
T
(L× L), (2)

where, Φ = Φ − 1
L11

TΦ with 1 being a vector of L ones. Using the definition of the kernel matrix
Kf (Z,Z) = ΦΦ

T (L× L), ZT = [ z1 z2 · · · zL ] (Nz × L), the Gram matrix is given by:

Gf =Kf

(
Z,Z

)
− 1

L

(
Kf

(
Z,Z

)
1
)
1T − 1

L1
(
Kf

(
Z,Z

)
1
)T
+ 1

L21
(
1TKf

(
Z,Z

)
1
)
1T . (3)

The kernel matrix stores the scalar products Kf

(
zi, zj

)
= φT(zi) φ(zj), which, based on the properties of

reproducing kernels, can be constructed from various kernel functions, e.g. the Gaussian kernel:

Kf

(
zi, zj

)
= exp

(
−
‖zi − zj‖

2

σ2
f

)
. (4)

Here, σf is the kernel parameter and ‖ · ‖
2 is the squared Euclidean distance. As the feature transformation

is designed to map the L data points to be in the vicinity of a plane of dimension nf that is embedded within
the high dimensional features space, the KPCA model is given by the eigendecomposition of Gf , i.e.:

Gf vi = λivi i =
{
1, 2, . . . , L

}
, (5)

where λi and vi are the ith largest eigenvalue and its corresponding L-dimensional eigenvector of Gf ,
respectively. Thirdly, the score vector t of dimension nf for a data point of z /∈ Z can now be computed as:

t = Λ−1/2V TΦ φ
T
(z) = Λ−1/2V T

[
I − 1

L11
T
]

︸ ︷︷ ︸
A

T

(
kf (Z, z)−

1
LKf (Z,Z)1︸ ︷︷ ︸

kf

)
= AT

(
kf (Z, z)− kf

)
, (6)

with Λ and V storing the nf largest eigenvalues and corresponding eigenvectors, respectively, I being the
L dimensional identify matrix and kTf (Z, z) =

(
Kf (z1, z) · · · Kf (zL, z)

)
.
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2.2. Kernel partial least squares

Kernel partial least square is based on the standard PLS algorithm [44]. As for KPCA, KPLS relies on
a nonlinear transformation of the variable set x, referred to here as the predictor variable set, i.e. h = ψ(x)
[19, 20]. In a similar fashion to KPCA, scalar products of the feature vectors ψT(xi) ψ(xj) can be described
by kernel functions Kh

(
xi,xj

)
= exp

(
−‖xi − xj‖

2/σ2
h

)
, where σh is the kernel parameter. The basic PLS

algorithm relies on iteratively computing the eigenvectors of the matrix product Y TXXTY [6], where
XT = [ x1 x2 · · · xL ] (Nx × L) and Y T = [ y1 y2 · · · yL ] (Ny × L) are matrices storing data
points of x and y, respectively. For KPLS, this product becomes Y TGhY , with Gh being the Gram matrix
of x, defined analogously to Gf in Eq. (3). Algorithm 1 summarizes the steps of the basic KPLS algorithm
[20], where kt and ku, both being L dimensional, 1 ≤ k ≤ nh, are the nh score vectors of the L data points
of x and y, respectively, and kc is a loading vector of y. Similar to PLS, KPLS estimates a regression matrix

Setup 1Y = Y and 1Gh;
for k = 1 : nh do
Randomly initialize ku

(0);
Set j = 0 and e = 100;
while e < 1e− 10 do

kt
(j) = kGh ku

(j);

kt
(j) = kt

(j)/‖kt
(j)‖;

kc
(j) = kY

T
kt

(j);

ku
(j) = kY kc

(j);

ku
(j+1) = ku

(j)/‖ku(j)‖;

e = ‖ku(j+1) − ku
(j)‖;

j = j + 1;

end

k+1Gh =
[
I − kt kt

T
]
kGh

[
I − kt kt

T
]
;

k+1Y =
[
I − kt kt

T
]
kY ;

end

Algorithm 1: KPLS algorithm

B for predicting y, i.e. yT = ψ
T
(x) B + eT = ŷT + eT , where the vector e represents the modeling error:

B = Ψ
T
U
[
T TGhU

]
−1
T TY , (7)

where T = [ 1t 2t · · · nh
t ] and U = [ 1u 2u · · · nh

u ], with both matrices being of the dimension
(L × nh). As the nonlinear transformation ψ(·) is not known, the prediction of a data point of y using its
corresponding data point of x /∈ X is given by:

ŷT = ψ
T
(x) B = ψ

T
(x) Ψ

T
U
[
T TGhU

]
−1
T TY . (8)

Similar to Eq (6), the L-dimensional vector Ψ ψ(x) contains the mean centered scalar products Kh(xi,x),
1 ≤ i ≤ L.

3. Cross-validatory framework for jointly estimating n and σ

Subsections 3.1 and 3.2 define the objective functions and the algorithms to optimally estimate n and σ
for KPCA and KPLS, respectively.

3.1. Objective function and algorithm for KPCA

The subsection first revises the recently introduced two-dimensional cross-validatory algorithm [45] to
optimally estimate nf . As this algorithm, which can be seen as a nonlinear extension of the work in Refs
[46, 47], does not yield an estimation of σf , the subsection then introduces an algorithm for optimally
estimating σf when nf is known. This is the first contribution of this article.
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3.1.1. Algorithm for optimally estimating nf [45]

Following the discussion in Refs [17, 45], kernel principal component regression (KPCR) can be applied to
estimate the reconstruction, or inverse, mapping from f to z. This gives rise to the following two-dimensional
cross-validatory approach, which relies on segmenting Z as follows [45]:

Z =




ξ
(1)
1 · · · ξ

(1)
i · · · ξ

(1)
Nz

...
...

...

ξ
(j)
1 · · · ξ

(j)
i · · · ξ

(j)
Nz

...
...

...

ξ
(m)
1 · · · ξ

(m)
i · · · ξ

(m)
Nz




, (9)

We first remove the observations of the ith variable (1 ≤ i ≤ Nz) and store them in the vector ξi. The
observations of the remaining variables are stored in the matrix Ξ−i. This is the first cross-validatory

dimension. Next, we divide ξi and Ξ−i further into ξ
(j)
i and ξ

(−j)
i (omitting ξ

(j)
i ), and Ξ

(j)
−i and Ξ

(−j)
−i

(omitting Ξ
(j)
−i ), respectively. This constitutes the second cross-validatory dimension. The dimensions of ξi,

Ξ−i, ξ
(j)
i , ξ

(−j)
i , Ξ

(j)
−i and Ξ

(−j)
−i are L×1, L× (Nz−1), p×1, (L−p)×1, p× (Nz−1) and (L−p)× (Nz−1),

respectively. For simplicity, we assume here that p = L/m, with m being the number of segments, has no

division remainder. Under this assumption, each segment, i.e. ξ
(j)
i , j = 1, . . . ,m and i = 1, . . . , Nz, has the

same number of observations.
Utilizing ξ

(−j)
i and Ξ

(−j)
−i , we can establish the following regression equation in the feature space:

