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Abstract—In recent years, there has been a growing interest on
relaxing the pessimistic DRAM refresh rate due to the incurred
power and throughput loss. Undeniably, a critical factor in
determining the refresh rate relaxation that can be achieved
lies on the degree of the DRAM error-rate deterioration that
is incurred and on the amount of estimated errors that can
be handled by system mitigation schemes which are mainly
being evaluated in simulators. To estimate the DRAM faults
under relaxed refresh, the majority of the existing works rely on
estimated DRAM failure probability models using only the spatial
distribution of the DRAM retention time across the memory cells.
We observe that such failure models have neglected the intricate
dependence on the memory accesses, which inherently refresh
the accessed rows.

In this paper, we propose that the intervals between consecu-
tive accesses must also be considered during DRAM simulation.
We show that the estimation of the distribution of accesses poses
a lot of challenges mainly due to the time consuming full system
simulations that are required. To address such challenges, this
paper presents one of the first efforts to model the access time-
dependent DRAM retention time by developing a fast simulation
infrastructure based on binary instrumentation. The basic idea
behind the proposed approach lies on the quantification of
the time elapsed between consecutive memory accesses on the
same row and its relation to the DRAM failure probability,
which is then being used for a more accurate fault injection.
The introduced overheads of the instrumentation functions are
measured during native execution allowing accurate corrections
of the time elapsed between consecutive accesses. The efficacy
of our framework is being evaluated using various artificial
benchmarks. Results show that our scheme helps to limit the
misprediction of estimated errors of current error-injection
models.

Keywords: memory tracing; fault injection; DRAM memory;
retention time; simulation; binary instrumentation;

I. INTRODUCTION

Challenges such as Dark Silicon [1], according to which
only 79% of the silicon at 22 nm may be powered at any
point of time due to the increased power density in multicore
systems, have raised power as a primary concern. Such a
challenge critically affects the performance scaling of servers
which are essential for supporting the emerging Cloud comput-
ing paradigm. In the past decade, power consumption of server
systems was attributed mainly to CPUs, but recent studies [2],
[3], [4] turned the attention also to the memory hierarchy,
which has started being responsible for large percentages
of the power consumption. Traditionally Dynamic Random-
Access Memory (DRAM) is used as main memory due to the
low cost and high density storage that it offers. As the data
generated by all the connected digital devices continue to rise

the demand for higher DRAM densities will become larger and
thus the power consumed by the DRAMs will keep rising [5].

The scaling of DRAM is partially hindered by the periodic
refresh cycles that are needed to compensate for the leaking
charge of the DRAM cells [6]. Conventionally, the refresh
period (TREFW ) for the whole DRAM array is determined by
the worst case retention time of the most leaky cell. Such an
approach incurs large power and throughput overhead, which
is expected to be around 40% and 30% respectively in future
DRAM generations [7]. To circumvent such overheads, recent
approaches have experimented with relaxed refresh rates by
utilizing the spatially varying retention time of the DRAM
cells [7], [8] or temporal characteristics of the DRAM, such
as [9], [10], [11] while ensuring fault-free operation. Works,
such as [12], [13], [14], try to exploit the error-resiliency of
various applications for tolerating any DRAM errors under ag-
gressive refresh-rate relaxation. Common evaluation platform
for the majority of the existing schemes are system simulators
mainly due to the practical limitations of the available memory
controllers.

While the used DRAM simulators [15], [16] are widely
acceptable, none of the existing fault-injection schemes [17],
[18] is taking into account the refresh by access. Such schemes
have focused only on the spatial variation of the retention
time of each cell within the memory array, based on extracted
failure rates over different refresh periods.

Our experiments have indicated that various popular ap-
plications access the memory frequently and thus naturally
refresh the stored data, a property which should be taken into
account while estimating the DRAM failure rate. However,
modelling such a property and considering it during simulation
poses a series of challenges.

