
Robust visual tracking using structurally random projection and
weighted least squares

Zhang, S., Zhou, H., Jiang, F., & Li, X. (2015). Robust visual tracking using structurally random projection and
weighted least squares. IEEE Transactions on Circuits and Systems for Video Technology, 25(11), 1749-1760.
https://doi.org/10.1109/TCSVT.2015.2406194

Published in:
IEEE Transactions on Circuits and Systems for Video Technology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:14. Jul. 2024

https://doi.org/10.1109/TCSVT.2015.2406194
https://pure.qub.ac.uk/en/publications/d53bc6da-eb06-4ece-939d-e9dcfa1e9f1e


1

Robust visual tracking using structurally random
projection and weighted least squares

Shengping Zhang, Member, IEEE, Huiyu Zhou, Feng Jiang, Member, IEEE, Xuelong Li, Fellow, IEEE

Abstract—Sparse representation based visual tracking ap-
proaches have attracted increasing interests in the community
in recent years. The main idea is to linearly represent each
target candidate using a set of target and trivial templates
while imposing a sparsity constraint onto the representation
coefficients. After we obtain the coefficients using L1-norm mini-
mization methods, the candidate with the lowest error, when it is
reconstructed using only the target templates and the associated
coefficients, is considered as the tracking result. In spite of
promising system performance widely reported, it is unclear if
the performance of these trackers can be maximised. In addition,
computational complexity caused by the dimensionality of the
feature space limits these algorithms in real-time applications. In
this paper, we propose a real-time visual tracking method based
on structurally random projection and weighted least squares
techniques. In particular, to enhance the discriminative capability
of the tracker, we introduce background templates to the linear
representation framework. To handle appearance variations over
time, we relax the sparsity constraint using a weighed least
squares (WLS) method to obtain the representation coefficients.
To further reduce the computational complexity, structurally
random projection is used to reduce the dimensionality of the
feature space while preserving the pairwise distances between
the data points in the feature space. Experimental results show
that the proposed approach outperforms several state-of-the-art
tracking methods.

Index Terms—Visual tracking, sparse representation, struc-
tural random projection, weighted least squares.

I. INTRODUCTION

V ISUAL tracking provides a means to estimate the state
of a specific target in an image sequence. There is an

overwhelming need for its applications in multiple research
fields, including intelligent video surveillance, human com-
puter interaction and robot navigation, where visual tracking
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has demonstrated its value and importance in the past few
decades [1]–[21].

Visual tracking is usually formulated as a search task where
an appearance model is firstly used to represent the target to
be tracked in a previous frame and then a search strategy is
utilized to find the state of the target in the current frame.
Therefore, how to effectively model the appearance of the
target and how to accurately calculate its state are two key
steps in a successful tracking system. Although a variety
of tracking algorithms have been developed in the past few
decades, the performance of these visual tracking methods
barely meet the minimum requirements of real applications.
The major challenge of visual tracking is that it is very difficult
to design a powerful appearance model which should not
only discriminate the target from its background but also be
robust against appearance variations of the target over time. To
improve the discriminative ability, some promising approaches
have been proposed considering visual tracking as a two-class
classification or detection problem. Many elegant features in
pattern recognition can be used to effectively discriminate the
target from its background. However, it is hard to obtain an
approach immune to target appearance variations such as pose
changes, shape deformation, illumination changes, and partial
occlusion.

Traditional appearance representation methods rely on var-
ious features obtained either by hand-designing [2], [22],
[23] or learning from data [24]–[27]. In spite of certain dis-
criminative abilities, these appearance representation methods
cannot maintain the desired tracking performance at all times.
Recently, sparse representation based tracking methods [28]–
[31] (refer to [32] for a comprehensive review) have attracted
increasing interests due to its robustness against appearance
variations. These methods are used to linearly represent each
target candidate using a set of target templates and trivial tem-
plates (the column vectors of an identity matrix) with a sparsity
constraint made to the representation coefficients. After obtain-
ing the coefficients via a `1-norm minimization method, we
can obtain the reconstruction error for each candidate, which
is calculated using the target templates and the corresponding
coefficients. The candidate with the lowest reconstruction
error is considered as the tracking result. Although positive
performance has been reported, it is unclear if the sparsity
constraint can make the tracking performance better. Because
the trivial templates are capable of representing any image,
a large number of trivial templates will be activated in the
linear representation, which violates the sparsity assumption
of the representation coefficients. On the other hand, extensive
computational costs caused by solving `1-norm minimization
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limit the use of these trackers in real-time applications.
To improve the performance of the existing sparse repre-

sentation based tracking methods, in this paper, we propose
a real-time visual tracking method based on the combination
of structurally random projection and weighted least squares.
To enhance the discriminative ability of the proposed tracker,
we introduce a set of additional background templates to the
linear representation framework. To make our method robust
against appearance variations during tracking, we release the
sparsity constraint using weighed least squares (WLS) to solve
the linear representation problem. Another advantage of using
WLS is that it has an analytic solution, which enables the pro-
posed tracking method to work in real-time. To further reduce
the computational complexity, structurally random projection
is used to reduce the feature dimensionality while preserving
the pairwise distances between the data points in the feature
space.