ξ
(−j)
i = Φ

(−j)

−i β
(−j)
−i + ε

(−j)
i , (10)

where Φ
(−j)

−i is the mean centered feature matrix of Ξ
(−j)
−i , β

(−j)
−i ((L−p)×1) is the KPCR regression vector

and ε
(−j)
i is an error vector [45]. As the specific form of the nonlinear function φ(·) is usually unknown,

KPCR utilizes the Gram matrix of Ξ
(−j)
−i and retains 1 ≤ ñf ≤ nfmax

, nfmax
≤ L− p, latent variable sets to

estimate β
(−j)
−i [45]. To have a statistically independent assessment of the model performance, the regression

model is applied to the observations stored in ξ
(j)
i and Ξ

(j)
−i :

ε
(j)
i = ξ

(j)
i −Φ

(j)

−i β̂
(−j)
−i (11)

Algorithm 1 in Ref [45] summarizes this two-dimensional cross-validatory technique, which yields a minimum
of the objective function:

nf = argmin
ñf

1
LNz

m∑

j=1

Nz∑

i=1

ε
(j)T

i (ñf ) ε
(j)
i (ñf ) (12)

Although this two-dimensional cross-validatory scheme produces an optimal estimate for nf , as a simulation
example and three application studies to experimental data in Ref [45] showed, it does not provide an
optimal estimate for σf . This follows from (i) the optimal σf is different for each of the 1 ≤ i ≤ Nz and
1 ≤ j ≤ m Gram matrices and (ii) that Ξ−i only stores Nz− 1 variables and not the Nz original variables in
Z. Consequently, although Algorithm 1 in Ref [45] produces an optimal estimate of nf , the optimal estimate
of σf must be determined afterwards in a second step, which is discussed next.

3.1.2. Algorithm for optimally estimating σf
After Algorithm 1 in Ref [45] produced an optimal estimate of nf , Algorithm 2 below can optimally

estimate σf . Based on Eq (9), Algorithm 2 first defines Z
(j) = [ ξ

(j)
1 · · · ξ

(j)
i · · · ξ

(j)
Nz
] and Z(−j),

which stores the remaining data points in Z. Next, using the data points stored in Z (−j), Algorithm 2
computes the corresponding Gram matrix. Based on Eq (5), it then determines the nf dominant eigenpairs,
i.e. eigenvalues and corresponding eigenvectors. This is followed by calculating the L− p vectors of t using
Eq (6). Finally, Algorithm 2 determines the inverse mapping using KPCR, which completes the model
building stage.
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Define m, p = L/m, set initial σ̃f and set nf (optimal estimate from Algorithm 1 in Ref [45]);
while Check convergence do
Set Jf (σ̃f ) = 0;
for j=1:m do
Define Z(−j) and Z(j);

Construct G
(−j)
f and G

(j)
f ;

Compute eigendecomposition of G
(−j)
f ;

Calculate t(−j) for all data points in Z(−j);
Estimate KPCR regression vector for inverse mapping;

Calculate t(j) for all data points in Z(j);

Determine prediction for Z(j), Ẑ(j), using inverse mapping;

Compute E(j) = Z(j) − Ẑ(j);

Update Jf (σ̃f ) = Jf (σ̃f ) + ‖E
(j)‖2;

end

Scale Jf (σ̃f ) =
1

LNz
Jf (σ̃f );

if Converged then
End while loop;
σf = σ̃f ;

else

Update kernel parameter σ̃f ;
end

end

Algorithm 2: Cross-validatory method for optimally estimating σf — KPCA.

To independently assess the performance of the identified KPCA model, we now apply the mapping
function to compute the p vectors of the random score vector t and the p reconstructed data points of z,
stored in Z(j), using the inverse mapping of KPCR model. The cross-validatory scheme is applied until each
data point of the random vector z, stored in the data matrix Z, has been used to independently assess the
performance of the KPCA model. Defining the prediction of z, using the inverse mapping, as ẑ and the
prediction error as ε = z − ẑ, the objective function for optimally estimating σf is as follows:

σ̂f = argmin
σ̃f

Jf (σ̃f ) = argmin
σ̃f

1
LNz

m∑

j=1

ε(j)T

(σ̃f ) ε
(j)(σ̃f ) (13)

The design of Algorithm 2 is tailored to the application of an iterative optimization method, e.g. a particle
swarm, gradient-based or genetic algorithm optimizer. The convergence criterion can be defined with respect
to the specific optimization method, for example if the difference of the objective function in Eq (13) between
two consecutive iterations is below a predefined threshold. For simplicity, we applied a grid search for
determining the optimal value for σf in Sections 4 and 5, although this is computationally inferior.

3.2. Objective function and algorithm for KPLS

This subsection introduces a cross-validatory technique to simultaneously estimate nh and σh, which is
the second contribution of this article. In a similar fashion to Eq (9), the matrices X and Y are divided into
a total of m (1 < m ≤ L) disjoint segments of p = L/m data points. This yields the matrices X (j) (p×Nx),
Y (j) (p×Ny),X

(−j) ((L−p)×Nx) and Y
(−j) ((L−p)×Ny). As before, we assume, for simplicity, that L/m

does not yield a division remainder. In a similar fashion to both cross-validatory algorithms in Subsection
3.1, we assess the KPLS model using the observations stored in X (j) (p ×Nx), Y

(j) (p ×Ny) and identify
the KPLS model based on the observations stored in X (−j) ((L − p) × Nx) and Y

(−j) ((L − p) × Ny) for
1 ≤ j ≤ m. This guarantees an independent evaluation as any x` ∈ X(j) and y` ∈ Y (j) are not stored in
X(−j) and Y (−j), respectively. The identification of a KPLS model relies on Algorithm 1 by replacing 1Y

and 1Gh with 1Y
(−j) and 1G

(−j)
h , respectively. After identifying a KPLS model for a specific ñh and σ̃h,
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Eq 8 can be used to compute the prediction of Y (j), i.e. Ŷ (j)(ñh, σ̃h). On the basis of the prediction error,

E(j)(ñh, σ̃h) = Y
(j) − Ŷ (j)(ñh, σ̃h), 1 ≤ j ≤ m the objective function for determining optimal estimates of

nh and σh is as follows:

(
nh σh

)T
= arg min

ñh,σ̃h

Jh(ñh, σ̃h) = arg min
ñh,σ̃h

1
LNy

m∑

j=1

∥∥E(j)(ñh, σ̃h)
∥∥2

(14)

Algorithm 3 formalizes the sequence of all required steps and yields an optimal and simultaneous estimate
of nh and σh. Recall that the objective function in Eq 14 relies on evaluating the model performance using
independently drawn data points, i.e. data points that are not used to identify the KPLS model.

