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Abstract 17 

This paper reports an experimental campaign that aims at measuring the evolution of bridge 18 

modal properties during the passage of a vehicle. It investigates not only frequency shifts due 19 

to various vehicle positions, but also changes in the shape of the modes of vibration. Two 20 

different bridges were instrumented and loaded by traversing trucks or trucks momentarily 21 

stationed on the bridge. The measurements were analysed by means of an output-only 22 

technique and a novel use of the continuous wavelet transform, which is presented here for 23 

the first time. The analysis reveals the presence of additional frequencies, significant shifts in 24 

frequencies and changes in the modes of vibration These phenomena  are theoretically 25 

investigated with the support of a simplified numerical model. This paper offers an 26 

interpretation of vehicle-bridge interaction of two particular case studies. The results clearly 27 

show that the modal properties of the vehicle and bridge do change with varying vehicle 28 

position. 29 

 30 
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1. Introduction 34 

 35 

It is a well-known fact that the modal properties of two separate mechanical systems change 36 

when both systems interact. The coupled arrangement might have significantly different 37 

natural frequencies and modes of vibrations, compared to the uncoupled systems [1]. This is 38 

also acknowledged in bridge engineering to some extent, when investigating vehicles 39 

crossing the structure, i.e. it is understood that natural frequencies of a bridge change when 40 

heavy (massive) traffic traverses it. 41 

 42 

As pointed out by Frýba [2] the fundamental frequency of a loaded beam depends not only on 43 

the magnitude of the mass on the deck but also on the position of the mass. A key factor in 44 

the scale of frequency variation that occurs for different mass positions is the ratio between 45 

the vehicle and bridge masses, with higher mass ratios producing larger shifts in the bridge 46 

frequency. Despite the general acceptance that such frequency shifts will occur, this is a 47 

problem not well studied in bridge engineering literature [3]. However, there have been some 48 

recent studies, for example [4] describes changes in the fundamental frequency of a railway 49 

bridge during passage of a train and provides an approximate formula to calculate changing 50 

bridge frequency. Yang et al. [3] study the variation of both vehicle and bridge frequencies 51 

and present a closed-form expression for a simply supported bridge considering only the first 52 

mode of vibration. Cantero & OBrien [5] investigate numerically the effect of different mass 53 

ratios and frequency ratios on the changes in system frequencies, where frequency ratio (FR) 54 

= vehicle frequency / bridge frequency and mass ratio (MR) =vehicle mass / bridge mass. 55 

The numerical analyses of coupled vehicle-bridge models in [5, 6] show that for certain mass 56 

and frequency ratios it is possible to achieve positive frequency shifts in the fundamental 57 

frequency of the bridge. There exist only a limited number of studies that investigate this 58 

problem either experimentally, or in real operational bridges. For instance, in [7] the authors 59 

use a variety of output-only techniques with the response of a scaled model and are able to 60 

obtain clear frequency evolution diagrams for the case of large mass ratios. Also [6] performs 61 

a controlled laboratory experiment obtaining frequency shifts that validate an approximate 62 

closed-form solution of the frequency shift. The study in [8] investigates how a parked 63 

vehicle on an operational bridge affects its fundamental frequency, reporting frequency 64 

reductions of 5.4%. More recently, [9] explores the non-stationary nature of a 5-span bridge 65 

traversed by a truck, using alternative time-frequency tools, with limited success. Frequency 66 

is not the only modal property changing with load and its position; for instance [10] used 67 
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numerical simulation to show that damping of a pedestrian bridge also changes according to 68 

number and location of pedestrians. That said, the majority of the limited papers available on 69 

the topic focus only on tracking frequency changes and do not evaluate the effect of load on 70 

the associated mode shapes. 71 

 72 

Although a small number of authors have used numerical models to study the problem of 73 

frequency variation with load position, to date, no experimental investigation on full scale 74 

bridges has been presented. Such a study is the main contribution of this paper. Two seperate 75 

experiments were carried out, each using a different test truck on different instrumented 76 

bridges. Bridge A is a three-span continuous structure monitored while a truck traverses it at 77 

a constant speed. The measurements from Bridge A provide only weak evidence of the 78 

evolution of the modal properties and hence it constitutes only a first attempt. A second 79 

experiment is reported on Bridge B, which is a single span bridge. For the experiment on 80 

Bridge B, a truck stops at certain locations on the bridge. The free vibration measurements of 81 

the bridge accelerations, right after the vehicle stops, allows for the precise extraction of the 82 

modal parameters of the coupled system. This is repeated for various vehicle stopping 83 

positions to obtain the variation of the modal properties with respect to vehicle position. It is 84 

important to note that the variation in modal properties  reported here are specific to the two 85 

case studies investigated; since these variations strongly depend on the particular vehicle and 86 

bridge. 87 

 88 

Over the course of the investigation, it is shown that a vehicle being present on the bridge 89 

results in a coupled system, such that modal analysis results cannot be interpreted as two 90 

separate systems (bridge and truck). The vehicle-bridge interaction is a non-stationary 91 

problem where the modal parameters change with vehicle location. In general, the ideas and 92 

results presented here are of interest to engineers and researchers involved in any vehicle-93 

bridge interaction study. However, the findings reported here have particular consequences 94 

for the current research thread on extracting bridge modal properties from passing 95 

instrumented vehicles, e.g. [11-13]. In general, these publications acknowledge that there is 96 

vehicle-bridge coupling, but fail to consider the changes in modal properties with vehicle 97 

position. In these papers modal analysis techniques are often applied to the full length of the 98 

signal obtained during vehicle passage. However, attempting to analyse what is in effect a 99 

non-stationary signal with conventional modal analysis techniques developed for stationary 100 

signals will necessarily result in unreliable modal properties.  101 
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 102 

As well as demonstrating that the bridge acceleration signal recorded during the passage of a 103 

truck is non-stationary, this paper provides advice and insight on a number of related issues. 104 

First, a modified and novel approach for performing the Continuous Wavelet Transform 105 

(CWT) is presented, and is shown to be an effective signal processing technique to visualise 106 

variations in system frequencies. Next, the source of the additional frequency peak in the 107 

spectra of the forced (i.e. loaded) bridge acceleration signal is investigated. This is carried out 108 

using a relatively simple but insightful numerical model, and experimental data from Bridges 109 

A and B. Moreover, this paper shows for the first time that not only do the natural 110 

frequencies evolve during traffic passage, but that the shapes of the associated modes of 111 

vibration also evolve. For every vehicle location, the vehicle-bridge system features distinctly 112 

different modes. This is supported by a theoretical analysis of the problem, and carefully 113 

extracted experimental results. However, it should be noted that this paper only reports 114 

findings on the first longitudinal mode of the bridge, no torsional or higher modes are 115 

investigated. 116 

 117 

The remainder of this paper has four primary sections. Section 2 provides a theoretical 118 

background on the numerical model, modal analysis, and signal processing techniques used 119 

in this study. Section 3 describes an experimental test where a truck was driven across a 3-120 

span bridge. Additional frequencies were observed in the spectra of the recorded bridge 121 

response. A numerical model is used to postulate the origin of the additional frequency peak. 122 