One may try to extract the time elapsed between consec-
utive access to a specific row but this requires full system
simulations, within for instance simulators such as gem5 [19],
which are extremely time consuming. Coping with the huge
overhead required for keeping track of the elapsed time
between memory accesses for each individual DRAM row,
may be prohibitive especially for large memories and long
running applications.

In this paper, we aim at addressing the above challenges by
developing an infrastructure for quick and accurate estimation
of the intervals between DRAM accesses which can then be
used for a more precise fault injection than existing schemes.

Our contributions can be summarized as follows:
• We develop a methodology based on a series of tools

that extract the elapsed time between consecutive memory



accesses, while executing a benchmark natively through
binary instrumentation. Our approach help us to avoid
the extremely slow full system simulations that otherwise
may be required.

• We show case the usage of the method by implementing
a fast fault-injection simulation infrastructure which uti-
lizes the extracted elapsed timings between accesses for
estimating how many errors will be injected and compare
them to existing schemes. The proposed approach allows
the evaluation of the impact of the potential errors in-
curred under relaxed DRAM refresh operations on any
application by considering the implicit refresh by access.

• Finally, we evaluate the accuracy of our framework
by using artificial benchmarks, that are composed of a
various access patterns and workload sizes inspired by
real benchmarks. Our results indicate that the accuracy
of our scheme is high for larger workloads and regular
access patterns but it degrades as the complexity of the
benchmark, and thus irregularity increases.

The rest of the paper is organized as follows. Section II de-
scribes some basic background on DRAM operation. Section
III briefly presents recent related work. Section IV describes
the proposed approach for extracting timing traces of accesses
to the memory. In Section V, we present a case study of our
approach for estimating the error probabilities under relaxed
refresh operation. In Section VI, we discuss the evaluation
of our approach, presenting the artificial benchmarks and the
accuracy of our scheme while being compared to existing
schemes. Finally, conclusions are drawn in Section VII.

II. BACKGROUND

In this section, we briefly describe the DRAM organization
and the refresh operation.

A. DRAM organization

A main memory system based on DRAMs is organized
hierarchically into channels, ranks, banks, rows and columns,
as shown in Figure 1. Each DRAM module (referred to as
DIMM) usually has two ranks consisting of a number of two-
dimensional arrays of DRAM cells, the so called banks. Each
DRAM cell is a storing element of DRAM and consists of
a capacitor and an access transistor. Each access transistor
connects its associated capacitor to a wire called a bitline
and is controlled by a wire called wordline. Cells sharing a
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Fig. 1: DRAM memory system organization

wordline form a row. Before a row can be activated, all bitlines
in the bank must be precharged. The row’s wordline is enabled
by connecting all capacitors in that row to their respective
bitlines. This causes charge to flow from the capacitor to the
bitline. Finally, the sense amplifier connected to that bitline
detects the voltage change and amplifies it, driving the bitline
fully either to the power rail or to zero voltage.

B. Retention Time and Refresh Operation

The simple structure of the DRAM array and of each
DRAM cell may allow high storage density, however is not
capable of retaining the stored charge for a long period
due to the inherent transistor’s leakage current. Such leakage
can eventually discharge the cell, manifesting a bit-flip. The
duration that the cell can correctly retain its state (i.e. ’0’
or ’1’) without eventually experiencing any bit-flip is called
retention time.

To avoid any error induced by the limited retention time,
modern day DRAMs employ an Auto-Refresh mechanism that
periodically recharges each cell in the DIMM by simply
bringing the data from a row into the sense amplifiers and
restoring them back in the row. To achieve this, the memory
controller issues a refresh command every tREFI cycles, at
which point all DRAM banks simultaneously refresh a number
of rows making the rank unavailable for tRFC cycles.

Currently, the refresh period TREFW , i.e. the interval within
which all cells of the DIMM must be refreshed, is set
according to the worst case retention time of all cells. In
fact all DDRx technologies adopt today a TREFW of 64 ms
under nominal environmental conditions or 32 ms in case of
temperatures higher than 85◦C.