Define m, p = L/m, nhmax
and set initial σ̃h;

while Check convergence do
for ñh = 1 : nmax do

Set Jh(ñh, σ̃h) = 0;
for j = 1 : m do
Define X(j), X(−j), Y (j) and Y (−j);

Construct G
(j)
h and G

(−j)
h ;

Calculate KPLS model based on X(−j) and Y (−j) using Algorithm 1;

Determine prediction for Y (j), Ŷ (j)(ñh, σ̃h), using Equation 8;

Compute E(j)(ñh, σ̃h) = Y
(j) − Ŷ (j)(ñh, σ̃h);

Update Jh(ñh, σ̃h) = Jh(ñh, σ̃h) + ‖E(j)(ñh, σ̃h)‖2;

end

end

Scale Jh(ñh, σ̃h) =
1

LNy
Jh(ñh, σ̃h);

if Converged then
End while loop;
σh = σ̃h, nh = ñh;

else

Update kernel parameter σ̃h;
end

end

Algorithm 3: Cross-validatory method for optimally and simultaneously estimating nh and σh — KPLS

As before, Algorithm 3 is designed to be embedded within an iterative optimizer, e.g. a gradient-based,
particle swarm or genetic algorithm optimizer. The results reported in this article, however, are based on a
simple grid search for simplicity, as the main scope of this article is to introduce a framework for optimally
estimating the parameters for KPLS models.

4. Simulation example

This section presents a comparison of Algorithms 2 and 3 with existing work to estimate n and σ on
the basis of a simulation example. Existing methods for estimating n, predominantly proposed for KPCA,
include:

• the cumulative percentage variance (CPV) method [21, 22];

• kernel parallel analysis (KPA) [23];

• the residual error (RE) technique [25]; and

• the 5-fold cross-validatory (5-fold CV) approach [26].

Existing methods for estimating σ include:
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• kernel target alignment (KTA) [36];

• the feature space matrix (FSM) evaluation technique [37];

• the largest variance criteria (LVC) [38];

• the dimension and variance (DaV) technique [20];

• the sample distance (SD) method [29];

• the maximum distance to mean (MDM) approach [27];

• the sum of variable spread (SVS) method [28];

• the approach in Ref [30], i.e. 100 times Nx or the product of variable criterion (PVC);

• the Monte Carlo cross-validation (MCCV) technique [34];

• the median of the inverse of the sample distance (MID) criteria [39];

• a genetic algorithm (GA) approach [41, 42];

• the distance of reference samples to the furthest and nearest neighbors (DFN) approach [40]; and

• the simulate annealing (SA) method [35].

The simulation example involves a random vector z (10× 1), whose elements are linear/nonlinear functions
of a random vector s (3 × 1). To simulate measurement uncertainty and other sources of noise, the lin-
ear/nonlinear functions are superimposed by a random vector ε (10× 1). Eq (15) describes the linear and
nonlinear relationships between the random vectors z, s and ε:




z1
z2
z3
z4
z5
z6
z7
z8
z9
z10




=




s1
s2
s3

s1 + sin(s2) + s3
tan(s1) + s2 + s33
s1 + tan(s2) + s3
s1 + s32 + sin(s3)
s31 + s2 + sin(s3)
tan(s1) + s32 + s3
s31 + tan(s2) + s3




+




ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10




(15)

Each element of the random vector sT = ( s1 s2 s3 ) has a uniform distribution such that −1.26 ≤

si ≤ 1.26 and the random vector ε has the normal distribution ε ∼ N
{
0, 0.1I

}
. The KPCA model in

this study was based on the random vector z. For KPLS, the first three elements of z formed the random
predictor vector x, whilst the remaining seven random variables constituted the random vector y, i.e.
xT = ( z1 z2 z3 ) and y

T = ( z4 z5 z6 z7 z8 z9 z10 ).
For studying the performance of each method, a total of L = 200, 500, 1000, 2000, 4000, 5000, 6000,

7000, 8000, 10000 data points were simulated. For the introduced cross-validatory framework, we divided
the data sets using m = 5, 10, 20, 50, 100, 200, 250, 500, 1000, 2000, 2500, 4000, 5000, 6000, 7000, 8000,
10000 segments wherever L/m did not produce a division remainder. For determining a minimum for the
objective functions in Eqs (12) and (13) — for KPCA — and Eq (14) — for KPLS —, we used a grid search
for 0.1 ≤ σ ≤ 15 in steps of 0.1. To get a more accurate model performance, we reduced the distance between
two grid points to 0.01 around the minima. Moreover, we selected nmax = 8 for Algorithm 1 in Ref [45]
and Algorithm 3. All other methods listed above were implemented as described in the references cited. To
compare the performance of the resultant KPCA and KPLS models, we used the following criteria:

en =
J(n)− Jopt(n, σ)

Jopt(n, σ)
100% (16a)

eσ =
J(σ)− Jopt(n, σ)

Jopt(n, σ)
100% (16b)
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Here, J(n) and J(σ) represent the objective functions in Eqs (12) to (14). These values are also cross-
validated for m = L, i.e. leave-one-out cross-validation. Moreover, Jopt(n, σ) is the optimal value for J
obtained by applying Algorithm 1 in Ref [45] and Algorithm 2 for KPCA, and Algorithm 3 for KPLS.
Jopt(n, σ) is also evaluated for m = L. Subsections 4.1 and 4.2 summarize the results of this comparison for
KPCA and KPLS, respectively.

4.1. Comparing accuracy of identified KPCA models

Table 1 summarizes the results of this comparison for L = 5000 simulated data points. For estimating
nf , Algorithm 1 in Ref [45] correctly estimated nf = 3. In contrast, the CPV, KPA, RE and 5-fold CV
methods substantially overestimated this number. Particularly the CPV and KPA approaches produced
implausible estimates that well exceeded Nz = 10. By examining the working of the CPV, KPA, RE and the
5-fold CV methods, the first three ones rely on user defined thresholds, which renders them subjective. The
5-fold CV technique assesses the performance of the KPCA model on independent data and does, therefore,
not require setting any threshold. However, together with the CPV, KPA and RE methods, the 5-fold CV
technique requires a preestimate of σf and hence, none of them estimate nf optimally. Note that σf was
selected to be 8.25, which Figure 1(a) shows to be the optimal value computed by Algorithm 2.
For estimating σf , we selected nf = 3 for each method in order to guarantee a fair comparison. In

practice, however, neither an optimal estimate for nf nor σf is available. Given that existing work may yield
and overestimate, as highlighted in the preceding analysis of this simulated data set, this concludes that
σf may not be optimal. Even when selecting nf = 3, Table 1 summarizing the estimates for σf using the
competitive KTA, FSM, LVC, MID, DFN, GA, MDM, SVS, SD and PVC techniques and indicates these
methods yield suboptimal estimates. Whilst the estimate of the SD techniques was close to that obtained
by applying Algorithm 2, all other estimates were significantly different.
To assess the effect of the estimates of σf upon the accuracy of the resultant KPCA models, we utilized