However, to experimentally confirm the validity of the model predictions it was necessary to 123 

redo the experiment using a revised procedure where the truck would stop at a series of 124 

discrete locations on a bridge. The outcome of the revised experiment is reported in Section 125 

4. 126 

 127 

2. Methods 128 

 129 

This section provides the reader a brief overview of the tools used throughout this study. 130 

Section 2.1 describes the numerical model that helps explain non-intuitive changes in modal 131 

properties observed in the experiments. Section 2.2 provides references on the modal analysis 132 

procedures employed to analyse the measured acceleration signals. Finally, Section 2.3 133 

describes a modified form of wavelet analysis that is used to visualise variations in the 134 

system frequencies for the non-stationary acceleration signals recorded on site. 135 
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 136 

2.1 Numerical model 137 

 138 

The coupled vehicle-bridge model was programmed in Matlab [14] and a pictorial 139 

representation of the numerical model is shown in Fig. 1. The truck is simulated as a sprung 140 

mass m supported on a spring k, where the spring represents the suspension of the vehicle. 141 

The bridge is simulated using a finite element beam model where each beam element has 4 142 

degrees of freedom, namely a rotation and a vertical translation at each end of the element. 143 

Elemental matrices for this kind of element can be found in the literature, e.g. [15]. The beam 144 

is defined by its span L, section area A, modulus of elasticity E, second moment of area I and 145 

mass per unit length ρ. The location of the vehicle is defined by the distance from the left 146 

support (x) and in the simulations the vehicle can be positioned anywhere on the beam (0≤ x 147 

≤L). The coupling between both systems, i.e. bridge and vehicle, can be written in terms of 148 

the beam element shape functions and the relative position of the vehicle within that element 149 

[16]. However, defining a sufficiently dense mesh that has a node exactly at the location of 150 

the vehicle reduces the complexity of the procedure. In that case the matrices of both systems 151 

are assembled diagonally, and the coupling terms are off-diagonal negative stiffness values 152 

that link together the appropriate degrees of freedom. As two different bridges will be 153 

modelled, (each with different boundary conditions), for now the boundary conditions of the 154 

model are indicated with question marks in Fig. 1. Models of this type have previously been 155 

presented in the literature [17]. 156 

 157 

 158 

Fig. 1: Coupled Vehicle-Bridge finite element model 159 

 160 

Fundamentally, the purpose of this model is to allow the vehicle to be moved incrementally 161 

across the bridge and to track how the bridge frequency changes with the position of the 162 

vehicle. For a given vehicle position, the bridge frequencies and associated modes of 163 

vibration can be determined using an eigenvalue analysis. Simulating a multi-axle truck as a 164 
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single degree of freedom sprung mass is a simplification, and for some applications it would 165 

be an over simplification. However, it is shown later that for the purpose of this study, where 166 

the primary interest is in explaining the evolution of frequency with respect to truck position, 167 

the model is effective. Initially values for area (A), second moment of area (I) and mass per 168 

unit length (ρ) were determined from the available bridge drawings. For the Young’s 169 

Modulus (E), standard values for steel and concrete of 2x1011 N/m2 and 2x1010 N/m2 170 

respectively were used. After getting an initial estimate of bridge frequencies from the model, 171 

the bridge properties (in the model) are revised so that the fundamental bridge frequency of 172 

the model matches the free vibration frequency observed on site, this is further described in 173 

Sections 3 and 4. For the vehicle, the spring stiffness (k) is adjusted so that the vehicle 174 

frequency in the model matches the vehicle frequency inferred from the acceleration 175 

measurements recorded experimentally when the truck was traversing the real bridge. Table 1 176 

gives a summary of relevant information about the vehicle and bridge properties used in this 177 

paper. It can be seen in Table 1 that the  vehicle properties postulated for the test vehicles 178 

give body bounce frequencies that are in accordance with typical values for heavy vehicles 179 

(1 Hz to 4 Hz) as shown in [18].  180 

 181 

Table 1: Vehicle and bridge properties 182 

  Test on Bridge A Test on Bridge B 

Bridge 
Type 3-span continuous 1-span 

Spans (m) 18+31+18 36 
fb (Hz) 3.50 3.13 

Vehicle 

Mass (kg) 26 000 32 000 
fv (Hz) 2.80 2.60 

Number of axles 3 4 
Axle distances (m) 1.4+4.1 2.0+3.5+1.4 

Velocity (m/s) 3.63 - 
 183 

2.2 Bridge modal analysis 184 

 185 

The Introduction provided an overview of literature dealing with variation in bridge 186 

frequency with respect to variation in mass distribution. It was also highlighted that previous 187 

studies have not looked at how the mode shapes associated with these frequencies change 188 

with respect to variation in mass distribution. To address this limitation this study attempts to 189 

experimentally capture the mode shape associated with a particular truck position. This is 190 

achieved using output-only modal analysis methods, i.e. no information on the excitation is 191 
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measured. Due to the size/mass of road bridges, output-only methods are often the only 192 

logistically feasible approach to extract modal parameters, because using shakers or impact 193 

hammers to excite the structure is often not practical. Specific details on the theory/ 194 

mathematics underlying output-only modal analysis are not provided here as the topic has 195 

been extensively covered in other publications such as [19]. The particular method used in 196 

this paper is Frequency Domain Decomposition (FDD) and details on this method are given 197 

in [20]. 198 

 199 

2.3 Wavelets 200 

 201 

To be able to accurately visualise the variation in frequency with respect to time, some time-202 

frequency representation of the recorded signals is necessary. There are a number of time-203 

frequency analysis methods available, e.g. Short Time Fourier Transform, Hilbert-Huang 204 

transform and Wavelet transform. Within each of these methods, different options in their 205 

implementation can significantly change the time-frequency plots that are output. All time-206 

frequency analysis methods involve a trade-off in resolution, i.e. high resolution in the 207 

frequency domain typically means poor resolution in the time domain, and vice versa. 208 

