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Low Temperature Gamma sterilization of a Bioresorbable Polymer, PLGA

Davison, Lisa a,, Themistou, Efrosynib,, Buchanan, Frasera,, Cunningham, Eoina,,

aSchool of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH, U.K.
bSchool of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG, U.K.

Abstract

Medical devices destined for insertion into the body must be sterilised before implantation to prevent infection or other compli-
cations. Emerging biomaterials, for example bioresorbable polymers, can experience changes in their properties due to standard
industrial sterilization processes. Gamma irradiation is one of the most reliable, large scale sterilization methods, however it can
induce chain scission, cross-linking or oxidation reactions in polymers. sterilization at low temperature or in an inert atmosphere
has been reported to reduce the negative effects of gamma irradiation. The aim of this study was to investigate the impact of
low temperature sterilization (at -80°C) when compared to sterilization at ambient temperature (25°C) both in inert atmospheric
conditions of nitrogen gas, on poly(lactide co-glycolide) (PLGA).

PLGA was irradiated at -80 and 25°C at 40kGy in a nitrogen atmosphere. Samples were characterised using differential scanning
calorimetry (DSC), tensile test, Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR)
spectroscopy and gel permeation chromatography (GPC).

The results showed that the molecular weight was significantly reduced as was the glass transition temperature, an indication
of chain scission. FTIR showed small changes in chemical structure in the methyl and carbonyl groups after irradiation. Glass
transition temperature was significantly different between irradiation at -80°C and irradiation at 25°C, however this was a difference
of only 1°C. Ultimately, the results indicate that the sterilization temperature used does not affect PLGA when carried out in a
nitrogen atmosphere.

Keywords: Poly(lactide co-glycolide) (PLGA), Gamma Irradiation, Bioresorbable, Low Temperature, Inert Atmosphere

1. Introduction

In medicine, solutions for patient care are continuously be-
ing improved. This can take the form of new products, new
designs or new materials. Materials which have caught the at-
tention of medical device manufacturers are bioresorbable poly-
mers such as poly(lactide co-glycolide) (PLGA), polycapro-
lactone (PCL) and polyhydroxyalkanoate (PHA) Ulery et al.
(2011). These are materials that break down in a specific time
frame, which can be adapted for their purpose and are com-
patible with the body Makadia and Siegel (2011). They have
the added advantage that, after implantation, they do not need
a second, invasive removal surgery and will not affect medical
imaging or future surgeries once they have broken down. These
polymers have potential applications as tissue engineering scaf-
folds and drug delivery vehicles and are currently used for bone
screws (S&N and DePuy), arterial stents (Abbott) and bone fix-
ation plates (DePuy Synthesis). The alternatives to using biore-
sorbable polymers for these applications are metals such as tita-
nium or stainless steel, which do not resorb and can cause bone
resorption due to the disparity in the moduli of bone and metal
Huiskes et al. (1992), Sivakumar et al. (1993).
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(Cunningham, Eoin )

The development of these new applications for bioresorbable
polymers has led to issues with the current sterilization methods
available. The favoured sterilization techniques used for indus-
trial scale sterilization are ethylene oxide (EtO), gamma irradi-
ation and electron beam irradiation MDDI (2004). EtO requires
a typical relative humidity of 35-80% Ellab (2015) and has an
optimum sterilization temperature of 55°C Sandle (2013b). The
temperature is similar to that of the glass transition tempera-
tures of poly(lactic) acid and poly(glycolic) acid, Agarwal et al.
(1997); Nakafuku and Takehisa (2004); Garlotta (2001) con-
stituents of PLGA, and therefore it can cause changes in the
polymer structure. Moreover, the humidity could initiate hy-
drolytic degradation. Electron beam is effective for thin, low
density items Sandle (2013a), however, does not have the pen-
etration power that gamma irradiation has. A 10 MeV beam
can pass through 3-5 cm of average density material Sandle
(2013a), however 10.9 cm of aluminium are required to reduce
gamma radiation dose to half from a source with a dose rate of
10 kGy/h Allen et al. (1995).