Eq (16b) for Jopt = J(nf = 3, σf = 8.25). For all J(σf )-values, we selected nf = 3 and the σf computed
by each of the competitive methods. The resultant eσf

values, listed in Table 1, confirm that the estimate
of SD method produced a comparable performance of the corresponding KPCA model. All other estimates
produced considerably less accurate KPCA models. More precisely, the relative performance difference
using the estimate of the KTA, FSM and MID techniques exceeded 600%. For all other methods, the
relative difference is in excess of 15%.
Next, we examined the effect of various nf using Eq (16a) upon the accuracy of the corresponding

KPCA model. For this, we computed J(nf ) by selecting σf = 8.25 and listed the enf
values in Table 1. It

is interesting to note that the departures, even for the implausible estimates of the CPV and KPA methods,
were not as pronounced as it was the case for the estimates of σf . This implies that it is of fundamental
importance (i) to simultaneously estimate them, i.e. not fixing one and only determine the other one, and
(ii) to acknowledge that an incorrectly estimated σf -value can have a profound and undesired impact upon
the accuracy of the corresponding KPCA model.
By reexamining Figure 1(a), the value for Jopt = J(nf = 3, σf = 8.25) = 0.118. For L → ∞, we can

conclude that Jopt → 0.1, which follows from the fact that ε ∼ N
{
0, 0.1I

}
. With an increasing number of

data points, Figure 1(b) confirms that the computed value of Jopt decreases and converged to the theoretical
threshold of 0.1. Finally, we examined how the optimal σf depended on the number of data points. Figure
1(c) indicates that the larger the sample size the larger σf became. Between the range 2000 ≤ L ≤ 10, 000,
the empirical relationship between L and σf was determined to be σf = 0.002 × L + 7.3922. For smaller
sample sizes, L < 2000, the estimated σf reduces by a significantly larger slope.
To demonstrate the importance of independently assessing the performance of the identified KPCA

models, we also applied Eqs (16a) and (16b) based on models that were identified using the entire data
set. This implies that the comparison between the models obtained based on parameters suggested by
existing methods and the optimal framework was not cross-validated. By setting σf = 8.25 and selecting
nf = 5, 6, 17 and 21, the four resultant models showed a better performance than that constructed for
nf = 3. This is not surprising, as nf → N implies that en → −100%. This, however, does not reveal the
correct size of s, i.e. nf = 3. By setting nf = 5 and selecting the values for σf suggested by the various
competitive techniques, the resultant models showed a better performance if σf > 8.25. Conversely, utilizing
smaller kernel parameters produced KPCA models that are not as accurate. This is also not surprising,
as σf → ∞ yield Kf (zi, zj) → 1, which follows from Eq (4). This, in turn, yields a good performance to
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reconstruct the recorded data points but results in a poor generalization, which can be noticed by directly
comparing the performance with the cross-validated one.
Finally, the application of Algorithm 2 to estimate σf took 87 minutes, similar to the running time of

the GA technique. For this comparison, each method was implemented in MatlabTM, version 7.11.0, and
the computation was performed on a 64-bit Windows 10 Pro operating system, 8GB of memory(RAM)
and an Intelr CoreTM i7-4700HQ clocked at 2.40GHz. We like to note that integrating Algorithm 2 into
a commercial software package would require a fraction of the reported running time. This is because
MatlabTM is not a compiled language and, hence, significantly slower than directly compiled code.

4.2. Comparing accuracy of identified KPLS models

The application of Algorithm 3 produced an estimation of nh = 3 and σh = 6.03. To guarantee a fair
comparison, we selected σh = 6.03 to estimate nh using the 5-fold CV technique, which yielded a minimum
of nh = 4. With Nx = 3, however, the estimate of nh = 4 is implausible. Nonetheless, we utilized Eq (16a)
for m = L = 5000, and defined Jopt = J(nh = 3, σh = 6.03) = 0.1014 and J = J(nh = 4, σh = 6.03), to
determine relative difference in performance, which was 3.06%. This confirms (i) that Algorithm 3 computed
a minimum of the objective function J(nh, σh) and (ii) that limiting m = 5 may not yield and optimum in
a cross-validatory sense although the difference was not very significant. More importantly, however, is the
fact that we preselected σh = 6.03. Figure 1(b) and Table 1 highlight that a non-optimal selection of σh can
yield less accurate predictions by the identified KPLS models. This is examined next.
Table 1 lists the estimates of σh for the KTA, FSM, LVC, MID, GA, DaV, MCCV and SA methods.

To guarantee a fair comparison, we selected nh = 3. The competitive methods produced a wide range of
estimates, ranging from 0.1 (KTA) to 8.9 (LVC). To assess the impact of the individual estimates of σh
upon the accuracy of the corresponding KPLS models, we applied Eq (16b) for Jopt = J(nh = 3, σh = 6.03)
and listed the eσh

values in Table 1. Whilst the estimates of σh using the LVC, MID, GA, DaV (r = 10)
and the MCCV techniques did not result in KPLS models that have a significantly less accurate prediction,
the estimates by the remaining methods produced substantially less accurate KPLS models. Note that the
effect of varying σh between 5.1 and 8.9, these being the estimates of the MCCV and the LVC methods,
respectively, did not have a profound impact of the resultant models, which can also be noted by examining
Figure 1(b).
To empirically verify the need for an independent performance assessment, we also applied Eqs (16a) and

(16b) to the residuals obtained directly from the identified models, i.e. the residuals were not determined
in a cross-validatory fashion. Similar to the KPCA model, increasing the number of latent components by
keeping the kernel parameter unchanged can only reduce the model error. On the other hand, fixing nh = 3
and comparing the performance of the resulting KPLS models with the one based on the optimal parameter
set suggests that there is hardly any difference unless the kernel parameter is considerably smaller.
Recall that we preselected nh = 3. Practically, an optimal estimate of nh may not be available, which

underpins the necessity of simultaneously estimating nh and σh to guarantee the identification of an optimal
KPLS model. This particular issue is studied in more detail in the next section, which applies each of the
methods to recorded/experimental data sets. Finally, the application of Algorithm 3 took 53 minutes, which
is comparable with the time consumed by the GA and the MCCV methods. Given that MatlabTM is a
compiled language, embedding Algorithm 3 into a commercial software package would require a fraction of
the running time reported here.

[Table 1 about here.]

[Figure 1 about here.]

5. Application studies

This section presents the application of the cross-validatory framework as well as the CPV, KPA, RE, 5-
fold CV, KTA, FSM, LVC, DaV, SD, MDM, SVS, PVC, MCCV, MID, GA, DFN and SA methods to estimate
n and σ for a total of three recorded data sets. These sets stem from two processes in the chemical industry,
i.e. a glass melter and a distillation process, and a set of lab data from a mixing experiment. Different
from the previous section, we do not know the optimal number of latent component sets. Subsections 5.1
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and 5.2 summarize the results of this comparison based on the recorded data from the glass melter and
the distillation processes, respectively. Subsection 5.3 presents the results of comparing each method on the
basis of the experimental data from the mixing experiment. Finally, Subsection 5.4 summarizes the results
of each application study. Before identifying KPCA and KPLS models, each data set was normalized, i.e.
each variable was mean centered and scaled to unit variance. Moreover, each model was based on Gaussian
kernels, requiring the estimation of the kernel parameter and the number of latent component sets. For the
application of the MCCV method, we randomly left 5 samples out for each cross validation procedure and
the number of Monte Carlo runs was 1000.