Ultimately, it is up to the analyst to identify which method best achieves their objective. In 209 

this paper, the objective of the time-frequency analysis is to visualise how the bridge 210 

frequency changes as a truck traverses the bridge. 211 

In essence, the CWT compares the wavelet bases (a wave-form of finite length) to the 212 

analysed signal and gives a wavelet coefficient, so that the better the match, the larger the 213 

coefficient. This wavelet is then shifted in time to cover the whole length of the signal, 214 

resulting in a vector of wavelet coefficients. The wavelet is then scaled (i.e. stretched) and the 215 

process is repeated. For each scale used in the analysis a vector of wavelet coefficients 216 

results. Scale can be regarded as inversely proportional to frequency and thus can be 217 

transformed approximately to frequency, or more specifically pseudo-frequency. The result 218 

of CWT analysis is a plot of wavelet coefficients in the time-frequency plane that are 219 

proportional to the energy of the signal. For additional information on wavelets and to find a 220 

full mathematical description further details are provided by other authors [21,22]. 221 

 222 

When using the CWT, several wavelet basis functions are available, e.g. Morlet, Gaussian, 223 

Mexican hat. The results from the CWT are significantly affected by the wavelet basis used 224 

in the analysis so it is paramount to choose an appropriate basis. Knowing which wavelet 225 
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basis will give the best results for a given application is not always obvious, and often there is 226 

a degree of trial and error involved. However, [23] showed that the Modified Littlewood-227 

Paley (MLP) wavelet basis was effective when analysing the acceleration signals of bridges  228 

subject to vehicle loading, and therefore this is the wavelet basis used in this study. 229 

 230 

In addition, this paper proposes a non-conventional normalisation step that proves very 231 

effective when analysing bridge signals that contain a mixture of free and forced vibration. 232 

Using a conventional CWT to analyse a bridge signal that has both free and forced vibration 233 

can be difficult. The forced vibration part of the signal has the largest amplitude, and as a 234 

result this will dominate the resulting CWT plot. This makes it very difficult to track the 235 

frequency evolution between the free and forced parts of the signal because the frequency 236 

from the free vibration part will be practically invisible. The novel procedure adopted here 237 

gets around this problem by normalising the wavelet coefficients at each time instant and is 238 

presented schematically in Fig. 2. 239 

 240 

A signal with linearly increasing frequency and linearly decreasing amplitude is analysed 241 

with a conventional CWT and the result is shown in Fig. 2(a). The plot represents a 3D 242 

wavelet surface as a 2D ‘contour’ plot where the magnitude of the wavelet coefficients are 243 

conveyed using colour, with darker colours implying large values of wavelet coefficient. The 244 

non-stationarity property and decreasing amplitude of this numerically generated signal can 245 

clearly be appreciated in the plot. Unfortunately, from the point of view of frequency 246 

tracking, the large amplitudes in the early part of the signal are resulting in high wavelet 247 

coefficients that are in a sense dominating the plot and making it difficult to see the frequency 248 

content in the latter part of the signal. However, if one is prepared to sacrifice information 249 

relating to amplitude, which for the purpose of this paper we are not concerned with, then this 250 

representation can be improved. The first step is to fit an envelope to the wavelet coefficients 251 

for a given scale and to accept this curve as the representative result from the CWT. An 252 

example of this curve fitting is shown in Fig. 2(b). The blue plot in Fig. 2(b) shows the 253 

wavelet coefficients at a particular scale, the red curve has been fitted to the blue plot. If a 254 

similar curve is fitted at every scale, and then if all the ‘fitted’ curves are plotted in 2D, the 255 

plot shown in Fig. 2(c) results. The second step is to normalise each wavelet coefficient at a 256 

given time instant by the total energy content for that time instant. The result of applying this 257 

normalisation is shown in Fig. 2(d). The consequence of this normalization is that it gives the 258 

same importance to the frequency of small amplitude vibrations as it does to the frequency of 259 



9 
 

large amplitude vibrations. The usefulness of this normalization will become clear when 260 

studying the measured accelerations in Sections 3 and 4 below. Obviously, the substitution by 261 

the envelope curve and then later application of normalization comes with a cost. The final 262 

map of wavelet coefficients cannot be used for signal reconstruction. However, for 263 

visualization purposes these two operations greatly improve the final result from the CWT. 264 

 265 

 266 

Fig. 2: Enhancement of energy map from CWT analysis 267 

 268 

3. Experimental study of Bridge A and moving truck 269 

 270 

This section describes the first experimental investigation carried out on a 3-span road bridge. 271 

A truck is driven over the bridge and the bridge acceleration is recorded at a number of 272 

locations. This acceleration data is subsequently analysed to examine how the modal 273 

parameters of the bridge change as the truck crosses the bridge. Section 3.1 describes the 274 

bridge and experiment setup used. Section 3.2 presents the results of modal analysis carried 275 

out on free and forced vibration data. Finally, Section 3.3 puts forward a theoretical model to 276 
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explain the behaviour observed in Section 3.2. Note that this experiment on Bridge A is only 277 

the first attempt to study the evolution of modal properties during vehicle passage and a 278 

plausible explanation is provided based only on weak evidence. A second experiment that 279 

provides stronger evidences is performed on a different bridge and is reported in Section 4. 280 

 281 

3.1 Bridge and instrumentation description 282 

 283 

The bridge used in the experiment is shown in Fig. 3(a). It is a 3-span bridge carrying a minor 284 

road (4 m wide) over a dual carriageway. The deck consists of 2 steel girders supporting a 285 

concrete deck. The centre span is 31 m and each of the side spans are 18 m. There were two 286 

primary reasons for selecting this bridge. Firstly, the bridge deck is relatively light, narrow 287 

carriageway and primary members are steel. This is advantageous because a high (vehicle-288 

bridge) mass ratio should lead to larger changes in modal properties. The second reason for 289 

selecting this bridge is that the traffic volumes on the bridge are very light, which made it 290 

logistically feasible to carry out the test. The vehicle used in the test is a 3-axle truck with a 291 

total mass of 26 tonnes, shown in Fig. 3(b). The truck crossed the bridge twice (once in each 292 

direction) at a crawling speed of approximately 13 km/h (3.63 m/s). Such a low speed 293 

effectively reduces the dynamic effects associated with (i) road profile unevenness, (ii) 294 

loading frequencies due to the vehicle’s axle spacing and (iii) shifting of bridge frequencies 295 

[24]. Despite the low speed the truck still provides sufficient excitation to the system. 296 

 297 

(a) (b) 

  

Fig. 3: (a) Bridge A elevation (3-span bridge); (b) Truck used in experiment 298 

 299 

Fig. 4 shows a plan view of the bridge deck. The position of the piers is indicated using 300 

dashed lines and for convenience the spans are labelled as spans 1-3. The bridge has a 4 m 301 

wide carriageway with 0.5 m wide footways on either side. Due to the impossibility of road 302 

closure, the instrumentation had to be installed on the footway and it was installed as close as 303 

possible to centre of the main beams. The location of the six accelerometers (A-F) used in the 304 
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test are indicated in Fig. 4. One accelerometer was placed at mid-span of each of the three 305 

spans on both sides of the bridge. The accelerometers used were tri-axial Micro-Electro 306 