Such a refresh period leads to considerable power and
performance overheads, which are expected to worsen as the
DRAM density increases [20].

Finally in current DRRx technologies, the refresh operation
and memory accesses are mutually exclusive to each other.
This means that no row/chip within a rank are allowed to be
accessed while the specific rank is being refreshed. This does
not only cause a performance penalty, but also prevents the
exploitation of the implicit refresh incurred with each memory
read.

III. STATE-OF-THE-ART AND LIMITATIONS

A. Schemes for Error-Free DRAM Operation

In an attempt to address the refresh related overheads, recent
studies have shown that the retention time of cells varies
considerably across and within a DRAM chip. Typically, only
a very small number of cells needs to be refreshed once every
TREFW = 64 ms [21], [22], [20], [23]. Techniques proposed
in works such as [7], [8], [24], [25], [26], [27], [12], try to
exploit the spatial non-uniformity in retention time of DRAM
cells to reduce the frequency of DRAM refresh.

The work in [9] was the first to exploit the temporal charac-
teristics and the implicit refreshes through DRAM accesses by
keeping a log of the recent accesses to the memory controller
in order to skip refresh operations to specific rows. Similar
works are described in [10], [11], which are focusing in
relaxing the refresh rate on eDRAM caches.



All the above works may have tried to reduce the refresh,
while avoiding any fault but such approaches are highly
intrusive since they assume fine grain control of the refresh rate
and/or require monitoring of every single access to every row,
which require substantial changes in the DRAM controller.
This makes such schemes difficult to realize in practice since
controllers are currently providing restricted access even to ba-
sic parameters (e.g. refresh rate). Due to the intrusive required
modifications such schemes have been mainly evaluated on
simulators by relying on extracted failure rate models, which
have neglected the implicit refresh by access, which may lead
to over- or under-estimation of the refresh rate relaxation that
can be achieved.

B. Error Resilient Schemes

Another common feature of the works mentioned above is
that they still try to avoid any DRAM faults neglecting the
error resiliency of various applications, which may limit the
achieved gains. In this context, some recent works have tried
to further relax the refresh rate of the previous conservative
methods by extending refresh intervals to regions that errors
occur and they propose solutions to address the resulting errors
either by correcting them through error-correction codes [12]
or exploiting the paradigm of approximate computing and

ΔTAccess =TREFW

(a) Cumulative distribution function of bit-error with
relaxed refresh rate or access interval. Visible is the
decreased probability of error when the access interval
is smaller than the refresh interval.
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(b) Timing of refreshes inbetween accesses, showing the
case of underestimating the probability for error injection
of state-of-the-art simulation schemes.

Fig. 2: Fixed probability fault-injector deficiencies.

error-resiliency of the application for reducing their impact
on quality [13], [14].

Such studies are being evaluated on simulators by relying on
fault-injection schemes under a selected refresh-rate based on
a fixed DRAM failure probability which ignores the temporal
characteristics of DRAM and the implicit refresh that takes
place during every access. Figure 2a shows a cumulative
density function (CDF) of the bit-error rate over different
refresh intervals which is being extracted by ignoring the
implicit refreshes. CDFs similar to the one shown in Figure 2a
are being being used in the majority of the above studies for
injecting faults [14] according to a fixed failure probability
of the selected refresh interval, e.g. for a TREFW =20 sec.

C. Limitations in Failure Probability Estimation

However, if we also consider the refresh by access then
there are two scenarios in which the conventionally estimated
failure probability will be under- or over-estimated.

On the one hand, if the same row is accessed within a
time less than the selected TREFW then the estimated failure
probability will be less than the one being estimated if we
consider only the failures at a fixed TREFW . In this case
the failure probability is over-estimated by neglecting the
memory accesses. On the other hand, if the same row is not
accessed for a time longer than the selected refresh interval,
then there is also possibility for an error to occur during the
period between two refresh operations. Such a case was also
neglected by recent schemes and assumed no errors leading to
an underestimated failure probability.