5.1. Accuracy comparison — glass melter process

A process description is given first, followed by comparing the performance of the identified KPCA and
KPLS models for each method.

5.1.1. Process description

This process is part of a disposal procedure for waste material. The waste is constantly introduced to the
melter vessel in the form of a powder. The powder is clad in molten glass, which is discretely introduced.
The powder and raw glass mixture is heated by four induction coils that are positioned around the vessel.
The constant filling results in an increasing liquid level. When the liquid column reaches a certain height,
the melter is emptied and a new cycle of filling and heating begins. From this process, a total of 21 variables
were recorded at a sampling interval of 5 minutes, including 15 temperatures inside the vessel, the power in
the 4 induction coils, the voltage applied to the induction coils and the viscosity of the molten glass. A total
of 7500 data points of the random vector z (21×1) were used to estimate nf and σf for KPCA models using
the different methods studied here. For KPLS, the random vector x (5× 1) contained the measurements of
the four induction coils and the voltage applied to the coils, whilst the random vector y (16× 1) contained
the 15 temperature readings and the viscosity of the molten glass.

5.1.2. Comparing accuracy of identified KPCA models

Before identifying KPCA models, the data set was divided into m = L = 7500 segments. To optimally
estimate nf and σf , we used a grid search and defined the step size to be initially 0.1. We then refined
the search using the smaller step size of 0.01 around the smallest values of Jf (nf , σf ). The cross-validatory
framework for KPCA estimated nf = 5 and σf = 32.14. This resulted in Jopt = Jf (nf = 5, σf = 32.14) =
0.2228.
Table 2 shows the estimates of nf obtained by the CVP, KPA, RE and 5-fold CV techniques. We selected

σf = 32.14 to guarantee a fair comparison. The estimates ranged from nf = 6 (5-fold CV) to nf = 18 (KPA).
Each of these estimates produce a less accurate KPCA model when compare to that obtained by the cross-
validatory framework. More precisely, utilizing Eq (16a) resulted in relative performance deteriorations that
can exceed 15%.
The estimates of σf when using the KTA, FSM, LVC, MID, DFN, GA, MDM, SVS, SD and PVC methods

are also summarized in Table 2, ranging from 0.08 (MID) to 2100 (PVC). Recall that we preselected nf = 5.
On the basis of Eq (16b), it can be concluded that larger values of the kernel parameter, e.g. suggested by
the GA, MDM and PVC techniques did not yield a considerably less accurate KPCA model, as the relative
difference was only a few percent. Conversely, smaller values, e.g. those computed by the KTA, FSM, LVC,
MID and DFN methods, produced vastly inferior KPCA models. The application of the SD method also
produced a much smaller estimate of σf but the relative difference in model performance to the optimal one
is just over 3%. Note that the methods suggesting a more suitable σf rely on quantifying the “dispersity” of
the data points in the original variable space, i.e. the MDM or the SVS techniques, or utilize the accuracy
of the KPCA model (GA method). Figure 2(a) confirms the observations that any σf value that is between
28 to 36 resulted in a comparable performance of the corresponding KPCA model.

5.1.3. Comparing accuracy of identified KPLS models

The optimal estimates of nh and σh for applying Algorithm 3 were 5 and 0.62, respectively, which yielded
Jopt = Jh(nh = 5, σh = 0.62) = 0.2078. Selecting σh = 0.62, the application of the 5-fold CV approach
suggested nh = 7 which is implausible, given that x ∈ R

5. Eq (16a) highlights that nh = 7 reduces the
predictive performance of the identified KPLS model by around 18%. Table 2 lists the estimates of σh for
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which we preselected nh = 5. Seven of the competitive methods produced significantly larger estimate for
the kernel parameter. Sufficiently close estimates to the optimal value of σh = 0.62 were suggested by the
MID, the MCCV and the GA method. The application of Eq (16b) showed that selecting a non-optimal
kernel parameter can result in a relative reduction in predictive performance of up to 50%. Conversely, the
application of the MID, MCCV and SA methods allowed constructing KPLS model that had a comparable
performance. However, the optimal number of latent variable sets, i.e. nh = 5, was predetermined, which is
generally unavailable. This issue is explored in more detail in the next subsection, which analysis a process
that contains a larger predictor variable set.

[Table 2 about here.]

5.2. Accuracy comparison — distillation process

A description of the process is given first. This is followed by summarizing the results of comparing the
performance of the identified KPCA and KPLS models in two separate subsections.

5.2.1. Process description

The process purifies butane from a fresh feed that is composed of propane (C3), butane (C4) and pentane
(C5). A detailed description for this process can be found in Chapter 5 in Ref [6]. From this process, a
total of 12 variables were recorded, 3 temperatures at different trays (Tray 2, 14, 31), the fresh feed and
reboiler temperature, flow rates of fresh feed, top and bottom product flow, the reboiler steam flow, and 3
concentrations (percentages C3 in C4, C5 in C4 and C4 in C5). Data points were recorded at a sampling
interval of 30 seconds. To identify KPCA and KPLS models, a total of 7500 data points of the random vector
z (12×1) were recorded, covering a continuous period of around 62 hours. Each KPCA model extracted the
latent variables of the random vector z. For identifying KPLS models, the random vector z was then divided
into the x (7× 1), which included the three tray temperature variables, fresh feed flow and temperature and
the reboiler steam flow and temperature, and y (5× 1) containing the remaining variables.

5.2.2. Comparing accuracy of identified KPCA models

The application of Algorithm 1 in Ref [45] and Algorithm 2 estimated nf and σf to be 5 and 16.08,
respectively. This resulted in a Jopt = J(nf = 5, σf = 16.08) = 0.0531. By preselecting the optimal
value of 16.08 as σf , the application of the CPV, KPA, RE and 5-fold CV methods produced the estimates
listed in Table 3, which were substantially larger. By applying Eq (16a), the relative prediction accuracy
of the resultant KPCA models was reduced by up to 10%, confirming that existing work cannot optimally
determine the number of principal components.
Next, Table 3 shows that applying the KTA, FSM, LVC, MID, DFN, GA, MDM, SVS, SD and PVC

methods produced estimates ranging from 0.1 to 1200. As before, we preselected nf = 5 to guarantee that
each corresponding KPCA model is based on the same number of principal components. Using Eq (16b) to
assess the impact of σf upon the relative prediction accuracy confirms that, as before, the larger estimates
of σf by the GA, the MDM, the SVS and the PVC techniques did not yield a substantially compromised
performance accuracy. In sharp contrast, estimates that are substantially smaller than 16.08, i.e. those
suggested by the KTA, FSM, LVC, MID and DFN methods resulted in substantially less accurate KPCA
models.