Mechanical System (MEMS) accelerometers scanning at 128 Hz.  307 

 308 

 309 

Fig. 4: Plan view and accelerometer layout on Bridge A. 310 

 311 

3.2 Modal analysis of free and forced vibration data 312 

 313 

The first step in analysing the data is to perform modal analysis on the free vibration data, i.e. 314 

no truck on the bridge. The FDD modal analysis approach described in Section 2.2 is used to 315 

analyse the free vibration data. Singular Value Decomposition (SVD) of the Power Spectral 316 

Density matrix is plotted in Fig. 5(a) where a clear peak is visible at 3.5 Hz indicating the 317 

likely presence of a mode. Note that the poor frequency resolution is due to the short duration 318 

of analysed signal. The associated mode of vibration is extracted and presented in Fig. 5(b). 319 

The square data markers represent the bridge supports, i.e. the modal amplitude at these 320 

locations is assumed zero. The circular data markers (from left to right) indicate the modal 321 

amplitudes at sensor locations A, B and C, see Fig. 4. If the modal ordinates for sensor 322 

locations D, E and F are plotted the same mode shape is apparent. Thus it is clear that the 323 

mode at 3.5 Hz is the first bending mode. This result is consistently obtained for various 324 

different free vibration measurements. 325 

 326 
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(a) (b) 

 

 

Fig. 5: Modal analysis of signals during free vibration of Bridge A; (a) Singular Value 327 

Decomposition magnitude; (b) Extracted fundamental mode 328 

 329 

Once the free vibration data was analysed the next step was to analyse the forced vibration 330 

response, i.e. the acceleration recorded while the truck was on the bridge. The results of 331 

analysing the forced vibration data is presented in Fig. 6. The analysis procedures used are 332 

the same as those used to generate the plots in Fig. 5. However, there are in this case, some 333 

noticeable differences in the results. The SVD analysis in Fig. 6(a) identifies the presence of 334 

two distinct peaks at 2.63 Hz and 3.63 Hz respectively, but the fundamental bridge mode at 335 

3.5 Hz identified in Fig. 5 is no longer evident. The mode shapes associated with the two 336 

frequency peaks are shown in Fig. 6(b). 337 

 338 

Starting with the mode shape for the 3.63 Hz mode, it is noticeable that it is very similar in 339 

shape to the mode shown in Fig. 5(b), so it is reasonable to assume that this is the same mode. 340 

However, the presence of the truck has changed the frequency of the mode slightly. It is 341 

interesting to note that the fundamental frequency of the bridge has increased. Intuitively one 342 

would expect a slight reduction in the frequency because the truck is adding mass to the deck. 343 

Moving on to the mode identified at 2.63 Hz, its origins are less clear. One possibility is that 344 

perhaps the loading frequency produced an excitation in the region of 2.63 Hz. For this truck 345 

three possible axle spacings need to be considered, namely 1.4 m, 4.1 m and 5.5 m, which are 346 

the distances from axle-1 to axle-2, axle-2 to axle-3, and axle-1 to axle-3 respectively. For a 347 

traversing speed 3.63 m/s the possible loading frequencies are 0.38 Hz, 1.13 Hz and 1.52 Hz. 348 

Another possibility is that the shift in bridge frequency is due to the driving velocity of the 349 

vehicle, as discussed in Yang et al. [24]. This shift in frequency is directly proportional to the 350 

vehicle speed and inversely proportional to double the bridge span. Due to the low speed of 351 
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the traversing vehicle, only shifts of ±0.03 Hz in the bridge fundamental frequency can be 352 

expected. Therefore, neither the vehicle loading frequency nor the frequency shift due to 353 

driving velocity explain the frequency peak at 2.63 Hz. 354 

 355 

Obviously,  the origins of the 2.63 Hz frequency is likely to be related to the vehicle’s 356 

presence, and it is reasonable to consider that the 2.63 Hz may be the vehicle frequency 357 

however, it is difficult to be definitive just on the evidence of Fig. 6.   Interestingly the mode 358 

shape associated with the 2.63 Hz peak is practically a duplicate of the fundamental bridge 359 

mode identified in Fig. 5(b). Therefore, to get a better theoretical understanding of why the 360 

presence of a truck is; (i) causing a slight increase in the frequency of the fundamental mode 361 

and (ii) resulting in the appearance of a new mode, the vehicle-bridge model described in 362 

Section 2.1 is used in the next section to calculate the system frequencies for a series of 363 

different vehicle positions. 364 

 365 

(a) (b) 

 

 

 

Fig. 6: Modal analysis of signals during forced vibration of Bridge A; (a) Singular Value 366 

Decomposition magnitude; (b) Extracted first and second modes 367 

 368 

3.3 Theoretical model of observed behaviour 369 

 370 

In an effort to better understand the frequencies observed in Fig. 6 the vehicle-bridge model 371 

described in Section 2.1 is used here to position the vehicle model at a series of discrete 372 

points along the length of the beam and to examine how the frequencies of the system 373 

(vehicle and bridge) are affected. The bridge is modelled as a 3-span continuous beam with 374 

restrained vertical displacements at the ends and intermediate locations, which represent the 375 
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support conditions at the abutments and over the piers. The bridge properties in the model are 376 

revised so that the fundamental frequency in the model is 3.5 Hz and the properties of the 377 

vehicle model have been adjusted to get a vehicle frequency of 2.8 Hz. The total mass of the 378 

vehicle in the model is 26000 kg. Although the exact frequency of the vehicle was not 379 

measured on site, based on the experimental observations in the previous section, and the 380 

information in the literature [18], a vehicle frequency of 2.8 Hz seems reasonable. It should 381 

be noted that the purpose of this model is not to exactly simulate the vehicle crossing event 382 

recorded experimentally. Instead, the purpose is to examine what happens to the bridge and 383 

vehicle frequencies if the sprung mass is placed at a series of discrete points along the length 384 

of the beam. This is achieved by positioning the sprung mass at a given point on the bridge 385 

and performing an eigenvalue analysis the system matrices of the coupled model system to 386 

identify the system frequencies for that vehicle position. Then the vehicle is consecutively 387 

moved to the next point on the bridge and the system frequencies for each new position are 388 

calculated. As the vehicle-bridge system is coupled, technically these frequencies should be 389 

termed the ‘first system frequency’, ‘second system frequency’, etc. However, for convention 390 

in the following discussion they are also referred to as ‘vehicle’ and ‘bridge’ frequencies.  391 

 392 

The evolution of the system frequencies for various vehicle positions is presented in Fig. 7. 393 

The horizontal axis in Fig. 7 shows the position of the vehicle relative to the left support as a 394 

percentage of the total bridge length L. So when the vehicle is exactly over the left support its 395 

position is 0% of L, when it is half way across its position is 50% of L, and when it is exactly 396 

over the right support its position is 100% of L. The two dashed vertical lines in the figure at 397 