To better understand the two scenarios let us consider an
example as depicted in Figure 2b and assume that a running
application triggers Nr memory accesses to the r row in
memory so that the intervals between consecutive accesses
to the same row, ∆Ti,r, can be calculated as:

∆Ti,r = TAccessi+1,r
− TAccessi,r (1)

As shown in Figure 2b, for the case of TAccess(i) and
TAccess(i + 1), the ∆TAccess(i) is less than the TREFW . In
this case, the failure probability should be calculated based
on the CDF at ∆T and eventually will be smaller than the
fixed one based on TREFW and thus may be overestimated .
Furthermore, for the case of TAccess(i+1) and TAccess(i+2),
the ∆TAccess(i + 1) is longer than the TREFW , as shown
in 2b then each time the row is refreshed there is probability
that error may be introduced based on the selected TREFW .
However, in the existing schemes the failure probability is only
calculated once under a selected and fixed TREFW which may
cause under-estimation.

Based on the above, it is evident that for estimating accu-
rately the DRAM failure probability, there is a need to also
consider the intervals between consecutive accesses to each
row, as aimed by this paper.

To achieve this there is a need essentially to extract the
timing trace of the memory accesses to each row. An accurate
method to achieve this is by using a full system cycle accurate
simulator, such as gem5 [19]. However, full system simulation
is extremely time consuming and essentially prohibitive for
long running programs. In particular, to quantify the time



needed in obtaining the timing trace from a full system
simulator we have executed on gem5 and it is around 20.000
times slower than native execution as it will be shown later in
the Section VI.

D. Overcoming the Limitations

The above overheads could be limited by utilizing other
memory tracing schemes which involve memory access sam-
pling and which were used for performance estimation and
optimization [28], [29]. However, utilizing such schemes for
calculating the intervals between accesses of all the rows may
not be appropriate, since there is a need of accurate estimates
of every access. Failing to capture even one access may result
in over estimating the intervals and as a consequence lead to
an erroneous fault injection.

An alternative scheme for tracing the memory accesses and
estimating the intervals may be based on binary instrumenta-
tion. A variety of frameworks exist such as Intel R©Pin [30], Dy-
namoRIO [31] and Valgrind [32], which provide instruction-
level and code-block instrumentation of the binary code.
Binary instrumentation allows to inject code on selected in-
structions, i.e. all instructions that access the memory. Instru-
mentation can take measurements during the execution from
simple counters up to complex systems, i.e. simulating cache
hierarchies. Through instrumentation, it is allowed to record
the times of each access using the X86 assembly instruc-
tion rdtscp [33], which can provide accurate measurements
on serialized code. However, the instrumentation affects the
measurements as it injects more code for each invocation.
Therefore, it needs to be carefully embedded and considered
within any measurement campaign.

IV. PROPOSED APPROACH

The primary aim of this paper is the development of a
framework that allows the estimation of DRAM failure rate
under relaxed refresh rate by considering the implicit refresh
by access property. The main idea of our approach lies on
measuring the intervals between consecutive accesses to each
memory row and using them for estimating the DRAM failure
rate.

The intervals between consecutive accesses incurred by a
target application are traced natively with binary instrumenta-
tion. The estimated failure rate can then be used for injecting
faults during functional simulation of any target benchmark
for evaluating the impact of potential errors.

A. Dynamic Binary Instrumentation

For the development of the proposed framework we used
Intel R©’s Pin [30] dynamic binary instrumentation tool. Pin
allows us to analyse the instructions of the application and
inject a branch and an instrumentation function for collecting
the intervals between consecutive memory accesses.