5.2.3. Comparing accuracy of identified KPLS models

The application of Algorithm 3 estimated nh and σh to be 5 and 3.1, respectively, producing Jopt =
J(nh = 5, σh = 3.1) = 0.2203. Given that the objective function, J(·), is based on the average prediction
accuracy of KPCA/KPLS models, it is interesting to note that the prediction of y (5× 1) using x (7× 1) is
less accurate than the contribution of the extracted nf principal components in reconstructing z (12 × 1).
This indicates that the top and bottom flow and to a lesser extend the three concentrations could still be
accurately predicted. However, by comparing the residual variance of the concentration measurements for
the optimal KPCA and KPLS models, they are between 0.1 to 0.3 and hence, substantially larger than
those of the remaining variables. Table 3 shows that the 5-fold CV method, based on σh = 3.1, yielded an
estimate of nh = 8, which is implausible given that x ∈ R

7 although the relative loss of predictive power is
only 0.64%.
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By preselecting nh = 5, Table 3 highlights that the KTA, FSM, LVC, MID, DFN, GA, DaV, MCCV and
SA methods suggested values within the range 0.5 ≤ σh < 9. Methods that suggested σh values that yielded
KPLS models showing a comparable performance to the optimal one include the MID, MCCV and DaV
(for r = 1 and 2). More precisely, the suggested σh values are close the optimal one of 3.1. Different from
the KPCA models, where substantially larger values or values that are close to σf = 32.14 still produced a
performance that is comparable to the KPCA model based on the optimal set of parameters, any deviation
from σh = 3.1 produced KPLS models that showed a considerably less accurate performance, which can well
exceed 50%.

[Table 3 about here.]

5.3. Accuracy comparison — mixing experiment

This application study involves experimental data from a mixing experiment, which is detailed first.
Different to the previous studies, for which the number of recorded data points was substantially larger
than the size of the random vector z, the number of recorded data points in this application study was
significantly smaller than the number of recorded variables. As before, two separate subsections summarize
the results of comparing the individual KPCA and KPLS models.

5.3.1. Description of the mixing experiment

In this experiment, 100 ml of H2O was added to 100 ml of Isopropyl Alcohol (IPA) over a period of
around 17 minutes. For the first 12 minutes, H2O was initially added at a rate of 100 ml/h. After that,
the flowrate of water increased to 1 l/h over a period of around 4 minutes and 30 seconds to amount to
the total of 100 ml of added water. A data point of this solution was taken every 30 seconds to determine
the concentrations of IPA and H2O as well as its Raman spectroscopy spectra, containing 1476 intensities.
The Raman spectra were computed by an Avalon Instruments RamanStation R3. The device uses a 785 nm
wavelength, 110 mW laser and CCD detector, coupled with a fiber optic probe encased in a high pressure
sheath with a sapphire window.

5.3.2. Comparing accuracy of identified KPCA models

The application of Algorithm 1 in Ref [45] and Algorithm 2 estimated nf and σf to be 5 and 715.2,
respectively, resulting in a Jopt = J(nf = 5, σf = 715.2) = 0.1355. In sharp contrast, Table 4 confirms
that the CPV, KPA, RE and 5-fold CV methods suggested substantially larger estimates. As before, σf
was selected as the optimal estimate of 715.2. Given that the changes in the intensity profiles and the
concentrations of H2O and IPA were mainly driven by adding H2O, the number of latent components is
expected to be small. Despite the larger estimates of nf , however, the relative difference in accuracy were
in the range of 6 to 12%.
The estimation of σf for nf = 5 using the KTA, FSM, LVC, MID, DFN, GA, MDM, SVS, SD and PVC

methods yielded values of 8×10−4 ≤ σf ≤ 1.5×10
5. In a similar fashion to the previous application studies,

values that are close to the optimal estimate or substantially larger values of σf produced KPCA models
that had a comparable accuracy to that based on the optimal values for nf and σf . Conversely, significantly
smaller values led to KPCA models that had a considerably less accurate performance, as evaluated by Eq
(16b). As for the previous two applications, it can be observed that the MDM, SVS and PVC methods
produced estimates that yielded accurate KPCA models. In addition to that, the SD method produced an
estimate that is relatively close to the optimal one. All other methods did not provide sensible estimates.
Again, note that each method was furnished with an optimal estimate of nf , which would normally not be
available.
The analysis of this data set in Ref [45] outlined that there are only 608 out of the 1476 intensities

which showed to have common trends. Based on this, we reduced the entire set of 1476 intensities plus
the concentrations of H2O and IPA to a total of 610 variables and reapplied Algorithm 1 in Ref [45] and
Algorithm 2. This produced the optimal estimates of nf = 4 and σf = 301.52, and reduced the optimal
value of the objective function from 0.1355 to 0.0128.
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5.3.3. Comparing accuracy of identified KPLS models

Applying Algorithm 3 to estimate the number of latent variable sets and the kernel parameter suggested
nh = 5 and σh = 30.9, which yielded Jopt = J(nh = 5, σh = 30.9) = 0.007. By pre-selecting σh = 30.9, the
5-fold CV method estimated nh to be 16, which is considerably higher than the optimal estimate of nh = 5.
This overestimate manifested itself in a compromised relative performance difference of almost 20%, which
is undesirable.
Pre-selecting nh = 5, Table 4 highlights that using the KTA, FSM, LVC, MID, DFN, GA, DaV, MCCV

and SA methods to estimate σh produced values in the range 8×10
−4 ≤ σh ≤ 125. In fact, only the LVC and

the MCCV technique led to KPLS models that showed a comparable performance to the optimal KPLS one.
With the exception of the KPLS model that was based on the estimate of the DFN method, the remaining
KPLS models had a very poor relative performance.
Based on the reduced set of 608 intensities to predict the concentration of H2O and IPA, the application

of Algorithm 3 estimated nh and σh as 4 and 20.21, respectively. This reduced the optimal value of the
objective function from 0.007 to 1.69× 10−3.

[Table 4 about here.]

5.4. Summary of application studies

Comparing the results for each application study, it can be noticed that the algorithms of the cross-
validatory framework yielded the most accurate KPCA and KPLS models. The merits of this framework rely
on the assessment of model accuracy based on data points that were not included in the model identification
stages. More precisely, the evaluation of the model performance was independent of the identification of
the KPCA and KPLS models. Moreover, utilizing the objective functions in Eqs (12) to (14) is in line with
the properties of PCA/PLS and KPCA/KPLS. For PCA, each principal component extracts the maximum
amount of variance from the random vector z and minimizes the residual variance of ε = z − ẑ [6]. The
same holds true for KPCA being a generic extension for PCA [16]. The PLS/KPLS techniques produce
regression models with the aim of predicting a response set y as accurately as possible based on a predictor
set x. This necessitates estimating n and σ on the basis of model accuracy.
For the number of latent components, i.e. nf for KPCA and nh for KPLS, each of the existing techniques

proposed in the literature suggest a non-parsimonious estimate, i.e. they overestimated this number. This
has to be seen in relation to the fact that each method was given the optimal estimate of the kernel parameter,
i.e. σf for KPCA and σh for KPLS, to guarantee a fair comparison.
For the kernel parameter, existing methods produced vastly different estimates for each application. It