26% and 73% indicate the position of the two piers. The ordinates in Fig. 7 are frequency 398 

values. The two horizontal lines at 3.5 Hz and 2.8 Hz represent the vehicle and bridge 399 

frequencies in isolation, i.e. in the absence of any interaction between them. 400 

 401 

The lower solid line in Fig. 7 shows the variation in the vehicle frequency as the vehicle is at 402 

various positions along the length of the bridge. Tracing this plot from left to right, it can be 403 

seen that when the vehicle is positioned over the left support its frequency (2.8 Hz) remains 404 

unchanged. However, when the vehicle is positioned toward the centre of span 1 (x ≈ 13%) 405 

the vehicle frequency drops below 2.8 Hz. Then, as the vehicle is positioned at the first pier 406 

(x ≈ 26%), the vehicle frequency goes back up to 2.8 Hz. As the vehicle is incrementally 407 

moved  toward the centre of span 2 the vehicle frequency shows a steady reduction in 408 

frequency to a minimum value of approximately 2.4 Hz at the mid-span of span 2 (x ≈ 50%). 409 
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As the position of the vehicle continues toward pier 2 the vehicle frequency shows a gradual 410 

increase and it recovers completely to 2.8 Hz when the vehicle is over pier 2. A similar 411 

reduction in vehicle frequency is evident when the vehicle is positioned in the centre of span 412 

3. If the vehicle is thought of in isolation, i.e. if it is visualised as a mass supported on a 413 

spring, this pattern is difficult to understand. However, if, for the crossing event, the vehicle 414 

is thought of as a mass on two vertical springs, (one on top of the other) it is easier to 415 

understand. The upper spring being the vehicle suspension and the lower spring being the 416 

bridge, i.e. it is now a 2 degree of freedom system. The stiffness of the upper spring (the 417 

vehicle suspension) is constant. The stiffness of the lower spring (the bridge) is not constant 418 

since it depends on where the vehicle is positioned on the bridge. When the vehicle is over a 419 

bridge support the lower spring could be regarded as infinitely stiff so the vehicle behaves as 420 

an uncoupled single DOF system and the frequency remains 2.8 Hz. However, when the 421 

vehicle is at the mid-span of the bridge the lower spring is no longer infinitely stiff, as the 422 

system of springs supporting the mass is more flexible than it was before (when the vehicle 423 

was over a support) so the frequency of the system drops. Note that the 2 degree of freedom 424 

model/visualisation constitutes only an analogy that encapsulates the frequency evolution 425 

phenomena. Similar models have been reported in [25, 26] to study the dynamics of vehicle-426 

bridge interaction systems. 427 

 428 

Turning our attention to the upper solid line in Fig. 7, the result shows how the bridge 429 

frequency changes with respect to the position of the vehicle on the bridge. The most relevant 430 

thing about this plot is that for certain truck positions the bridge frequency is actually 431 

predicted to increase. This is counterintuitive because one would expect the bridge frequency 432 

to reduce slightly if a concentrated un-sprung mass was placed on the bridge deck. (This is 433 

indeed what would happen and this is demonstrated later in Fig. 12). However, it appears that 434 

when the moving mass is sprung, there are situations where the bridge frequency can actually 435 

increase slightly. It is conceivable that the sprung mass (truck body) adds a kind of inertial 436 

resistance to bridge’s motion. In other words, the vehicle mass is providing some restraint to 437 

the upper end of the truck suspension (spring), which is touching the bridge deck. This can be 438 

interpreted as if the truck provides an extra spring support at the location the truck is located 439 

at. Obviously, from a static point of view, the number of bridge supports remains unchanged. 440 

For convenience in this paper we will term this apparent localised stiffening of the beam 441 

where the truck is parked an ‘inertial spring support’. It can be seen in the upper solid line in 442 

Fig. 7 that when the truck is at either of the 2 short side spans the addition of this inertial 443 
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spring support makes very little difference to the bridge frequency, indicating that it is adding 444 

relatively little stiffness to the system. However, when the truck is on the longer central span, 445 

the addition of an ‘inertial spring support’ does result in a significant increase in frequency.  446 

 447 

Conceptualising the body of the vehicle as described above is helpful for initial visualisation 448 

as it allows the bridge to be idealised in a conventional static structural arrangement. 449 

However, in reality the vehicle-bridge system is a dynamic system so the behaviour is more 450 

complex and insight on the behaviour is provided by [5]. Using a simple numerical model of 451 

a sprung mass on a single span beam, they investigated how the system frequencies changed 452 

as the sprung mass was positioned at different points on the beam. The results of [5] showed 453 

frequency variation patterns similar to those shown in Fig. 7. Moreover, they found that the 454 

increase and decrease in bridge and vehicle frequencies respectively was sensitive to the 455 

frequency ratio (FR), where FR= vehicle frequency / bridge frequency. For systems where 456 

the vehicle frequency was less than the bridge frequency (which is the situation here) and 457 

when FR was close to one (e.g. 0.95), their model shows that large shifts in bridge and 458 

vehicle frequencies would occur. However, when FR was not close to one (e.g. 0.5) the 459 

frequency shifts predicted by the model were significantly smaller. The difference in the 460 

magnitude of the frequency shift with respect to FR shows that it is not as simple as thinking 461 

of the truck mass as a restraint. It appears that the closer the vehicle frequency is to the bridge 462 

frequency the more pronounced this restraint is, which demonstrates the dynamic nature of 463 

the restraint. It was also shown in [5] that the frequency shifts predicted by the model were 464 

larger for higher mass ratios (MR) where MR=vehicle mass / bridge mass. 465 

 466 

 467 

Fig. 7: Numerical frequency evolution of uncoupled system (dashed lines) and coupled 468 

system (solid lines). Vertical dotted lines indicate intermediate bridge supports. 469 
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 470 

Although the numerical model used to generate Fig. 7 is only an approximation of the real 471 

bridge, it does clearly show that the frequency content during a vehicle passage is likely to 472 

change. This variation in frequency with respect to vehicle position makes the problem non-473 

stationary and the acceleration signals recorded during the passage of the vehicle should 474 

reflect the non-stationary nature of the process, i.e. a change in frequency should be evident. 475 

To examine if this frequency change is evident, the acceleration response from centre of span 476 

3 (sensor C in Fig. 4) is analysed using the wavelet approach described in Section 2.3. 477 

Fig. 8(a) shows the acceleration time series recorded at sensor C during a truck passing event. 478 