As we mentioned, any dynamic binary instrumentation
function adds overheads in the execution time that need to be
carefully considered during the experimental campaign. The
largest part of the overhead is introduced by the execution
of the injected routine used for extracting the timing traces
and it clearly depends on the required instructions. One of

our ideas is to estimate such an overhead during each run
and subtract it from the total execution at the end. A part of
such an overhead is introduced by the call and exit of the
branch and cannot be measured directly. However, since it
is constant across different invocations, we can estimate an
adequate average during the execution.

In addition, the instrumentation function inflict corruption
of the cache of the running benchmark. In order to keep the
corruption of the cache limited, we are trying to minimize the
data-structure size of the instrumentation code. Also each time
that the instrumentation routine is called, we are executing the
same flow of code so that it inflict the same cache misses,
eventually flushing a part of the cache each time.

B. Phases of the Proposed Framework
Our framework consists of distinct phases during which

the timing tracing of the memory accesses along with the
estimations of the introduced overheads during the execution
of a specific benchmark take place. The block diagram of
the different phases are shown in Figure 3 and each phase
is described in the following paragraphs.

1) Native Run: Initially, we execute the application natively
on the machine to extract the total execution time, TNative,
without any modification and instrumentation. This helps to
establish the expected execution time of the target benchmark
and use it as reference for calculating the overheads that are
introduced by the instrumentation.

2) Calculating Static Overheads: Afterwords, we execute
the application on top of the Pin framework loading all the
instruments that we will use later but without invoking them
in the execution. In this way, instrumentation is limited only on
the loading the Pin framework and on the initialization of our
tools at the start of the application avoiding to introduce any
overhead for each instruction. We measure the total execution
time, TTools, and we calculate the static overhead that is
introduced by the Pin framework during the start of the
application.

3) Timing Trace of Accesses: Subsequently, we execute
the application, loading our instrumentation and enabling the
invocation of the instrumentation function. We measure the
total execution time, TFull, the times that our instrumentation
was invoked, TotalInvokesCount, and we keep in a trace a
list of information vectors (IV) with the intervals of consec-
utive access to the each row, ∆TAccess, and the number of
invocations of the instrumentation since the previous access,
InvokesCount.

Each time we invoke our instrumentation, we update the ac-
cumulated overhead of our instrumentation, TOverhead

Current , based

Calibration of timestamps, ΔΤAccessCalibration of timestamps, ΔΤCorrect

Native run, TNative

Pin run, TTools

Pin run, TFull, ΔTAccess

Fig. 3: Block diagram showing the phases of our instrumen-
tation
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on the initial timing measurement after the branch, entering the
instrumentation code, TBranch

Start , and before exiting the instru-
mentation, TBranch

Exit . Even though the timing measurements of
the instrumentation function is as close as possible to real ones,
there are overheads that cannot be tracked down, TOverhead

Unknown ,
that we consider as zero in this step and will correct next. So
the accumulated overhead can be calculated

TOverhead
Current = TOverhead

Current + TBranch
Exit − TBranch

Start + TOverhead
Unknown

We calculate the ∆TAccess taking into account and subtract-
ing the accumulated overhead since the previous access to this
row, TOverhead

LastAccess.

TOverhead
LastAccess = TOverhead

Current − TOverhead
Previous

∆TAccess = TCurrent
Access − TPrevious

Access − TOverhead
LastAccess

The logical flow of our Pin instrumentation and decisions
about which accesses will be stored in the trace file is shown in
Figure 4 and is described next. Our instrumentation function is
invoked for all instructions that are accessing the memory and
injects a branch instruction to the instrumentation function. We
keep the IV of accesses in the trace file when a load instruction
causes a cache miss and the given address of the data is inside
the region of the application that we keep track. The IV of an
access consists of the address, the count of instrumentation
calls and the timing since the last access and the total so far.
If the cache has a conflict based on the replacement scheme
of the memory, we evict a cache line and if needed, the data
are written back to memory and we have to update the last
access time of the evicted line. In the end, we check if it is a
store instruction, in order to update the dirty bit of the given
address.