Gamma irradiation is an important sterilization method and
has proven very effective for single use devices, such as sy-
ringes and gloves, however, it has been found to change the
properties of PLGA and other lactide based polymers Jo et al.
(2012). This can be a change in the Young’s modulus, strain
or glass transition temperature, resulting in a change in prod-
uct performance. In many polymers changes in these properties
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can be linked to changes in the chemical structure as a result
of chain scission or cross-linking during irradiation Jo et al.
(2012). These changes can affect the degradation time. It was
found by Konan and Haddad that when Smith and Nephew’s
Calaxo bone screw was used (PDLGA and calcium carbonate)
its degradation profile was not as predictable in humans as it had
been in the animal model, leading to a high complication rate.
They observed that a lump formed under the skin of 29% of
the 59 patients in their study; this ultimately caused the product
to be removed from circulation Konan and Haddad (2009). In
addition to this, irradiation has been found to advance the degra-
dation, which leads to a more rapid loss in strength. Implants,
therefore may not maintain sufficient mechanical strength in the
body in a weight bearing application to allow the body to heal
before it is broken down Jo et al. (2012),Yixiang et al. (2008).

At the minute, industrial scale gamma irradiation is carried
out in air at ambient temperature, unless a device has been vac-
uum packed, for example. The temperature in an irradiation
chamber is not controlled and when the source rack is in the
active position the chamber will heat up due to the radiation.
The temperature can increase to 40°C or more depending on
the outside temperature. The only way this temperature has
been reduced in a standard irradiator is by putting ice or dry ice
around the device and insulating it Craven et al. (2012). There
are therefore limited temperature options and temperature can
affect the sterilization efficacy Kennedy et al. (2005).

As a means to prevent the negative effects of gamma irra-
diation on polymers, it can be carried out under different con-
ditions, such as in an oxygen free atmosphere (e.g. nitrogen
or vacuum) or in low temperature environments Brown and
O’Donnell (1979); Kennedy et al. (2005). The literature has in-
dicated that sterilization under these conditions can reduce the
negative effects of the irradiation on other polymers such as ul-
tra high molecular weight polyethylene (UHMWPE) Premnath
et al. (1996). There are very few studies that look at the com-
bined effects of both low temperature and nitrogen atmosphere
sterilization on polymers, in particular bioresorbable polymers.

Loo et al. (2005b,a, 2004) have reported on the effects of
electron beam (e-beam) irradiation on PLGA and Poly(l,lactic
acid) (PLLA). The purpose of their work was to understand the
degradation effects of the e-beam irradiation on these polylac-
tide based polymers. They have found that crystallinity affects
degradation due to the cage effect and that the mechanism of
degradation changes from chain scission to hydrogen abstrac-
tion at higher doses (> 200 kGy). However, this was the case
for electron beam, not gamma radiation and they did not inves-
tigate temperature effects.

Montanari et al. (2001, 1998) have identified the radicals
which are produced during gamma irradiation of PLGA using
electronic paramagnetic resonance (EPR) spectroscopy. They
compared irradiation at room temperature in air to -196°C in a
vacuum in one study and included room temperature in a vac-
uum in a second study. They identified that the radicals changed
depending on the temperature and whether or not the polymer
was in a vacuum or oxygen.

Bittner et al. (1999) studied tetracycline-HCl-loaded and
placebo poly(DL-lactide-co-glycolide) microspheres at -80°C

in nitrogen, but did not carry out a “standard” process at room
temperature for comparison.

The aim of this study was to quantify the effects of gamma
irradiation on PLGA when irradiated at room temperature and
at low temperature (-80°C) in a nitrogen atmosphere.

2. Materials and Methods

2.1. Sample Preparation

PLGA 85:15, batch number 0912000786, supplied by Cor-
bion Purac (Netherlands), was compression moulded in a
Collins P200P platen press; the regime is shown in Table 1 as
developed by Simpson et al. (2014).

Table 1: Platen Press Regime for PLGA

Stage 1 2 3
Pressure (MPa) 0 10 crash
Temperature (°C) 200 200 cool
Time (s) 180 240

A mass of 17 g of PLGA was placed in a square mould,
dimensions 100 mm x 100 mm x 1 mm, with a polytetraflu-
oroethylene (PTFE) base sheet, of 0.23 mm thickness , sup-
ported by a 120 mm x 150 mm x 2 mm steel plate. A second
PTFE sheet and steel plate were placed on top of the mould,
then this was put into the platen press. Samples were stored in
a desiccator after preparation to prevent prolonged exposure to
moisture. Twenty samples were cut from the sheets into tensile
bars using a cutter and a Ray-Ran Hand Operated Test Samples
Cutting Press. Offcuts were kept for testing with various other
characterisation methods. The cutter had the following gauge
dimensions: length = 20 mm, width = 5 mm and depth = 1 mm.