The contribution of the proposed method is three-fold:
1) The weighed least squares method releases the sparsity
constraint imposed by the traditional sparse representation
methods and achieves sufficient robustness against appearance
variations. 2) By introducing background templates to the
linear representation framework, we are capable of discrimi-
nating the target to be tracked from its background. 3) The
dimensionality of the feature representation is significantly
reduced using structurally random projection. In the meantime,
the pairwise distances between the data points in the feature
space are kept. All of these aspects make our tracker perform
well in real-time.

The rest of the paper is organized as follows. In Section II,
we review the related work reported in the literature. Sec-
tion III gives a detailed description of the proposed method.
Experimental results are reported and analyzed in Section IV.
We conclude this paper in Section V.

II. RELATED WORK

Inspired by the success of sparse representation in face
recognition [33], recently, sparse representation based visual
tracking becomes overwhelming [28], [31], [32], [34]–[36].
The first sparse representation based tracking method was
presented in [28], which is implemented under the widely used
particle filter framework [37], [38] and represents each target
candidate (corresponding to a particle) y using a set of target
and trivial templates. Let F = [f1, f2, . . . , fnf

] ∈ Rd×nf and
I = [i1, i2, . . . , id] ∈ Rd×d be the target and trivial template
sets, respectively. The target templates are manually obtained
at the first frame and then updated in an online style over time.
The trivial templates have the same size as the target templates
but only have one non-zero element in each template.1 The
linear representation can be written in a matrix form as

y = FαF + IαI = [F, I]

[
αF

αI

]
.
= Xα (1)

where αF ∈ Rnf and αI ∈ Rd are coefficients associated
with the target and the trivial templates, respectively. Mei
et al. [28] assumed that if the candidate y is the tracking

1See Figure 1 in [28] for an illustration example.

result, it should be in the subspace spanned by all the target
templates. Therefore, the coefficient vector α is sparse and can
be obtained by solving the following `1-norm minimization
problem

α = argmin
α
‖y −Xα‖22 + λ‖α‖1 (2)

where λ is the regularization parameter that controls the
importance of the sparsity constraint. The weight of the i-th
target candidate can be computed as

wi = exp(−‖y − FαF ‖22
δ

) (3)

where δ is a parameter that controls the shape of the expo-
nential function.

Due to the use of `1-norm minimization, Mei et al.’s method
is called as a `1 tracker. Although good performance has been
reported in [28], there are two areas in their approach that
can be further improved. The first one is the unreasonable
sparsity assumption related to the representation coefficients.
Because the trivial templates are capable of representing any
image, when the candidate y is background, a large number of
trivial templates will be activated, which has been witnessed
in our experiments. In this case, the sparsity assumption of
the representation coefficients does not hold. In [31], to avoid
the activation of the trivial templates, the `2- norm constraint
on the coefficients corresponding to the trivial templates is
introduced

α = argmin
α
‖y −Xα‖22 + λ‖α‖1 + γ‖αI‖2 (4)

where γ is set to be a small constant when the target is
not occluded and zero otherwise. The introduction of ‖αI‖2
in the objective function can make the target image well
approximated by a sparse linear combination of the target
templates with a small residual, which therefore causes a
larger weight to be assigned to the target image. Although
this modification can be used to eliminate the effect of the
sparsity assumption to some extent and therefore improve the
tracking performance, it still activates the trivial templates
when the candidate is background, which will lead to non-
sparse representation coefficients. To overcome this problem,
Zhang et al. [35] proposed to use a learned basis to replace the
trivial templates. This basis is learned in order to produce a
sparse representation for the difference between the candidate
and the target templates.

The other drawback of the `1 tracker is that solving the
Eq. (2) is a time-consuming process. If the preconditioned
conjugate gradients (PCG) [39] are adopted to solve the L1-
norm minimization problem, the run time is determined by
the product of the total number of all the PCG steps with
all the iterations and the cost of each PCG step. The total
number of the PCG iterations depends on the value of the
regularization parameter λ. In the experiments with λ = 0.15,
the total number of PCG is approximately a few hundred times.
For a PCG step, the most expensive operator is a matrix-vector
product which has O(d2 + d× n) computational complexity,
where d is the feature dimensionality and n is the number of
the templates. Motivated by the sparse signal recovery power
of compressive sensing, Li et al. [30] accelerated the `1-norm
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minimization by reducing the feature dimensionality using a
hash table or random projection which meets the Restricted
Isometry Property (RIP) [40]. Let Φ ∈ Rd̃×d be the projection
matrix, the coefficients α can be computed by

α = argmin
α
‖Φy −ΦXα‖22 + λ‖α‖1 (5)

When we set d̃� d, the dimensionality of the `1 minimization
is significantly reduced while the original high dimensionality
y can still be fully recovered from the reduced Φy.