was interesting to note that the overestimates of nf and nh did not yield KPCA and KPLS models that had
a substantially poorer performance, although the relative deviation in performance accuracy could exceed
10%. Conversely, an incorrect estimate of the kernel parameter had a very profound impact upon the relative
performance accuracy. Methods which produced estimates of σf that resulted in KPCA models that had
a comparable performance were the GA, MDM, SVS and PVC ones. With the exception of PVC, which
is essentially a simple ad hoc rule, MDM and SVS are methods that examine the dispersity of the data
points within the data space and the GA technique relies on an optimal estimate of the model performance.
However, each of these methods requires a pre-estimate of nf , which is usually not available, and do not rely
on an independent assessment of the model performance.
For KPLS, only the MCCV technique produced comparable estimates of σh compared to the optimal

cross-validatory framework for each application study. None of the other methods showed, consistently, a
comparable performance and yielded estimates that resulted in considerably less accurate KPLS models,
which is undesireable. The MCCV method, however, also requires a pre-estimate of nh, which is practically
not available. In addition to that, the MCCV method relies, principally, on the same cross-validatory ap-
proach as the introduced framework. However, the Monte-Carlo approach is computationally more expensive
than the proposed framework and it is possible that some data points are not utilized at all or utilized several
times for model identification and the performance assessment of the identified model.

[Figure 2 about here.]

Figures 2(a) to 2(c) show the dependency of σf and σh upon J(·) for the glass melter and the distillation
processes as well as the mixing experiment, respectively. Each plot confirms the preceding observations that
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the resulting functions are convex in the vicinity of the optimal kernel parameters, with the exception of the
minor kink around σh = 3.3 for Jh in Figure 2(b). In addition to that, Figures 3(a) and 3(b) show how J(·)
varies with n. The dependency of the average prediction accuracy for KPCA and KPLS models upon nf
and nh, respectively, is a convex function. Both, Figures 2 and 3 confirm that J(n, σ) are convex functions
in the vicinity of its minimum. This, in turn, confirms that the cross-validatory framework, introduced in
this article, is optimal for simultaneously estimating n and σ. In sharp contrast, existing work cannot be
seen as optimal and relies on ad hoc rules and/or only estimating one parameter.

[Figure 3 about here.]

Next, using the model residuals, i.e. omitting a cross-validatory assessment, based on the identified
models for Eqs (16a) and (16b) yielded the following. The KPLS models showed similar performance for
a fixed nh and a varying σh. A notable exception is for the KPLS model of the distillation unit that was
based on the relatively small σh = 0.2354. Different to the KPLS models, the KPCA models showed more
substantial variations in performance. Increasing the number of latent components produced better KPCA
models, which is expected. Conversely, varying σh by keeping nh constant did only produce marginally
improved models. More precisely, considerably smaller values compared to the optimal kernel parameter
yielded significantly less accurate models. For the recorded data of the mixing process, the KPLS models
showed a more pronounced effect to variations in the model parameters. Recall that it is advisable to rely
on an independent assessment of the model, i.e. utilizing the cross-validatory framework.
Finally, Table 5 lists the optimal estimates for each of the three application studies including the running

time. Subsection 4.1 provides details on how the computations were carried out. The running time of the
methods that are embedded within the cross-validatory framework is similar to that of the MCCV and GA
methods but significantly longer than the remaining techniques. However, existing work produced substantial
overestimates for n and suggested kernel parameters that produced KPCA and KPLS models which had
substantially less accurate prediction accuracies. In addition to that, given that MatlabTM is an interpreted
language incorporating the proposed cross-validatory framework into a commercial software package reduces
the running time to a fraction of what is reported in Table 5.

[Table 5 about here.]

6. Concluding summary

This article has introduced a framework for optimally estimating the number of latent components, n,
and the kernel parameter, σ, for constructing kernel principal component analysis and kernel partial least
squares models. Both methods are of fundamental importance in chemometric applications as they represent
generic nonlinear extensions to their linear counterparts. The revision of existing work in estimating these
parameters showed that they assume that one parameter is known or predefined and the second parameter
is estimated mostly by applying ad hoc rules with few utilizing objective functions to compute optimal
estimates. To find an optimal estimate of both parameters in an effective and statistically independent
fashion has, consequently, not been proposed and has been the motivation for the presented work.
The framework introduced here utilizes various cross-validatory schemes to guarantee that both parame-

ters have been estimated optimally with respect to various objective functions, detailed in Section 3. These
are based on the modeling accuracy. The framework has first been benchmarked against existing estimation
methods on the basis of a simulation example. To obtain KPCA and KPLS models this examples relied
on Nz = 10, and Nx = 3 and Ny = 7 variable sets, respectively, that are driven by 3 latent sets. The
cross-validatory framework produced a correct estimation of n = 3 latent variable sets for kernel principal
component analysis and kernel partial least squares. In sharp contrast, existing methods produced overesti-
mates of this number. For estimating the kernel parameter, the cross-validatory framework yielded optimal
estimates for both kernel methods, whilst only few methods produced similar estimates when the correct
number of latent components has been predetermined. Conversely, all other method yielded non-optimal
estimates.
The article has also contrasted the introduced cross-validatory framework with existing work on the basis

of three different data sets. These are recorded data from two chemical processes (many samples and few
variables) and a data set from a mixing experiment (few samples and many variables). The application of
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each method to the data from the two chemical processes has shown that the cross-validatory framework
estimated the smallest number of latent components and the smallest prediction error for both kernel models,
whilst most methods overestimated this number. For the data of the mixing experiment, only the cross-
validatory framework produced a small and plausible estimate of the number of latent components, whilst
all other method have yielded overestimates. These results directly follow from the objective functions of the
cross-validatory algorithms, which estimate n and σ, such that they directly assess the impact of retaining
1 ≤ ñ ≤ n and varying σ simultaneously.

7. Acknowledgement

Yujia Fu is grateful for the financial support from the Fundamental Research Funds for Central Univer-
sities (No. JUSRP51510), National Natural Science Foundation of China (No. 61273070), 111 project (No.
12018) and Jiangsu College Graduate Research Innovation Project (No. KYLX15-1168).