The samples, along with some offcuts, were placed on a steel
plate. A second flat steel plate (0.33 kg) was also placed on top
of the samples to ensure they did not deform during annealing.
They were then annealed in an oven for 4 hours at 100°C.

2.2. Irradiation Treatment

Irradiation was carried out on tensile dumb-bell samples with
additional 250 mg offcuts for GPC, NMR and DSC analysis.
The samples were irradiated in Nordion Inc.’s modified Gamma
Cell 220 (Ottawa, Canada) at 40 kGy and at temperatures of
-80 or 25°C in a nitrogen atmosphere at a dose rate of 16.4
kGy/h. The gamma cell irradiation chamber was calibrated and
is traceable to a national standard laboratory.

The samples were placed in a holder, designed for the
Gamma Cell 220, which was then placed in a custom-made
chamber and inserted in the gamma cell. The exposure time
was then set according to the activity of Co-60 and the temper-
ature allowed to adjust to the target temperature, -80 or 25°C.
The samples were lowered into the irradiation chamber and the
timer started. Samples were automatically ejected from the ir-
radiation chamber when they had been in for a sufficient time
to reach the specified dose.
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Four types of samples were measured; controls at room tem-
perature (25°C) and low temperature (-80°C) and irradiated
specimens at the same two temperatures.

2.3. Differential Scanning Calorimetry (DSC)

DSC analysis was performed on a Perkin Elmer DSC 6. A
heating rate of 10°C per minute from 30°C up to 180°C was
applied in a nitrogen purge gas. The samples were then held
at 180°C for 3 minutes before being cooled to the initial tem-
perature, at the same rate. They were then reheated once at the
same heating rate. DSC was performed on control, irradiated
samples and on the raw material for comparison, n = 3. Sam-
ples weighing approximately 15 mg were sealed in aluminium
pans before being inserted into the DSC. Glass transition tem-
perature (Tg) was calculated using the half width of the Tg peak
using the Perkin Elmer software - Pyris 6. Melting temperature
(Tm) was recorded from the highest point of the crystallisation
peak and change in enthalpy (�H) was measured between 95
and 165°C for each sample.

2.4. Tensile Testing

Tensile testing was carried out according to ISO 527-1 to in-
vestigate changes in the mechanical properties of all samples.
Tensile bar samples were tested at a strain rate of 10 mm/min
on an Instron 5564 with a 2 kN load cell and mechanical wedge
grips at room temperature, n = 5. Tensile strength, percentage
strain to failure and Young’s modulus were calculated from the
load-extension data.

2.5. Gel Permeation Chromatography (GPC)

GPC measurements were carried out in chloroform on a
Malvern Viscotek GPC Max using a Malvern triple detector
array 305 detector. Approximately 20 mg of PLGA were
dissolved in 10 ml of chloroform overnight, then filtered
through 0.45 μm PTFE syringe filters (Phenex 15 mm) and
used for analysis. The system was calibrated with poly(methyl
methacrylate) (PMMA) standards (Easivial, batch no. VPM-
007, Agilent Technologies). GPC was carried out on all sample
treatments. Two PLgel mixed bed columns with dimensions
300 x 7.5 mm, a flow rate of 1 ml/min and a temperature of
30°C were used for measurements. Weight average molecular
weight (Mw), number average molecular weight (Mn) and poly-
dispersity index (PDI) values of the samples were determined.

2.6. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR measurements were carried out using a Perkin Elmer
Spectrum 100 spectrometer. The spectrometer had a diamond
topped ZnSe crystal and the scanning technique used was atten-
uated total reflectance. A razor blade was used to create shav-
ings (from fractured tensile bars) which were used as samples;
32 scans were completed per sample at room temperature. The
acquisition range used was 4000-650 cm-1.

2.7. Proton Nuclear Magnetic Resonance (1H NMR) Spec-
troscopy

All 1H NMR spectroscopy measurements were performed on
a Bruker Ultrashield Plus 400 Hz spectrometer. For the analy-
sis, a concentration of 3 mg/ml of PLGA (both irradiated and
unirradiated samples) was dissolved in deuterated chloroform.