To compute the coefficients shown in Eq. (2), we need
computationally expensive `1-norm minimization. However,
the particle weights defined in Eq. (3) generate a reconstruc-
tion error measured in `2-norm, which has a lower bound
‖y − FαF ‖22 ≥ ‖y − Fα̂F ‖22, where

α̂F = argmin
α
‖y − FαF ‖22 (6)

Instead of reducing the computational complexity of the `1-
norm minimization, Mei et al. [29] proposed to reduce the
number of `1-norm minimization by excluding unimportant
particles using the reconstruction error bound computed via
fast `2-norm minimization shown in Eq. (6).

The aforementioned methods employ sparse representation
to globally encode each target candidate through the target
templates. In the literature, there are also different kinds of
methods [34], [41] which used local sparse representation to
model target appearance. These methods first construct a dic-
tionary from the local patches sampled from the training im-
ages that contain the tracked target and then use the dictionary
to encode local patches sampled from each target candidate
or template. The coding coefficients are used as features to
describe the appearance of the target candidate or template.
However, due to the locality of the sampling, these appearance
modeling methods have a poor discriminative ability. To over-
come this disadvantage, Zhong et al. [42] integrated both local
and global sparse appearance models. In [43], [44], structural
sparse appearance modeling was proposed, which exploited
the spatial layout of the locally sampled patches to increase
the discriminative ability. In [45], a more sophisticated method
was proposed, where discriminative sparse coding was directly
used to enhance the discriminative power of the resulting
coding coefficients.

III. PROPOSED METHOD

In this section, we present the proposed tracking method
based on structurally random mapping and weighted least
squares. In contrast to `1 trackers which only use target
templates, our proposed framework uses both target and
background templates to represent each candidate. When the
total reconstruction error is minimized, the target and the
background templates compete against each other in the linear
representation. After reducing the feature dimensionality using
structurally random mapping, we compute the representation
coefficients by the weighted least squares technique. The
reconstruction errors obtained by the target and the back-
ground templates are used to discriminate the target from its
background. An overview of the proposed tracking method is
shown in Fig. 1

A. The tracking framework

The proposed method is implemented using a sequential
importance sampling (also known as particle filter) frame-
work [37], [38], which is a popular computation method
to recursively approximate the posterior distribution of state
variables characterizing a dynamic system. It consists of two
stages: prediction and updating. Let zt and It be the state
variables and the observation at time t, respectively. The
posterior distribution of zt given all the available observations
I1:t−1 = {I1, I2, . . . , It−1} up to time t− 1 can be predicated
using the state transition model p(zt|zt−1) as

p(zt|I1:t−1) =
∫
p(zt|zt−1)p(zt−1|I1:t−1)dzt−1 (7)

At time t, the observation It is available, and the posterior
distribution of zt is updated using the Bayes rule as

p(zt|I1:t) =
p(It|zt)p(zt|I1:t−1)

p(It|I1:t−1)
(8)

Using the sequential importance sampling technique, the
posterior distribution p(zt|I1:t) is approximated by a set of
N weighted samples (also called particles) {zit, wi

t}i=1,...,N ,
where wi

t are the importance weights of particles zit. Let
q(zt|I1:t, z1:t−1) be the importance distribution from which
the particles are drawn, the importance weights of zit are
updated as

wi
t = wi

t−1
p(It|zit)p(zit|zit−1)
q(zt|I1:t, z1:t−1)

(9)

To avoid the degeneracy case where the weights of some
particles may keep increasing for no reason, particles are
re-sampled according to their importance weights so as to
generate a set of equally weighted particles. In case a bootstrap
filter is applied [37], where the state transition distribution
is chosen as the importance distribution q(zt|I1:t, z1:t−1) =
p(zt|zt−1), the weights are updated using the observation
likelihood wi

t = p(It|zit).
Particle filter is firstly used for contour tracking in [46].

Pérez et al. [38] used particle filtering for tracking targets
parameterized within a rectangle region, e.g., using color his-
togram to describe the states. The key step of the particle filter
for visual tracking is to compute the weight for each particle
using the observation likelihood. In practice, the observation
likelihood p(It|zit) is computed as the similarity between the
target template and the target candidate parameterized by the
particle zit using the appearance models. In the next subsection,
we will present how to use our appearance model with a multi-
scale pyramid matching to assign a proper weight to each
particle.