For this crossing event the first axle of the truck enters the bridge at 6 s and the last axle exits 479 

the bridge at 26 s. The truck entering and leaving the bridge is indicated in the figure by 480 

dotted vertical lines. Thus, the signal between these two lines corresponds to forced vibration 481 

data, whereas the acceleration after the truck leaves is the free vibration data. Fig. 8(b) shows 482 

the conventional wavelet transform of the complete time series shown in Fig. 8(a) and 483 

Fig. 8(c) shows the wavelet coefficients after calculating the envelope along scales and 484 

normalizing by instantaneous energy (see Section 2.3). In Fig. 8(b) & (c) the truck entering 485 

and leaving the bridge is again indicated using dotted vertical lines. Parts (b) and (c) of the 486 

figure also have dashed horizontal lines at 3.5 Hz and 2.8 Hz. The dashed horizontal line at 487 

3.5 Hz is the uncoupled bridge frequency and the dashed horizontal line at 2.8 Hz is believed 488 

to be the approximate uncoupled vehicle frequency. In the absence of a modal test on the 489 

vehicle, one cannot say definitively that 2.8 Hz is the vehicle frequency, but based on the 490 

numerical model and the available experimental data the authors believe this is a reasonable 491 

supposition. The conventional CWT result (Fig. 8(b)) shows only some high energy 492 

concentration within the studied frequency range when the vehicle is traversing the middle 493 

span. On the other hand, the processed wavelet coefficients (Fig. 8(c)) provide a better 494 

picture of the relative energy distribution in the time-frequency plane. The frequency 495 

evolution is not entirely clear in the CWT plot in Fig. 8(c). However, it is apparent that 496 

during free vibration the bridge is vibrating only at its fundamental frequency (3.5 Hz) as all 497 

the energy is concentrated there. On the other hand when the truck is on the bridge (forced 498 

vibration) there is also a significant amount of energy near what the authors believe to be the 499 

vehicle’s first frequency (2.8 Hz). Furthermore, a trend seems to be evident in Fig. 8(c) 500 

similar to the one predicted Fig. 7. During the period 12-20 s when the vehicle is crossing the 501 

central span of the bridge the vehicle frequency seems to go down and the bridge frequency 502 

seems to go up. 503 
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 504 

(a) 

 

(b) 

 

(c) 

 

Fig. 8: Acceleration and frequency content for truck passage on Bridge A (a) Acceleration 505 

signal; (b) Raw CWT result; (c) Processed CWT; Vertical lines = start/end of forced 506 

vibration; Horizontal dashed lines = uncoupled system frequencies 507 

 508 

Although Fig. 8 partially supports the theoretical construct presented in Fig. 7, it is difficult to 509 

draw any firm conclusions about the validity of the suggested explanations. This is because 510 

the frequencies presented in Fig. 7 are calculated for the vehicle model being situated at a 511 
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series of discrete locations on the beam. Unfortunately, the experimental data in this section 512 

is for a moving truck and it could justifiably be argued that it is not correct to apply FDD to a 513 

non-stationary process to extract the modal properties. Therefore, it is not possible to reliably 514 

extract the modes of the coupled system while the vehicle is moving. This means that the 515 

frequency peaks shown in Fig. 6 are likely to be a good approximation of the real frequencies 516 

but will not be totally accurate. To overcome these issues a new experiment, where a truck is 517 

parked at a series of discrete locations on a bridge, is undertaken and this work is reported in 518 

the next section. 519 

 520 

4. Experimental study of Bridge B and stationary truck 521 

 522 

As explained at the end of the previous section the experimental results from Bridge A cannot 523 

really be used to check the validity of the concept presented in Fig. 7. In the previous 524 

experiment the truck was moving, but in the numerical model the truck was parked at a series 525 

of discrete locations. To resolve this issue a second experimental campaign was undertaken 526 

where a truck was actually parked at a number of discrete locations on the bridge and the 527 

results are described herein. To make sure that the bridge behaviour observed in Section 3 528 

was not specifically related to Bridge A or the test truck shown in Fig. 3(b), in this next 529 

experiment a different bridge and truck are used. It is important to note that when a vehicle is 530 

parked on the bridge the system is coupled but stationary, i.e. the modal parameters will 531 

remain constant. Therefore, using output-only modal analysis techniques such as FDD to 532 

extract the modal properties is appropriate. 533 

 534 

4.1 Bridge and instrumentation description 535 

 536 

A photo of the bridge used in this experiment is shown in Fig. 9(a) and a plan view in 537 

Fig. 10(a). The bridge is a half through steel girder bridge, it spans 36 m and the deck is 538 

simply supported. The 7.6 m wide, and 200 mm deep concrete deck is supported on a series 539 

of 450 mm deep steel beams, which span transversely between the main girders which are 540 

approximately 2 m deep. As explained in Section 3.1, for experiments of this type, a high 541 

vehicle-bridge mass ratio is desirable, so a light bridge deck is advantageous. The reason for 542 

choosing this bridge is that the deck is light compared to other bridges of the same span, i.e. 543 

the primary members are steel and the deck is relatively narrow. Again with the objective of 544 

having a high (vehicle-bridge) mass ratio, the truck selected for this test had a total weight of 545 
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32 tonnes, which is heavier than the 26 tonnes truck used in the previous test. The test truck 546 

used has four axles and is shown in Fig. 9(b). While the bridge was chosen for its technical 547 

advantages described above, logistically the disadvantage of the bridge was that it was in an 548 

urban area and frequently trafficked, which made finding a quiet time to carry out the test 549 

challenging. 550 

 551 

(a) (b) 

  

Fig. 9: (a) Bridge B elevation; (b) Test truck 552 

 553 

The instrumentation used in this experiment consisted of four accelerometers attached to the 554 

main girders. The position of the four accelerometers (A-D) is shown in Fig. 10(a). The 555 

accelerometers used in this test were Honeywell QA750 force balance accelerometers and the 556 

scanning frequency used was 128 Hz. Fig. 10(b) shows accelerometer B attached to the 557 

underside of the top flange of the main girder via a magnet. The vehicle was parked for short 558 

durations at ¼-span, mid-span and ¾-span. A full bridge closure was not permitted so the test 559 

was carried out early in the morning when there was little traffic. Ideally, the truck would 560 

stay parked at a given location for as long as possible, because the longer the time series the 561 

more accurate the subsequent modal analysis is likely to be. However, the fact there was no 562 

bridge closure meant that the stops had to be kept relatively short. Only stop durations of 10-563 

12 s were feasible. However, signals of this length are sufficiently long to allow the modal 564 

properties to be determined accurately. 565 

 566 
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(a) (b) 

 
 

Fig. 10: Dimensions and instrumentation details for Bridge B (a) Plan view of bridge deck 567 

and sensor locations; (b) Accelerometer attached to underside of the girder top flange. 568 