2.8. Statistical Analysis
One way ANOVA was performed on SPSS Statistics 20 to

define if differences were significant between the irradiated
samples, controls and raw material (significant if p ≤ 0.05).
Tukey post hoc tests were used.

Design of experiments was used to detect interaction or
trends between the variables; irradiation dose and irradiation
temperature. A full factorial design was used in DX8 software,
Stat-Ease Inc., USA. The dependent variables that were used
were glass transition temperature, melting temperature, change
in enthalpy, percentage strain (%ε) and Mn.

3. Results

3.1. DSC
The Tg, Tm and �H were measured for all samples. The Tg

decreased by 3-4°C from 59 to 55 or 56°C (low temperature
and room temperature, respectively) when the samples were ir-
radiated at 40 kGy, as seen in Figure 1. The difference in Tg
between unirradiated and irradiated samples was significant, p
< 0.001.

Figure 1: Glass transition temperature of raw, control and irradiated samples

After irradiation, a second peak appeared on the DSC graphs
(Figure 2 and 3) in the crystal melting area at a higher tempera-
ture of 156°C, in comparison to a melting temperature of 144°C
prior to irradiation. This was a difference of 11-12°C due to the
irradiation process (Figure 2). There was no difference between
the samples irradiated at 25°C and -80°C which can be seen in
Figure 2. For the Tm the difference between the unirradiated
and irradiated samples was significantly different, p < 0.001.

Like the melting temperature, the �H was also found to in-
crease after irradiation, by approximately 5 J/kg, this is shown
in Figure 4.
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Figure 2: Melting temperature of raw, control and irradiated samples

Figure 3: DSC plot of room temperature control and irradiated sample

Figure 4: Change in enthalpy of raw, control and irradiated samples

3.2. Tensile Testing

The percentage strain to failure and modulus results are
shown in Figure 5, one way ANOVA showed no significant dif-
ference. The -80°C irradiated samples percentage strain results
did not fit to the binomial distribution condition, therefore this
sample was not included in the ANOVA calculations, all other
samples were found to be significantly similar (p > 0.999).

Figure 5: Modulus and percentage strain before and after irradiation

3.3. GPC

The Mw and Mn decreased to approximately a third of the
initial value after irradiation as can be seen in Table 2 and Fig-
ure 6. The Mn dropped from approximately 162 800 g/mol at
room temperature and 187 200 g/mol low temperature to 48 300
at room temperature and 49 700 g/mol low temperature. There
was no significant difference in molecular weight as a result of
irradiation temperature.

The PDI values of the polymer samples are also shown in Ta-
ble 2. It can be seen that the irradiated samples also had slightly
higher PDI values, however, the results were not significant, p
= 0.090.

Table 2: Molecular weight and polydispersity index values of PLGA before and
after irradiation determined by GPC (CHCl3)

25°C -80°C 25°C -80°C
Control Control 40 kGy 40 kGy

Mn 162 800 187 200 48 300 49 700
PDI 2.4 2.1 2.8 2.5

Figure 6: Number average molecular weight of control and irradiated samples
by GPC (CHCl3)
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Figure 7: FTIR spectrum of unirradiated PLGA

3.4. FTIR
The key bonds identified from the FTIR spectra are shown in

Figure 7. A number of changes were observed in the spectra
after irradiation, especially for methyl groups, CH3 and CH,
and carbonyl bonds, C=O. Changes in the peak heights were
observed as well as changes in the peak shapes.

Figure 7 shows broadening and splitting of the carbonyl peak
at 1748 cm-1 for an ambient irradiated sample and the CH/CH3
at 1360 cm-1. There was a noticeable change in peak height and
peak shape of the low temperature irradiated sample. The low
temperature irradiated sample had a more domed shape than
the other samples and was smaller in height relative to the 1382
cm-1 peak. These trends however were not consistent as the
control sample had slight splitting of the peak in Figure 7.