State transition model: In this work, we adopt the six
parameters of an affine transformation to model the target
state z = (x, y, θ, ζ, ρ, τ) which denote horizontal and vertical
translations, rotation angles, scales, aspect ratios and skew
directions. Using these affine parameters, we can crop a sub-
image from the current image and then normalize it to the
size w×h. To sample particles, we adopt the second-order au-
toregressive dynamical model [47] zt ∼ N (g(zt−1, zt−2),Σ),
where N (µ,Σ) is the norm distribution with mean µ and
covariance Σ, g(zt−1, zt−2) = c1zt−1 + c2zt−2,where two
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Fig. 1. Overview of the proposed tracking method.

constants c1 and c2 are used to define a constant acceleration
model. After we sample the candidates, each candidate is
assigned a weight based on the appearance modeling. In
the following section, we will introduce how an observation
likelihood is computed based on the sparse representation.

Discriminative observation model: Comparing to the ex-
isting L1 trackers, the first contribution of the proposed method
is the use of the background templates in the linear represen-
tation form to replace the trivial templates. The motivation
of this practice is two-folds: As we discussed before, the
trivial templates in the L1 trackers will be activated when
they are used to represent the background, leading to non-
sparse representation. The use of the background templates
in the linear representation form can help solve this problem
because these background templates can be used to reconstruct
the background candidate with minimal errors, compared to
the trivial templates. It should be noted that the objective
function is used to minimize the reconstruction error instead
of the sparsity of the coefficients as the L1 trackers do.
The other advantage of using background templates is that
both the target and the background templates in the linear
representation form can be used to discriminate the target
candidates from the background candidates, when we design a
reasonable discriminative function based on the reconstruction
errors and the coefficients.

At the first frame t = 1, the state of the target is manually
labeled. Let (x0, y0, θ0, ζ0, ρ0, τ0) be the initial state of the
target. We assume that both the target templates and the
background templates just have different center coordinates
with individual corresponding initial states. Let (x(i)f , y

(i)
f ) be

the center coordinates of the i-th target template. In this work,
we sample (x

(i)
f , y

(i)
f ) using a simple Gaussian distribution

with mean (x0, y0) and initial variance (1, 1). For the i-th
sampled target template, let fi be the feature vector extracted
from the cropped sub-image using (x

(i)
f , y

(i)
f , θ0, ζ0, ρ0, τ0) as

affine parameters. In this work, we use the stacked pixel
intensities as the features for efficiency, therefore, fi ∈ Rd,
where d = w×h. Let F = [f1, f2, . . . , fnf

] ∈ Rd×nf represent
all the target templates.

To sample the background templates, we use a method
similar to the above one to sample the target template but
with a larger variance. In particular, we set the sampling
variance as (w, h). Let (x(i)B , y

(i)
B ) be the center coordinates of

the i-th sampled background template. To avoid the sampled
background templates of being close to the initial target, we

set

x
(i)
B =

{
x− 1

8w, if x(i)B > x− 1
8w

x+ 1
8w, if x(i)B < x+ 1

8w
(10)

Similarly, we set

y
(i)
B =

{
y − 1

8h, if y(i)B > y − 1
8h

y + 1
8h, if y(i)B < y + 1

8h
(11)

Let bi ∈ Rd be the i-th sampled background template and
B = [b1,b2, . . . ,bnb

] ∈ Rd×nb be the background templates.
Let y be the feature vector of a target candidate, which can

be linearly represented by both the target and the background
templates

y = α1f1 + . . .+ αnf
fnf

+ β1b1 + . . .+ βnb
bnb

(12)

Assume X = [F,B] and γ =

[
α
β

]
. The linear system can be

rewritten in a matrix form:

y = [F,B]

[
α
β

]
.
= Xγ (13)

Once the representation coefficients are obtained, then the
weight of the i-th candidate can be computed as

wi = exp(−εf − εb
δ

) (14)

where δ is a constant, εf = ‖y−Fα‖22 and εb = ‖y−Bβ‖22
are the reconstruction errors when we represent the candidate
with the target and the background templates, respectively. The
tracking result is the particle with the largest weight, whose
index can be represented as

î = argmax
i
wi (15)

Since the appearance of the tracked target and the back-
ground around the target change gradually over time, both the
target and the background templates should be updated during
the tracking process. However, considering the inefficiency of
updating the target templates in every frame, in this work, we
update the background templates every 5 frames (this number
is determined experimentally for the best performance).