 569 

4.2 Evolution of Vehicle-Bridge system 570 

 571 

Analysing the ambient vibration data, the fundamental (first bending) frequency of the bridge 572 

was identified as 3.13 Hz. Fig. 11(a) shows the time series recorded at accelerometer B for a 573 

full set of truck movements, namely; truck coming on to the bridge, parking at ¼-span, 574 

moving on and parking at mid-span, then finally moving to ¾-span and parking briefly before 575 

exiting the bridge. The different portions of the signal are demarcated using vertical dotted 576 

lines and the parts of the signal corresponding to the truck being parked at particular locations 577 

on the bridge can be identified using the annotations on the bottom of the figure. The 578 

annotations on the top of the figure have been added to allow the reader visualise what the 579 

truck is doing for each section of the signal. For the first 25 seconds the bridge is in ambient 580 

vibration (A). Then the truck moves (TM) on to the bridge arriving at the ¼-span at 581 

approximately 35 s. On arrival at ¼-span the truck stops and remains there for approximately 582 

12 seconds and this section of the signal is termed ‘loaded free vibration (LF)’. TM and LF 583 

are repeated in sequence so that the truck can be parked for a short duration at mid-span and 584 

¾-span. When the truck leaves the bridge, the bridge is in free vibration (F). For the data 585 

presented in Fig. 11 the only vehicle on the bridge was the test truck, i.e. there was no other 586 

traffic crossing the bridge. Much of the bridge vibration evident in the figure is believed to be 587 

due to the energy input into the bridge during the four truck movements.. 588 

 589 

To observe how the bridge frequency evolves over the course of the truck movements, the 590 

time series in Fig. 11(a) is analysed using CWT, and the results are presented in Fig. 11(b). 591 
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Again, the vertical dotted lines demarcate the different parts of the signal (i.e. the lines 592 

correspond to those shown in part (a) of the figure) and it can be seen that during ambient 593 

vibration at the start of the signal the bridge vibrates predominantly at its unloaded 594 

fundamental frequency (3.13 Hz) with no significant energy at any other frequency. The 595 

same is true for the free vibration at the end of the signal. During the four truck movement 596 

phases (TM) there is no clear pattern of the energy distribution in the time-frequency domain. 597 

However, during the loaded free vibration events (LF), the energy is concentrated along clear 598 

frequency bands. For example, when the truck is parked at mid-span (65-81 s) the energy is 599 

concentrated in two distinct bands at approximately 2.5 Hz and 3.5 Hz. Similarly, when the 600 

truck is at the ¾-point (95-105 s) it can be seen that there is significant energy at these bands 601 

with almost no energy at the fundamental frequency, indicated by the horizontal dashed line 602 

in the figure. 603 

 604 

(a) 

 

(b) 

        

Fig. 11: Experimental data from Bridge B; (a) acceleration signal recorded at mid-span 605 

during a series of truck movements; (b) CWT of acceleration signal; Vertical lines = start/end 606 

of forcing regime; Horizontal dashed lines = bridge’s fundamental frequencies 607 
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 608 

While the CWT plot shown in Fig. 11(b) is useful to visualise the frequency shift for the 609 

different truck positions, its frequency resolution is limited. To identify the frequencies more 610 

accurately the LF portions of the signal when the truck is at ¼-span, mid-span and ¾-span are 611 

analysed using FDD and the identified frequencies are plotted as circular data markers at 612 

25%, 50% and 75% of L respectively, in Fig. 12. The experimental results indicate that the 613 

bridge and vehicle frequencies increase and decrease respectively when the truck is on the 614 

bridge with the largest changes occurring when the truck is in the centre of the bridge. The 615 

upper and lower (solid) lines in Fig. 12 respectively show the bridge and vehicle frequencies 616 

predicted by the numerical model described in Section 2.1, for a simply supported single span 617 

beam. In line with the modelling philosophy described in Section 3.3, the bridge properties in 618 

the model were revised so that the uncoupled bridge frequency in the model matches the 619 

experimentally observed fundamental bridge frequency (3.13 Hz). A similar approach is also 620 

used to revise vehicle properties. Based on the extracted values in Fig. 12 an uncoupled 621 

vehicle frequency in the region of 2.6 Hz seems sensible. Therefore the suspension property 622 

of the vehicle model (i.e. the spring stiffness) has been amended such that for a sprung mass 623 

of 32,000 kg the uncoupled vehicle frequency is 2.6 Hz. As the numerical model is a 624 

relatively simple, the frequencies predicted by the model do not exactly match the 625 

frequencies observed experimentally. However, the comparison highlights that the trends are 626 

the same. This is important because it demonstrates that the evolution of the system 627 

frequencies (bridge and vehicle) predicted by the model are credible. Moreover, it shows that 628 

the hypothesis put forward in Section 2.3 to explain the behaviour observed in Bridge A is 629 

also credible. 630 

 631 
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 632 

Fig. 12: Frequency evolution during vehicle passage. Solid line = Coupled system; Dashed 633 

line = uncoupled system; Dotted line = Moving mass case; Red dots = experimental values 634 

 635 

Finally, the dotted plot in Fig. 12 shows the bridge frequency predicted by the numerical 636 

model if an un-sprung mass of 32,000 kg is placed at a series of discrete locations along the 637 

length of the bridge. The model predicts that for an un-sprung mass the bridge frequency will 638 

be reduced, with the largest reduction occurring when the mass is at the centre of the bridge. 639 

This reduction in frequency with the addition of mass is in line with what one might 640 

intuitively expect for a (sprung) truck but this is clearly not what actually occurs. 641 

 642 

4.3 Modes of vibration 643 

 644 

So far previous sections have focused on studying how different truck positions affect the 645 

frequencies of the vehicle-bridge system. In this section, changes in the associated mode 646 

shapes of the vehicle-bridge system are reported. To make sense of the theoretical frequency 647 

predictions presented in Fig. 7 the reader was prompted to visualise the body mass of the 648 

vehicle as supported on two springs, the upper spring representing the vehicle suspension and 649 

lower spring representing the bridge stiffness. While this is a useful analogy to visualise what 650 

is happening it is technically incorrect because the lower spring is in fact a beam. The 651 

significance of this is that when the sprung mass is on the bridge, the frequency that we have 652 

been referring to up to now as the vehicle frequency will have a mode associated with it that 653 

includes the deformed shape of the beam. 654 
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 655 

Up to now this paper has talked about ‘vehicle’ frequency and ‘bridge’ frequency because 656 

based on conventional thinking it is the most straightforward way to explain the experimental 657 

results that have been reported so far. However, to understand the modes associated with the 658 

observed frequencies it is important to appreciate that as soon as the vehicle is on the bridge, 659 

the vehicle and the bridge behave as one system, not two independent systems. Therefore, 660 

technically it is not appropriate to talk about vehicle and bridge modes, it would be more 661 

correct to talk about the coupled system’s first and second mode. However, for simplicity and 662 

convention, when presenting the relevant modes below they will still be referred to as 663 