4) Calibration of Measurements: As described above, in
the previous step we introduced TOverhead

Unknown which could not
be estimated during the tracing. Since this overhead is caused
by not measuring the time spent on the branch instruction
itself, the exit of our routine and the breaking of the cache,
we consider it to be static across each invocation of our

instrumentation function. So the information from the previous
steps is used to estimate it. In particular, we calculate an
average value of this overhead for each invocation by using
the following formula:

TOverhead
PerAccess =

TFull − TNative − TTools − TOverhead
Total

InvokesCountTotal

At the end, we recalibrate the measurements in the trace file
to have accurate timings, according the following formula:

∆TCorrect
Access = ∆TAccess − InvokesCount ∗ TOverhead

PerAccess

V. CASE STUDY: FAILURE-RATE ESTIMATION UNDER
RELAXED REFRESH OPERATION

As we discussed the primary use of the extracted timing
traces is on improving the existing DRAM fault injection
schemes. In this section, we describe as a case study how
our framework can be used for estimating and injecting faults
under relaxed refresh operations during application execution.

A. Error Generation
Following the measurement of the intervals between consec-

utive memory accesses occurring within the target application,
as described in the previous section, we then estimate the
memory faults that need to be introduced. In particular, we
calculate the probability of an error for each access that goes
to the memory controller based i) on the extracted intervals
between consecutive accesses of the same row and ii) the Cu-
mulative Distribution Function (CDF) of bit-error probability
from 1 up to 150 seconds of TREFW Note that in our case,
we have extracted the CDF from a server system the details
of which are described on Table 1. Our experiments were
performed on the server’s DRAMs consisting of 8 DIMMs of
8 GB DDR3 at 1600 MHz. By disabling the refresh and using
test kernels that write specific patterns [34] in memory and
access them after a specific amount of time we characterized
the TREFW of each cell similarly to [20]. The extracted CDF
for each DIMM for a range of TREFW from 1 up to 150
seconds is shown on Figure 5.

Using the extracted CDF and the measured intervals be-
tween accesses, we can estimate the fault injection probability
in any specific row. In particular, if the access interval is
greater than the TREFW then we check the probability multi-
ple times, specifically N times as calculated by the following
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function, using the error probability of TREFW and for the last
time, we fault-inject based on the probability of the remaining
time, TRest from the function. We create a new trace file only
with the IV that will be used to fault-inject by the next step.

∆TCorrect
Access = X ∗ TREF + TRest, TRest < TREF

This phase allows us to estimate quickly the injected errors
using one trace of the IVs. By using inputs from a randomiza-
tion seed we then generate a number of error traces that can
be injected and used for evaluating the application behaviour.

B. Fault Injection
Having estimated the faults that need to be introduced,

we can then execute the application while performing fault-
injection within a functional simulator, which is built around
also Pin. The instrumentation function for this step is called
by branching the execution of the application on instructions
with accesses to the memory. Only the rows specified by the
error trace of the IVs are going to be fault-injected and to
identify which rows, we are using the address of the access
and the number of accesses that happened so far.

During the execution, we monitor the output result evaluat-
ing if the application crashed. In case that the application is
completed, we can estimate the output quality using applica-
tion relevant error metrics.

VI. EVALUATION DETAILS AND RESULTS

To evaluate the efficacy of our framework we have devel-
oped artificial benchmarks with various access patterns and
used an experimental setup based on a real server that could
allow us to compare the estimated timing intervals.

A. Experimental Setup
The validation of the simulator is done using a real system,

specifically a commodity server machine with dual-socket
Intel processor. The specifications of the system are found
on Table 1.

B. Benchmarks
The constructed artificial benchmarks resemble kernels with

access patterns representative of real applications. Operations
are being replaced with boolean operators that can help to
trace back how many errors were introduced, while additional
delays have been added for emulating the time spent on the
processor.