B. Dimensionality reduction using structurally random pro-
jection

The dimensionality of the target or background template
is extremely high, typically in the order of 103 ∼ 105,
resulting in expensive computational costs in the tracking
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stage. Therefore, it is necessary to reduce the dimensionality
of the template space. Usually, the dimensionality reduction is
conducted using a linear transformation, e.g., widely used PCA
transformation. Let Φ ∈ Rd̂×d be the transformation matrix,
which projects the high dimensional feature vector y ∈ Rd

onto a lower dimensional feature vector ỹ ∈ Rd̂

ỹ = Φy (16)

A good transformation matrix needs to meet three require-
ments if not more: 1) The distance between a pair of high
dimensional feature vectors can be preserved after they have
been projected onto a lower dimensional space. 2) The com-
putation should be efficient. 3) A small memory is requested.
Although many dimensionality reduction methods have been
proposed in the literature, they usually involve a complex
training stage, which makes them less suitable for real-time
tracking. Johnson and Lindenstrauss (JL) [48] stated that
any set of n feature vectors in d-dimensional Euclidean space
could be projected onto d̂ = O(ε log n)-dimensional Euclidean
space by a random matrix so that all the pairwise distances are
preserved with an arbitrarily small factor ε. Baraniuk et al. [49]
showed an interesting connection between the JL lemma and
compressed sensing where a random matrix satisfying the JL
lemma also holds true for the restricted isometry property [50].
In other words, a random matrix, Φ, can enable the JL lemma
to project the vectors y in a high-dimensional space into the
vector ỹ in a lower-dimensional space. In addition, all the
pairwise distances in the high dimensional space are preserved
and y can be recovered from ỹ with a minimum error.

Random projection matrices (RP) satisfying the JL lemma
have been used for visual tracking in the literature. Li et
al. [30] used RP to reduce the features’ dimensionality in a
`1 tracker. However, a RP matrix is usually dense, and the
computational complexity and the memory requirement are
formed as O(dε−2 logN). One of the solutions to speed up
the projection process is to use a sparse random matrix. Zhang
et al. [51] used the sparse random projection (SRP) matrix
proposed in [52] to compress the features’ dimensionality. As
the number of the nonzero entries of the SRP matrix is, on
average, 3 times less than those of the dense RP matrix, the
speed of the SRP is 3 times faster than that of the dense
RP matrix. However, the SRP matrix cannot be further sparse
without incurring a penalty to its dimensionality. To speed
up the projection’s computation process further, Ailon and
Chazelle [53] proposed the fast JL-Transform (FJLT) matrix.
The computational complexity of using the FJLT matrix is
roughly O(d log d+ ε−2 log3 n), which is much smaller than
that of the RP and the SRP. When ε is relatively small,
the FJLT matrix requires a high dimensional vector, e.g.,
‖y‖∞ ≤ O((d/d̂)−1/2). In addition, although FJLT matrix
is a very sparse matrix, its entries are still random and thus, a
certain amount of memory size is required to store the matrix
elements.

Recently, Do et al. proposed a fast and efficient compres-
sive sampling method using Structurally Random Matrices
(SRM) [54], [55]. A structurally random matrix Φ is a product

of three matrices:

Φ =

√
d

d̂
DΨR (17)

where R is a d × d random diagonal matrix whose diagonal
entries Rii are i.i.d Bernoulli random variables p(Rii = ±1) =
1
2 , Ψ is a d × d orthonormal matrix where the absolute
magnitudes of all the entries are on the order of O( 1√

d
), and

D is a d̂× d matrix composed of nonzero rows of a random
diagonal matrix with diagonal entries Dii being i.i.d binary
random variables and p(Dii = 1) = d̂

d . When we use the
SRM, the projection z can be obtained efficiently as follows:
1) pre-randomize y by randomly flipping the sign of the entries
of y, 2) apply a fast transform to the randomized y, and 3)
randomly choose d̂ as transform coefficients.

Using a structurally random matrix Φ, the target and
background templates can be projected onto a lower di-
mensional space. Let F̃ = [̃f1, f̃2, . . . , f̃nf

] ∈ Rd̂×nf and
B̃ = [b̃1, b̃2, . . . , b̃nb

] ∈ Rd̂×nb be the projected target and
background templates, respectively, where

f̃i = Φfi, ∀i ∈ [1, nf ] (18)

b̃i = Φbi, ∀i ∈ [1, nb] (19)

C. Obtaining coefficient using weighted least squares

The linear system (Eq. (13)) introduced above can only
be used in an ideal case where the target does not undergo
appearance variations that may be caused by occlusion, pose
changes, illumination changes and noise. However, in practical
applications, appearance variations are inevitable. Therefore,
in this paper, we consider a more robust linear system de-
scribed as follows

y = X̃γ + e (20)

where X̃ = [F̃, B̃], e ∈ Rd̃ is the representation error caused
by appearance variations. Let E[e|X̃] = 0 and V ar[e|X̃] = Ω
be the mean and variance of the error, respectively. As-
sume that Ω is a diagonal matrix. The linear representation
(Eq. (20)) is a Weighted Least Squares (WLS) problem where
the representation coefficients γ can be derived by minimizing
the squared Mahalanobis length of the residuals

γ = argmin
γ

(y − X̃γ)TΩ−1/2(y − X̃γ) (21)

which leads to the explicit solution

γ = (X̃TΩ−1/2X̃)−1X̃TΩ−1/2y (22)