3.5. 1H NMR
The 1H NMR spectra showed the characteristic peaks of

PLGA which were seen in the literature Zhou et al. (2003). The
structure of PLGA is shown in Figure 8. The peaks observed
were from the protons in the polymer structure and the solvent
peak at 7.26 ppm (in Figure 8): CH at 5.12 ppm, the CH2 at
4.77 ppm and CH3 at 1.51 ppm. No changes were observed in
peak height, area or shift after irradiation at either temperature

O C

O

CH2 O C

O

CH

CH3

O H

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛
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85

Figure 8: Chemical Structure of PLGA

4. Discussion

The effect of gamma radiation on different materials varies.
In this study, PLGA 85:15 was investigated at different irra-

diation temperatures in a nitrogen atmosphere and the results
showed that the polymer was affected by the irradiation. The
3-4°C reduction in Tg seen in Figure 1 was due to chain scis-
sion. Chain scission causes an increase in the free volume, this
is created at chain ends. This results in more free space within
the structure, allowing more chain movement. Due to this in-
crease in chain movement the temperature must be lower than
previously to stop the movement and form a glassy structure
Uskokovic and Ignjatovic (2007). The same pattern was ob-
served irrespective of irradiation temperature. The decrease in
molecular weight after irradiation (observed by GPC analysis),
seen in Figure 6, also confirms this. The difference between
the raw and unirradiated control samples was considered to be
the result of the heat introduced during sample preparation. A
reduction in Tg due to the irradiation could cause issues when
implanting this polymer into the body as it brings the Tg closer
to body temperature. This could cause the polymer to lose its
structural stability and therefore deform under load instead of
supporting the tissue.

A significant difference of 1°C was observed in the Tg be-
tween the samples irradiated at low temperature and room tem-
perature. Whilst this difference was statistically significant, a
1°C reduction change in Tg will not have an effect on the prop-
erties or how the polymer behaves in the body. The irradiation
dose used in this study - 40 kGy - assures sterility in the major-
ity of cases, therefore lower doses should have less of an effect.

An additional peak was observed in the DSC thermographs
after irradiation for all samples, an example of which is shown
in Figure 3. This peak was in the melting temperature range
and was at a higher temperature of 156°C compared to 144°C
for unirradiated samples. This is very similar to the results of
Wang andMano (2009) who found that annealing time and tem-
perature can affect height, number and melting temperature of
peaks. It was significantly higher by 11-12°C and had a larger
enthalpy, as shown in Figure 4. The new peak indicates that
there was an increase in either the crystal size, the perfection
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of the crystals (i.e. ordered in the lowest energy structure) or
a combination of both in some areas of the polymer Hohne
(2002). The control and irradiated samples were exposed to
the same conditions before and after irradiation, for the same
length of time, therefore this increase in melting temperature
has been attributed to the irradiation process. A possible reason
for this change is that in both the ambient and low temperature
treatments, the temperature at which the irradiation treatment
was carried out was below the glass transition temperature of
the polymer, so the polymer chains were equally rigid in both
situations. When samples were irradiated, the energy provided
by the radiation then gave the chains energy to realign and form
larger/more ordered crystals, irrespective of the actual temper-
ature.

The area under the melting peaks (enthalpy) was also found
to increase after irradiation as mentioned previously. It can be
seen in Figure 4 that before irradiation, the enthalpy was much
less than the raw material, but the irradiation process increased
it. The area under the melting peak is an indication of the de-
gree of crystallinity (DoC), therefore this was increased by ir-
radiation. In the work by Wang and Mano (2009) the melting
temperature of PLGA was found to be affected by the annealing
time and temperature. In this study therefore it seems like the
irradiation process is having an effect similar to the annealing
process. An increase in the degree of crystallinity could cause
a change in the degradation profile in vivo as crystalline regions
take longer to break down than amorphous regions Masatsugu
and Katsuyuki (1997).

As mentioned, the control samples have a lower DoC than the
raw material, therefore, it can be concluded that the annealing
process did not provide fully crystalline samples. In order to
achieve the initial DoC, it might be necessary to change the
annealing temperature or time.

The effects of irradiation on the mechanical properties of the
PLGA were found to be insignificant. As seen in Figure 5,
all of the strain values were between 2 and 3%. The moduli
also showed no significant differences, with the majority of the
results between 4 and 4.2 GPa. The moduli and strain were
expected to decrease, in accordance with the literature Ghosh
et al. (2015), however this was not the case. It is possible that
there was an increase in strength due to the crystallinity bal-
anced by a similar decrease in strength and strain, caused by
the chain scission. However, this lack of change means that the
mechanical strength of the polymer has not decreased, so it will
still be suitable for a structural role in the body. The drop in
molecular weight after sterilization could, however, cause the
degradation rate to increase, so the device would not retain its
strength as long as an unirradiated device. The effect of the irra-
diation treatment (low temperature, nitrogen atmosphere, etc.)
on the properties during degradation is therefore an area which
warrants further investigation.