Parameter Value

CPU Intel R©Xeon R©CPU E5-2650
Clock 2.00 GHz

Cores/socket 8
Sockets 2

L1 data cache/core 32 KB, 8-way associative
L2 cache/core 256 KB, 8-way associative

L3 cache/socket 20 MB, 20-way associative
Replacement scheme Least Recently Used(LRU)

DRAM Type DDR3
Memory Size 8 * 8 GB

Memory Clock 1600 MHz

Table 1: Specification of the hardware

The constructed artificial benchmarks vary in terms of
the data-structure size, the type of the access patterns (i.e.
sequential, random-walker, hybrid) and the frequency (rate)
of memory accesses. Such artificial benchmarks allow us
essentially to control the access patterns and thus evaluate
the efficacy of our framework with different intervals between
memory accesses and workload sizes.

C. Evaluation Flow of Timing Intervals

In the artificial benchmarks, we have instrumented native
sampling of the time to validate the timing measurements of
Pin. The sampling is done by accessing a unique memory
address and keeping the timestamp of the access. By doing so,
we can measure the intervals of the specific memory address
without any Pin instrumentation. The introduced sampling is
very sparse to avoid introducing any major overhead in the
execution.

Afterwords, we execute the same benchmark through our
framework to extract the memory trace and we correct the
timestamps using the approaches discussed in Section IV. The
intervals iobtained by the native execution of the specific
memory address can be associated with accesses of the same
address in the trace extracted from the Pin. We compare the
measured intervals from the native instrumentation with the
ones estimated by our framework. In this way, we can evaluate
the accuracy of our timing trace estimation framework.

1) Accuracy of tracing: We measure the accuracy of our
framework, based on the evaluation flow described in the
previous section. Overall, we observe that the estimation
accuracy of the proposed framework varies from 1.8 up to
17 times for benchmarks with small memory usage. However,
the accuracy is improved for larger workloads.

In particular, by using the artificial benchmarks with the
various access patterns but with memory up-to 512MB we
observed that in worst case, we overestimate the timing inter-
vals by up to 1.8 times compared to the intervals extracted by
the native execution. There are also cases that our framework
underestimates the timing intervals by up to 17 times when
compared to the intervals extracted by the native execution.

Note that we have not experimented with benchmarks with
less memory than the cache size as it is impossible to conclude
anything meaningful from those experiments.

On the other hand, when we execute the same benchmarks
but with datasets ranging from 512 MB up to 8 GB we
observed that the accuracy of our framework is very close
to the native execution. For benchmarks with only sequential
accesses, that have similar workload across each access, our
framework may overestimate the timing intervals from 1.09 up
to 1.16 times. For benchmarks with only sequential accesses,
that have heavily variable workload across each access, the
intervals can be either be underestimated by up to 1.36 times
or be overestimated up to 1.06 times. For benchmarks with
only random accesses, that are instrumented in such way
that every access is a cache misses, our framework may
underestimate the timing intervals by up to 1.38 times and
may overestimate them by up to 1.24. Similarly, the accuracy
further decreases for benchmarks with only random accesses,
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Fig. 6: Execution time of different techniques of timing trace
and simulation, normalized to the execution time of the native
execution of the benchmark

that may include cache hits, underestimating by up to 1.88
times and overestimating by up to 1.26.

The above results indicate that the accuracy of our scheme
is high for larger workloads and regular access patterns but
it degrades as the complexity of the benchmark, and thus
irregularity increases. Furthermore, in cases that we the cache
accesses have a pattern and are either most of them cache
hits, such as the first case, or mostly cache misses, such as
the second case, our framework tends to have better accuracy,
compared to benchmark that have irregularities. Finally, we
observe that our estimates of intervals on average may be
under estimated, meaning by that we are potentially over-
correcting the instrumentation overheads.