Once Ω is given, the representation coefficients can be effi-
ciently computed with only matrix operators. However, for
practical applications, Ω is usually not known. It can be
estimated by using the Feasible Generalized Least squares
(FGLS) algorithm [56]. Firstly, assuming that there is not a
representation error, the representation problem is degraded to
the Original Least Squares (OLS) problem and the represen-
tation coefficients can be estimated as

γ = (X̃T X̃)−1X̃Ty (23)
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Accordingly, the representation residuals can be obtained as

e = y − X̃γ (24)

Then the variance matrix Ω can be derived as the diagonal
matrix of the squared residuals [56]

Ω = diag(e)2 (25)

Now reconsidering the original weighted least squares
(Eq. (20)) problem, we estimate its solution using Eq. (22).
Repeat the above procedures (Eqs. (24), (25), and (22))
until the coefficient vector γ converges to a stable point.
Algorithm 1 summarizes such an iteration process. Given the
obtained coefficient vector, the weight of the i-th particle can
be computed using Eq. (14). The tracking result in the current
time refers to the particle with the largest weight. The outline
of the proposed tracking algorithm is presented in Algorithm 2.

Algorithm 1: Sovling Eq. (22) using the Feasible Gener-
alized Least squares.

Input: Given template set X̃, candidate feature y and
maximal iteration number L

Output: Representation coefficients γFGLS

1 Solve the Original Least squares (OLS) problem
γ = (X̃T X̃)−1X̃Ty;

2 for i = 1 to L do
3 Compute residuals e = y − X̃γ;
4 Compute variance matrix Ω = diag(e)2;
5 Update coefficients

γ = (X̃TΩ−1/2X̃)−1X̃TΩ−1/2y;
6 end

Algorithm 2: Proposed tracking algorithm
Input: Given initial state z0, observations

{I1, I2, . . . , IT }
Output: Target states {z1, z2, . . . , zT }

1 Sampling target and background templates from I0 given
z0;

2 for t = 1 to T do
3 Sampling N target candidates {z1t , z2t , . . . , zNt } from

zt−1;
4 for i = 1 to N do
5 Computing coefficients vector using Algorithm 1;
6 Computing weight ωi

t of the i-th candidate using
Eq. (14);

7 Obtaining the current state zt = zît where
î = argmaxi ω

i
t;

8 end
9 if mod(t, 5)==1 then

10 Sampling background templates from It given zt;
11 end
12 end

IV. EXPERIMENTS

In this section, we present the experimental results to
validate the effectiveness of the proposed method and also
compare it with other state-of-the-art methods. Firstly, we
introduce the experiment protocols including the used dataset
and the evaluation metrics. Then we present the quantitative
and qualitative comparisons against the other methods.

A. Experiment Protocols

1) Datasets: Recently, a large scale benchmark library2 for
visual tracking was built by Wu et al. [57]. It contains a total of
50 test sequences collected from recent literatures. The authors
have manually tagged the test sequences with 11 attributes,
which represent the challenging aspects in visual tracking
including illumination variation, scale variation, occlusion,
deformation, motion blur, fast motion, in-plane rotation, out-
of-plane rotation, out-of-view, background clutters, low reso-
lution. The length of these sequences vary from 71 to 3872.
In addition to the sequences, this benchmark also contains
the codes of publicly available visual trackers as well as their
tracking results on the sequences.

2) Evaluated trackers: To demonstrate the effectiveness of
the proposed tracking framework, we select several baseline
trackers including the incremental visual tracker (IVT) [26],
the multiple instance learning tracker (MIL) [58], the online
AdaBoost tracker (OAB) [59], the L1 tracker using accelerated
proximal gradient (L1APG) [31], the compressive sensing
based tracker (CS) [30], and the scaled fast compressive
tracker (SFCT) for comparison. Note that except the SFCT
and our tracker, the results of other trackers are directly
obtained from the benchmark. To test the SFCT tracker, we
download the code from the authors’s website3 and run it
on the benchmark sequences without manually tuning the
parameters for the individual sequences.

3) Evaluation metrics: Two frame based metrics are widely
used to assess the performance of a tracker: 1) center location
error, which is defined as the Euclidean distance between
the center location of the tracked target and the manually
labeled ground-truth position; 2) bounding box overlap which
is the ratio of the areas of the intersection and the union
of the bounding boxes indicating the tracked object and the
ground-truth. To measure the overall performance of a tracker
on a test sequence, we adopt the success rate and precision
score metrics. The former is computed as the percentage of
the image frames which has a bounding box overlap larger
than a given threshold. The latter is the percentage of image
frames which have a center position error less than a given
threshold. In each case, when multiple thresholds are used,
a curve is provided to show how success rates or precision
scores are affected by the threshold value. These curves are
called Success plot and Precious plot, respectively. To ease
the comparison, we average the Success and Precious curves
of a tracker over all the sequences that represent a tracking
challenge to obtain per challenge Success and Precious plots.