‘vehicle mode’ and ‘bridge mode’ even though it is not totally correct. 664 

 665 

The easiest way to appreciate the mode of vibration of the coupled system is to examine the 666 

modes predicted by the numerical model. In particular, Fig. 13 shows the modes of vibration 667 

for three different vehicle locations; (i) over the left support, (ii) ¼-span and (iii) mid-span. 668 

The eigenvalue analysis of the coupled system is carried out and modal ordinates of the 669 

degrees of freedom of the vehicle and bridge can easily be computed. When the vehicle is at 670 

the bridge’s left support, both systems are effectively uncoupled and the familiar 671 

(independent) modes for the vehicle (Fig. 13(a)) and bridge (Fig. 13(b)) are observed. In 672 

particular note how the bridge part of the ‘vehicle mode’ (Fig. 13(a)) remains straight. 673 

However, when the vehicle is at ¼-span the bridge clearly plays a role in the ‘vehicle mode’ 674 

as the bridge is now in a curved shape (see Fig. 13(c)). Interestingly when the vehicle is at ¼-675 

span the deformed shape of the bridge is approximately similar for both the ‘vehicle mode’ 676 

(Fig. 13(c)), and the ‘bridge mode’ (Fig. 13(d)). A similar pattern is observed when the 677 

vehicle is at mid-span Figs. 13 (e) and (f). 678 

 679 
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Vehicle location System 1st mode, i.e. 

“Vehicle mode” (2.6 Hz) 

System 2nd mode, i.e. 

“Bridge mode” (3.13 Hz) 

Left support 

  

 (a) (b) 

 

¼-span 

  

 (c) (d) 

 

Mid-span 

  

 (e) (f) 

Fig. 13: Numerical mode evolution for coupled system 680 

 681 

It should be noted that the modes of vibration plotted in Fig. 13 are schematic in nature. Their 682 

primary purpose is to demonstrate that when the vehicle is on the bridge the system is 683 

coupled. The resulting modes can be more usefully thought of as the system’s 1st and 2nd 684 

modes. To examine in more detail how the bridge part of the full system modes of vibration 685 

vary with truck position, just the bridge part of the 1st and 2nd system modes are plotted in 686 

Fig. 14. Since no acceleration was measured on the vehicle, only the bridge part of the mode 687 

can be examined in detail. Parts (a), (b) and (c), (d) of Fig. 14 are generated using the 688 

numeric model and experimental data respectively. The bridge part of the system 1st mode 689 

(‘vehicle mode’) predicted by the numerical model for three different truck positions (¼-690 

span, mid-span, and ¾-span) are plotted in Fig. 14(a). In the figure it can be seen that the 691 

bridge part of the ‘vehicle mode’ has three distinct shapes for the three different truck 692 

locations considered. When the truck is at ¼-span the bridge part of the mode is slightly 693 
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skewed to the left, for the ¾-span position it is skewed to the right and when the vehicle is at 694 

mid-span it is symmetric. Fig. 14(c) shows the equivalent modal ordinates obtained 695 

experimentally and for the three test points. Admittedly as the experiment only provides three 696 

modal ordinates it is not possible to make definitive comment on whether the mode shapes 697 

are skewed or not. However, for the three modal ordinates available, we can observe that they 698 

are behaving in a manner consistent with the equivalent location of the theoretical mode 699 

shapes shown in Fig. 14(a).  700 

 701 

Fig. 14(b) shows the bridge part of the system 2nd mode (‘bridge mode’) predicted by the 702 

numerical model for three different truck positions. It can be seen in the figure that the bridge 703 

part of the system 2nd mode does not change significantly with vehicle position but there is 704 

some small variation. Essentially, the numerical model indicates that the bridge part of the 705 

mode is slightly skewed to the opposite side of where the vehicle is located. The equivalent 706 

experimental modal ordinates are plotted in Fig. 14(d). Similar to Fig. 14(c), in Fig. 14(d) 707 

only three modal ordinates are available and therefore there is insufficient evidence to 708 

determine if the subtle skewing of modes evident in Fig. 14(b) is also present experimentally. 709 

However, it can be said that the magnitude of the modal ordinates at a given location are 710 

quite similar for all three truck positions. This is consistent with the theoretical modes 711 

presented in Fig. 14(b) which as mentioned previously appear relatively insensitive to vehicle 712 

position. Note that all the plots in Fig. 14 have been normalized to have a minimum value of -713 

1 at mid-span for ease of comparison. 714 

 715 
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 Bridge part of System 1st mode 

(‘Vehicle mode’)  

Bridge part of System 2nd mode 

(‘bridge mode’)  
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Fig. 14: Bridge part of system 1st and 2nd modes for different truck positions (a) 1st mode 716 

calculated theoretically, (b) 2nd mode calculated theoretically, (c) 1st mode measured 717 

experimentally, (d) 2nd mode measured experimentally. 718 

 719 

5. Conclusions 720 

 721 

This paper investigated the changes in frequencies and modes of vibration of a vehicle-bridge 722 

system. Two different bridges A and B were studied. Initial experimental results observed on 723 

bridge A included some unexpected behaviour. In particular when the truck was on the bridge 724 

the fundamental bridge frequency seemed to increase and a frequency peak not present in free 725 

vibration appeared on the spectrum. This prompted the development of a numerical model to 726 

try and provide a theoretical explanation for the observed behaviour. The model provided a 727 

theoretical framework which seemed to explain the observed behaviour. However, to further 728 
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investigate the phenomena a second experiment was carried out where the truck parked at a 729 

series of discrete locations on the bridge. This experiment was carried out on Bridge B and, 730 

by using time-frequency analysis and output-only modal analysis, the unexpected behaviour 731 

was further clarified. 732 

 733 

Furthermore, in the course of the investigation a number of interesting observations were 734 

made. For example, a coupled vehicle-bridge system might feature significant changes in 735 

natural frequencies depending on the vehicle’s position. Also when analysing forced 736 

vibration signals the presence of additional frequencies on the spectrum proves system 737 

coupling. Moreover, it is shown numerically and experimentally, that the modes of vibration 738 

of the coupled system do change with the location of the vehicle. However, the amount of 739 

change differs for the ‘vehicle’ and the ‘bridge’ modes. In particular, it is shown that when 740 

the vehicle is on the bridge the ‘vehicle’ mode has a significant ‘bridge part’ associated with 741 

it and the shape of this part is very similar to the bridge’s fundamental mode of vibration. 742 

 743 

Numeric models indicate the magnitude of the changes in modal parameters will be more 744 

pronounced for situations with high vehicle-bridge mass ratios. However, this paper shows 745 

that it is a reality for conventional heavy vehicles and relatively light standard bridges. 746 
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