2) Overhead: Apart from the accuracy we also measure
the overhead of our framework in terms of execution time.
Figure 6 depicts the overhead introduced for each technique
normalized to the execution time on the native system. Our
framework has two phases for extracting the timing trace
through Pin; one measuring the overhead for loading Pin
and one for extracting the timing traces. These two phases
are compared with the execution time in a full system cycle
accurate simulator i.e. gem5.

The execution time of the phase that is just loading the
tools is around 45 times slower than the native execution.
We observed that the execution time of the benchmark can
increase by up to 90 times in case that the benchmark is
running for less than few seconds. In our experiments, the
phase for extracting the trace can be up to 220 times slower
than the native execution in the worst case of benchmarks with
high cache miss rate, but on average it is 145 times slower than
the native execution. As shown in Figure 6, gem5 is around
20.000 times slower than the native execution. In any case,
our framework is orders of magnitudes faster when compared
to gem5. The execution time of the functional simulator that
is used for injecting faults in the benchmark according to the
estimated errors is around 30 times slower than the native run.

Finally, Figure 6 shows the execution time of the error
generation and of the functional run combined. The execution
time of the functional simulator that is used for injecting faults
in the benchmark according to the estimated errors is around
30 times slower than the native run, which is can be considered
quick enough.

In the next section, we are presenting the results of our
framework on the case study of fault-injection.

D. Evaluation of Fault-Injection

We are evaluating our fault-injection scheme by comparing
it to a state of the art scheme.

1) Baseline Scheme for Fault-Injection: In terms of the
fault injection scheme, we compare our approach with a
scheme that injects DRAM faults according to a fixed proba-
bility of error, extracted by the CDF, each time the memory is
read and the data do not reside in the cache. Specifically, as
the fault injection baseline we are using the implementation
described in [14]. The two schemes are evaluated by using
different benchmarks based on the number of errors that are
injected on the data structures.

2) Results: As we discussed in previous section, the ex-
tracted timing can be used to fault inject within a simulator
following the steps discussed in Section V. Figure 7 shows
the difference in the number of error occurred of the two
fault-injection schemes, one with fixed probability as in [14]
and our implementation taking into account the intervals of
consecutive accesses. The benchmark is allocating 1 GB of
memory and accessing all the rows every ∆T = 5sec.. So
even if we increase the TREFW further than the ∆T , the data
are refreshed by the accesses. Our proposed method results
are the expected one, as we increase the TREFW further than
the ∆T , the probability remains stable, the one based on the
intervals. For the scheme with fixed error probability for each
access, the errors increase while we are increasing the TREFW

indefinitely, overestimating the errors. Furthermore, we can see
that for TREFW = 2sec., the scheme with fixed probability is
underestimating the errors, because it only check once for the
probability based on 2 sec., while our scheme calculate the
probability taking into account multiple cycles of TREFW as
described in Section V.

VII. CONCLUSIONS

This paper presents an access-aware DRAM failure rate
estimation framework which can help improve the state of
the art. As we discussed every memory access implicitly
refreshes the DRAM rows and by neglecting such a property
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Fig. 7: Comparison of the fault-injection scheme with fixed
probability of error and our access-aware scheme.



during fault injection then an over-estimation of the introduced
errors may be incurred, which can lead to an under-estimation
of the possible refresh-rate gains. Based on dynamic binary
instrumentation the proposed framework allows us to extract
the timing intervals between consecutive accesses for a target
application quickly and accurately and use them for property
injecting faults during functional simulation. Our framework
outperforms other conventional methods based on cycle accu-
rate simulators which can also be used for extracting the timing
traces by 100 times. The proposed scheme provides adequate
timing trace estimation accuracy, especially for workloads with
a lot of memory and regular access patterns, when compared to
the native execution of various benchmarks. Finally, it can help
limit the over- or under- estimation of injected faults occurred
by existing schemes.
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