2http://visual-tracking.net
3http://www4.comp.polyu.edu.hk/∼cslzhang/FCT/FCT.htm

http://visual-tracking.net
http://www4.comp.polyu.edu.hk/~cslzhang/FCT/FCT.htm
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Ours OAB L1APG IVT MIL SFCT CT
Occlusion 0.505 0.361 0.340 0.327 0.300 0.310 0.260
Illumination variation 0.482 0.301 0.296 0.292 0.285 0.265 0.251
Scale variation 0.417 0.332 0.341 0.319 0.316 0.306 0.257
Background clutter 0.535 0.329 0.321 0.287 0.351 0.351 0.230
Deformation 0.523 0.361 0.313 0.303 0.328 0.344 0.249
Fast motion 0.454 0.350 0.283 0.210 0.315 0.339 0.217
Motion blur 0.470 0.326 0.266 0.219 0.279 0.289 0.197
In-plane rotation 0.488 0.350 0.352 0.331 0.334 0.295 0.255
Out-of-plane rotation 0.488 0.352 0.341 0.327 0.330 0.295 0.251
Out of view 0.589 0.394 0.309 0.302 0.301 0.342 0.262
Low resolution 0.312 0.314 0.297 0.195 0.208 0.321 0.114
Overall 0.509 0.375 0.362 0.342 0.338 0.324 0.258

TABLE I
AUC OF THE SUCCESS PLOTS OF THE STUDIED TRACKERS.

The area under curve (AUC) of the success plot or the
precision score for the threshold = 20 pixels is used to quantify
the overall performance of a tracker for a challenge.

The conventional way to evaluate trackers is to run a tracker
throughout a test sequence with an initialization from the
ground-truthed position in the first frame. However, we found
the initialization usually affects the performance of a tracker
significantly. Therefore, it is necessary to test how robust a
tracker is against different initialization states. In [57], Wu
et al. proposed two ways to analyze a tracker’s robustness
against initialization: temporal robustness evaluation (TRE)
that perturbs the initialization by starting a tracker at different
frames and spatial robustness evaluation (SRE) that perturbs
the initialization spatially by starting a tracker at different
bounding boxes. In this work, we adopt the SRE for all the
comparisons shown in this paper.

4) parameter Setup: The parameters related to the particle
filter framework are set to be like those used in the bench-
mark [57]. The other parameters related to our method are set
as nf = 50, nb = 200, w = 32, h = 32, d̂ = 100, δ = 0.4
and L = 5 for all the sequences.

B. Quantitative Comparison

Fig. 2(a)–Fig. 2(k) and Fig. 3(a)–Fig. 3(k) show the success
plots and precious plots for all the compared trackers averaging
over the test sequences containing the same challenge, respec-
tively. For example, Fig. 2(a) shows the success plots of all
the compared trackers averaging over the results of all the test
sequences containing fast motion. As we can see from these
figures, our tracker achieves the best performance in all the
challenges except the low resolution one where our tracker is
slightly worse than the SFCT and OAB trackers. The success
plots and precision plots of the compared trackers averaging
over all the test sequences in the benchmark are shown
in Fig. 2(l) and Fig. 3(l), respectively. To give quantitative
comparison in numbers, Table I and Table II show the AUC
values of the success plots in Fig. 2 and the precision scores for
the threshold = 20 pixels in Fig. 3, respectively. The numbers
in these tables quantitatively reflect the performance of the
compared trackers on each individual challenge and also the
entire benchmark. From the last rows of these tables, we can
see that the overall performance of our tracker outperforms all
the other methods.

Ours OAB L1APG IVT MIL SFCT CT
Occlusion 0.727 0.494 0.376 0.262 0.266 0.433 0.136
Illumination variation 0.701 0.385 0.380 0.412 0.340 0.327 0.296
Scale variation 0.648 0.494 0.474 0.477 0.450 0.457 0.374
Background clutter 0.753 0.433 0.404 0.414 0.446 0.434 0.286
Deformation 0.705 0.496 0.404 0.440 0.420 0.435 0.310
Fast motion 0.602 0.418 0.334 0.229 0.374 0.403 0.228
Motion blur 0.572 0.394 0.315 0.259 0.354 0.351 0.232
In-plane rotation 0.704 0.489 0.488 0.483 0.459 0.394 0.356
Out-of-plane rotation 0.712 0.497 0.475 0.483 0.454 0.401 0.348
Out of view 0.709 0.416 0.333 0.313 0.253 0.303 0.205
Low resolution 0.381 0.445 0.376 0.262 0.266 0.433 0.136
Overall 0.728 0.520 0.489 0.496 0.459 0.442 0.350

TABLE II
PRECIOUS SCORES FOR THE THRESHOLD = 20 PIXELS OF THE STUDIED

TRACKERS.