The increase in PDI value observed in the GPC data would be
expected when random chain scission occurs Hsu et al. (2012).
The small change was not significant but could be an indication
of random scission, as opposed to the scission of chain ends
which occurs in hydrolytic degradation. This is in agreement
with the 1H NMR results which did not show indications of

monomer presence.
The differences in the FTIR were subtle and the main

changes occurred in the carbonyl and methyl groups as shown
in Figure 7. FTIR did not allow identication of which bonds
were broken down during the irradiation process, this could be
due to the chain scission process being random and therefore
there was no pattern in in where the chain scission occurred
Oliveira et al. (2012). The spectra did indicate that the dou-
ble oxygen bonds and the hydrogen bonds were most affected,
which could be due to recombinations of radicals as a result of
the cage effect - where radicals are trapped in the structure by
the crystalline portions and recombine with the polymer Loo
et al. (2005a). Loo et al. (2005a) proposed that at higher elec-
tron beam radiation doses (> 20 MRad), hydrogen abstraction
occurs due to alkyl free radicals reacting with oxygen trapped
in the structure . According to Kurtz (2015) oxygen-oxygen
bonds are most susceptible to breaking in air at 70-80°C (Bol-
land’s cycle), therefore the radicals could react with the double
oxygen bonds in the polymer or hydrogen abstraction may have
occurred. The FTIR results also showed that the oxygen bonds
in the spectra were less consistent and therefore may have been
more affected by the irradiation process, however, there were
no trends with irradiation temperature identified.

The γ and δ CH and CH3 methyl groups are the most affected
by irradiation; these are the peaks at 1382 and 1360 cm-1 in Fig-
ure 7. The change in hydrogen bonds could be a result of hydro-
gen extraction by radicals to form ROOH, peroxy radicals Kurtz
(2015). When a hydrogen was extracted from a CH3, the chem-
ical structure changed subtly, therefore the peaks did not change
position but may have experienced more slight changes, such as
the development of shoulders or splitting of peaks. Again there
were no trends found as a result of sterilization temperature.

The 1H NMR (CDCl3) spectra appeared to be very simi-
lar before and after irradiation. After irradiation, no apparent
changes in the area, position or shape of the peaks correspond-
ing to the three characteristic protons of the polymer struc-
ture were observed in the spectra of the two different repeating
monomer units of PLGA (Figure 8).

In the study by Montanari et al. (2001) on a similar polymer,
they proposed from their EPR results that in the vacuum, hydro-
gen abstraction occurs. Upon the admission of air, and therefore
oxygen, peroxy radicals are created which degrade the polymer
via chain scission.

Design of experiments software was used to analyse the in-
teraction between the irradiation dose (0 or 40 kGy) and the
irradiation temperature (-80 and 25°C). The software indicated
that there was no combined effect of the dose and temperature
on the polymer for any of the output variables - glass transition
temperature, melting temperature, change in enthalpy, molecu-
lar weight and percentage strain. There was no benefit of irradi-
ating the polymer at a temperature other than room temperature.

5. Conclusions

In summary, the results showed that gamma irradiation
caused property changes commonly associated with chain scis-
sion in PLGA when irradiated in nitrogen at 40 kGy compared
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to unirradiated samples. The extent of the chain scission was
not affected by the irradiation temperature according to the
characterisation methods carried out in this study.

FTIR spectra showed that the carbonyl and methyl groups
tended to be affected by irradiation, as changes in the spectra
were observed for their characteristic peaks. The 1H NMR and
mechanical test data did not show any significant differences
before and after irradiation or as a result of sterilization temper-
ature.

Design of experiments (DX8) did not show an interaction
between the irradiation dose and irradiation temperature.

Whilst low temperature irradiation has been found to reduce
the impact on other polymers or bone, it had minimal effect for
this PLGA. A comparison of room temperature irradiation in
air and in nitrogen will be carried out to see if the nitrogen is an
improvement on the standard process. However, it is worth not-
ing that the mechanical strength was not affected, so for PLGA
devices which have a structural role, gamma radiation steriliza-
tion is suitable. If it is not possible to change the process, then
the final option would be to modify the polymer properties as
lactide based polymers have been found to be highly customis-
able.
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