References

[1] A. Lombardo, O. Schifanella, A. Roncaglioni, E. Benfenati, Quantitative Structure-Activity Relationship (QSAR) in
Ecotoxicology, Springer Netherlands, 2013.
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Table 1: Estimation of n and σ for KPCA and KPLS models — simulation example; (– - the method is not applicable)

Method
KPCA KPLS

nf
enf σf

eσf nh
enh σh

eσh

CV no CV CV no CV CV no CV CV no CV
Estimating n

CPV(90%) 17 12.8% -98.7% – – – – – – – – –
KPA 21 16.9% -99.4% – – – – – – – – –
RE 6 6.17% -40.9% – – – – – – – – –

5-fold CV 5 5.48% -16.6% – – – 4 3.06% -6.15% – – –
Estimating σ

KTA – – – 0.3 601% 298% – – – 0.1 485% -26.1%
FSM – – – 0.1 607% 311% – – – 0.5 75.5% 11.4%

LVC – – –
J1:3.5 110% 80%

– – –
J1:7.4 0.02% 0.01%

J2:4.1 92.6% 65.5% J2:8.9 0.06% 0.03%
MID – – – 0.1 607% 311% – – – 0.4358 77.1% 9.46%
DFN – – – 4.7 53.1% 54.3% – – – 5.7 0.01% -0.01%
GA – – – 12.45 15.7% -36.8% – – – 7.67 0.05% 0.01%
MDM – – – 21.45 77% -68.6% – – – – – –
SVS – – – 54.43 76.5% -71.8% – – – – – –
SD – – – 10.1 0.97% -13.9% – – – – – –
PVC – – – 1000 77.4% -71.9% – – – – – –

DaV – – – – – – – – –

1.73(r = 1) 15.7% 3.63%
2.45(r = 2) 4.46% 0.97%
3.87(r = 5) 0.42% 0.06%
5.48(r = 10) 0.01% -0.01%

MCCV – – – – – – – – – 5.1 0.03% -0.01%
SA – – – – – – – – – 6.04 0 -0.01%

optimal
CV 3 8.25 3 6.03

framework
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Table 2: Estimation of n and σ for KPCA and KPLS models — glass melter process

Method
KPCA KPLS

nf
enf σf

eσf nh
enh σh

eσh

CV no CV CV no CV CV no CV CV no CV
Estimating n

CPV(90%) 13 13.9% -86.7% – – – – – – – – –
KPA 18 18.8% -97.8% – – – – – – – – –
RE 9 6.81% -62.8% – – – – – – – – –

5-fold CV 6 2.78% -19.9% – – – 7 17.7% -1.37% – – –
Estimating σ

KTA – – – 0.9 313% 354% – – – 0.1 46.7% -2.42%
FSM – – – 0.9 313% 354% – – – 4.4 48.9% 6.56%

LVC – – –
J1:3.3 142% 137%

– – –
J1:1.4 14.6% 2.27%

J2:1.4 276% 312% J2:0.1 46.6% -2.42%
MID – – – 0.08 349% 426% – – – 0.4839 1.48% -0.58%
DFN – – – 4.1 44.8% 87.1% – – – 1.7 19.8% 2.75%
GA – – – 24.17 0.18% 0.36% – – – 5.83 48.4% 7.1%
MDM – – – 176.9 0.31% -0.17% – – – – – –
SVS – – – 109.01 0.27% -0.17% – – – – – –
SD – – – 14.92 3.23% 3.16% – – – – – –
PVC – – – 2100 0.27% -0.17% – – – – – –

DaV – – – – – – – – –

2.24(r = 1) 28.5% 3.61%
3.16(r = 2) 38.3% 5.64%
5(r = 5) 47.2% 6.83%

7.07(r = 10) 49.3% 7.38%
MCCV – – – – – – – – – 0.6 0 -0.08%
SA – – – – – – – – – 0.6 0 -0.08%

optimal
CV 5 32.14 5 0.62

framework
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Table 3: Estimation of n and σ for KPCA and KPLS models — distillation process

Method
KPCA KPLS

nf
enf σf

eσf nh
enh σh

eσh

CV no CV CV no CV CV no CV CV no CV
Estimating n

CPV(90%) 9 4.75% -0.08% – – – – – – – – –
KPA 12 9.72% -94.64% – – – – – – – – –
RE 7 1.93% -56.6% – – – – – – – – –

5-fold CV 11 8.83% -90.1% – – – 8 0.64% -28.9% – – –
Estimating σ

KTA – – – 1.2 686% 607% – – – 0.7 34% 7.51%
FSM – – – 0.1 1776% 3129% – – – 0.5 63.1% 12.5%

LVC – – –
J1:3 176% 154%

– – –
J1:1.9 2.36% 1.12%

J2:2.6 216% 189% J2:2 2% 0.57%
MID – – – 0.12 1779% 3107% – – – 0.2354 166% 59.4%
DFN – – – 2.3 253% 223% – – – 3.4 1.04% 0.33%
GA – – – 21.03 0.21% -0.43% – – – 4.11 9.47% 9.47%
MDM – – – 33.06 0.38% -0.58% – – – – – –
SVS – – – 47.6 0.57% -0.60% – – – – – –
SD – – – 3.74 123% 110% – – – – – –
PVC – – – 1200 0.75% -0.61% – – – – – –

DaV – – – – – – – – –

2.65(r = 1) 1.07% -0.54%
3.74(r = 2) 1.83% 9.09%
5.92(r = 5) 5.36% 2.13%
8.37(r = 10) 6.82% 3.27%

MCCV – – – – – – – – – 3.1 0 -0.01%
SA – – – – – – – – – 1.28 7.17% 2.46%

optimal
CV 5 16.08 5 3.12

framework
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Table 4: Estimation of n and σ for KPCA and KPLS models — mixing experiment.

Method
KPCA KPLS

nf
enf σf

eσf nh
enh σh

eσh

CV no CV CV no CV CV no CV CV no CV
Estimating n

CPV(90%) 8 5.68% -14% – – – – – – – – –
KPA 10 6.84% -22.2% – – – – – – – – –
RE 13 7.7% -33.5% – – – – – – – – –

5-fold CV 21 11.5% -59% – – – 16 19.1 % -100% – – –
Estimating σ

KTA – – – 15.2 32.7% 19.7% – – – 15.2 701% -30.6%
FSM – – – 7.7 426% 76.4% – – – 7.7 10120% -100%

LVC – – –
J1:32 6.15% 8.03%

– – –
J1:32 0.59% 0.73%

J2:30.1 6.64% 8.81% J2:30.1 0.39% -7.9%
MID – – – 0.00081 620% 579% – – – 0.000813 13725% -100%
DFN – – – 34.6 5.77% 5.25% – – – 27.8 6.55% -37.9%
GA – – – 127.89 2.28% 0.79% – – – 17.14 345% 47.5%
MDM – – – 4540 0.01% -0.05% – – – – – –
SVS – – – 5180 0.01% -0.05% – – – – – –
SD – – – 525.54 0.01% -0.02% – – – – – –
PVC – – – 14780 0.01% -0.05% – – – – – –

DaV – – – – – – – – –

38.4(r = 1) 21% 21.8%
54.3(r = 2) 99.1% 21%
85.9(r = 5) 179% 43.5%
121.5(r = 10) 208% 69.7%

MCCV – – – – – – – – – 30.9 0 0
SA – – – – – – – – – 0.79 10818% -100%

optimal
CV 5 715.2 5 30.9

framework

26



Table 5: Summary of application studies including running time.

Application
KPCA KPLS

nf σf time nh σh time

Glass melter process 5 32.14 121min 5 0.62 102min
Distillation process 5 16.08 147min 5 3.12 116min
Mixing experiment 5 715.2 4min 18sec 5 30.9 50sec
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