C. Qualitative comparison

To qualitatively evaluate the tracking performance of the
compared trackers, we show some tracking results on a subset
of the benchmark in Fig. 4. We randomly select ten test
sequences from the benchmark. For each selected sequence,
we show the tracking results of all the compared trackers on
six exemplar image frames. Note that we evenly select six
frames over each sequence to make sure there is no bias when
selecting the exemplar frames. As we can see, our tracker
successfully tracks the targets in these frames on the dog,
doll, dude, fist, mhyang, suv, trellis and walking2 sequences,
which mainly contain pose changes, partial occlusion and
illumination changes. The results on these sequences indicate
our tracker has strong abilities when it is used to handle
these challenges. In contrast, as shown in the second row, the
OAB, MIL, L1APG trackers fail to track the doll in the doll
sequence. In the suv sequence, the IVT, CT and SFCT trackers
also fail to track the car. Our tracker achieves superior perfor-
mance on these sequences where the challenges are reasonably
difficult, however, it loses the targets when the challenges are
extremely difficult or the sequence simultaneously contains
several challenges. For example, the sylvester sequence has
both illumination and pose changes. In the 1345-th frame, our
tracker loses the target since the target in this frame suffers
from pose changes while the illumination is also changed. In
the 597-th frame of the woman sequence, our tracker drifts
away from the woman since the upper body of the woman
was occluded by the tree and string. Generally speaking, these
qualitative comparisons also validate the effectiveness of our
proposed method.

D. Running speed

To investigate the computation efficiency of the proposed
tracker, we compare the running speed of our tracker and
three real-time trackers including the L1-APG tracker, the CS
tracker and the SFCT tracker. To compare against `1 trackers,
we also include the L1 [28] tracker and the BL1 [29] tracker.
We test these methods on the woman sequence on a standard
PC with an Intel Core 4 Duo 3.0 GHz processor and 4G RAM.
As witnessed from Table III, our tracker achieves 29 frames
per second, which is significantly faster than two `1 trackers
and slightly faster than the CS tracker and the L1APG tracker
but slightly slower than the SFCT tracker.
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(a) Fast motion
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(b) Background clutter
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(c) Motion blur
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(d) Deformation
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(e) Illumination variations
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(f) In-plane rotation
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(g) Low Resolution
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(h) Occlusion
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(i) Out-of-plane rotation
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(j) Out-of-View
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(k) Scale variation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of SRE

 

 

Our

OAB

L1APG

IVT

MIL

SFCT

CT

(l) Overall

Fig. 2. Success plots for the challenges considered in this work.

E. Discussion

In term of tracking effectiveness, our tracker achieves
better performance than other state-of-the-art methods in all

the tracking challenges except the low resolution one. The
good performance of our tracker comes from two aspects:
1) both target and background templates are used in the
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(a) Fast motion
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(b) Background clutter
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(c) Motion blur
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(d) Deformation
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(e) Illumination variations
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(f) In-plane rotation
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(g) Low resolution
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(h) Occlusion
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(i) Out-of-plane rotation
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(j) Out-of-View
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(k) Scale variation
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Fig. 3. Precision plots for the challenges considered in this work.

linear representation framework, which makes our tracker have
strong abilities of distinguishing the tracked target from its
background, and 2) a weighed least squares method is used
to obtain the representation coefficients, which are robust to

appearance variations over time. For the low resolution chal-
lenge, our tracker has slightly worse results than some of the
other methods. The reason is that the random projection used
in our method for feature dimensionality reduction loses partial
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Fig. 4. Examples of tracking results of the compared methods on ten test sequences.
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TABLE III
RUNNING SPEED COMPARISONS OF THE SELECTED TRACKERS ON THE

WOMAN SEQUENCE

tracker L1 BL1 CS L1APG SFCT Ours
speed (frames/second) 0.18 0.51 19 23 35 29

useful information, especially when the sequence has very
low resolution. Regarding the tracking efficiency, our tracker
can achieve real-time operation since it avoids most of the
computational costs required by those `1 trackers by adopting
the fast weighed least squares method. However, our method
is currently slower than the SFCT tracker as the randomly
projection also causes additional computation costs especially
when both targets and backgrounds are simultaneously used
in the linear representation framework.

V. CONCLUSION

In this paper, to further improve the performance of the
state-of-the-art sparse representation based visual tracking
methods, we proposed a novel tracking method based on the
weighted least squares and structural random projection. The
weighed least squares technique releases the sparsity constraint
imposed by the traditional sparse representation methods while
achieving strong robustness against appearance variations. In
addition, by introducing background templates into the linear
representation framework, our method has strong capability
of discriminating the tracked target from its background. On
the other hand, the dimensionality of feature representation in
our method is significantly reduced using structurally random
projection while the pairwise distances between the data points
in the feature space are preserved, reducing the computational
complexity and making the proposed method feasible in
real-time applications. Experimental results on a benchmark
with 50 challenging sequences validate the effectiveness and
efficiency of the proposed method.
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