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The expansion of a radial blast shell into an ambient plasma is modeled with a particle-in-cell

simulation. The unmagnetized plasma consists of electrons and protons. The formation and

evolution of an electrostatic shock is observed, which is trailed by ion-acoustic solitary waves that

grow on the beam of the blast shell ions in the post-shock plasma. In spite of the initially radial

symmetric outflow, the solitary waves become twisted and entangled and, hence, they break the

radial symmetry of the flow. The waves and their interaction with the shocked ambient ions slow

down the blast shell protons and bring the post-shock plasma closer to equilibrium. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4991694]

The ablation of a solid target by an intense laser pulse

yields a dense and hot blast shell.1 Collisions between the

plasma particles do not frequently occur on the time-scales

of interest, and the plasma remains far from a thermal equi-

librium. The hot and light electrons expand faster than the

ions, and the charge separation results in an electric field that

accelerates the ions of the blast shell. Depending on the dura-

tion and the intensity of the laser pulse, they can reach

speeds of the order of 105–107 m/s via this process, often

referred to as target normal sheath acceleration (TNSA).2,3

Radiation from the target ionizes any residual gas that was

present in the experimental vessel prior to the laser shot.

This ambient plasma will resist the expansion of the blast

shell.

During the blast shell’s free expansion phase, its thermal

pressure exceeds by far that of the ambient plasma. The blast

shell expands in the form of a rarefaction wave,4,5 which piles

up the ambient plasma ahead of it. A forward shock forms

between the piled-up ambient plasma and the pristine ambient

plasma. This shock is mediated by collective electrostatic

forces, if no background magnetic field is present.6–9

The forward shock increases the thermal pressure of the

ambient plasma by heating and compressing it. Expansion of

the radially symmetric blast shell furthermore implies a den-

sity profile that decreases rapidly with increasing radius r.

The pressure of the shock-compressed ambient plasma will

become large enough at some r to slow down the blast shell.

Laboratory experiments show that in a collisionless plasma,

ion-acoustic solitons (IAS’s)10 and electrostatic shocks11,12

emerge in the region where the blast shell interacts most

effectively with the ambient plasma.

Here, we perform a particle-in-cell (PIC) simulation to

test if we can observe these structures. We model, for this

purpose, the expansion of a circular blast shell in a two-

dimensional simulation box with the PIC code EPOCH.13

The radial symmetry, the absence of any strong background

magnetic field and the usage of reflecting boundary condi-

tions for particles and fields imply that we only need to

resolve one quadrant of the expanding blast shell. We model

the quadrant defined by 0 � x � L and 0 � y � L, where the

side length L¼ 1.2 mm of the simulation box is resolved by

1500 grid cells along each direction.

A uniformly distributed plasma, which consists of electrons

and protons with number density n0 ¼ 3� 1016cm�3, fills the

simulation box at time t¼ 0. The electron density n0 is compara-

ble to that in the ambient plasma in laser-plasma experiments.

The electrons (protons) are represented by 100 (200) computa-

tional particles (CPs) per cell and the electron (proton) tempera-

ture is set to T0¼ 1 keV (T0=10). The plasma frequency of the

ambient medium is xp � ðn0e2=me�0Þ1=2 � 1013s�1 (e, me, �0:
elementary charge, electron mass and vacuum permittivity). The

blast shell is modeled by superimposing a second plasma on top

of the ambient one in the interval 0 � r � L=4, where

r2 ¼ x2 þ y2. The densities of electrons and protons of this sec-

ond plasma are 24n0, and the electrons (protons) of this plasma

are represented by 400 (800) CPs per cell. The proton tempera-

ture of the blast shell plasma matches that of the ambient

plasma, while the electron temperature is 4:5T0.

We adjust the numerical weights of the CP’s that repre-

sent the electrons and protons, such that the plasma is ini-

tially charge-neutral. No net current is present at t¼ 0, and

we set Eðx; yÞ and Bðx; yÞ to zero. The simulation resolves

530 ps by 3� 105 time steps.

The simulation provides us with the spatio-temporal distri-

butions of the proton density nðx; y; tÞ (normalized to n0) and

the normalized energy density EEðx; y; tÞ ¼ e2�0ðE2
xðx; y; tÞ þ
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E2
yðx; y; tÞÞ=ð2m2

ec2x2
pÞ of the in-plane electric field. We re-

sample both distributions in radial coordinates (r; a: radius and

azimuthal angle relative to y¼ 0), which gives nðr; a; tÞ and

EEðr; a; tÞ.
Thermal diffusion results in a net flow of electrons from

a dense plasma into a dilute plasma, and the blast shell

plasma reaches a positive potential relative to the ambient

one. The ambipolar electric field, which sustains the poten-

tial difference, accelerates the ambient electrons that enter

the blast shell and decelerates the blast shell electrons that

escape into the ambient plasma. Two-stream instabilities,

which would otherwise develop in the dense plasma,14 are

suppressed by the larger initial temperature of the blast shell

electrons. The ambipolar electric field will accelerate protons

towards increasing r.

Figure 1 visualizes this expansion with the help of n(r, t)
and EEðr; tÞ, which are the azimuthal averages of nðr; a; tÞ
and EEðr; a; tÞ. The contour nðr; tÞ ¼ 20 in Fig. 1(a) moves

in time to lower r and reaches r¼ 0 at t¼ 530 ps. The rare-

faction waves propagate into the dense plasma and accelerate

protons towards the dilute plasma. The density distribution

at t¼ 530 ps decreases approximately exponentially with

increasing r < 400 lm.

A new density bump separates itself from the rarefaction

wave at r � 350 lm and t � 100 ps (lower white circle),

which is confined by two boundaries across which the den-

sity changes to its maximum �3. The right boundary propa-

gates from r ¼ 300 lm at t¼ 0 to r ¼ 750 lm at t¼ 530 ps.

Its speed decreases in time and its average is vfs � 8:5� 105

m/s. Given that the ion acoustic speed cs ¼ ðkBð5T0=3þ
3T0=10Þ=mpÞ (kB, mp: Boltzmann constant and proton mass)

of the unperturbed ambient medium is cs � 4:3� 105 m/s,

this front is an electrostatic shock with the Mach number

vfs=cs � 2. A density pulse forms at t � 200 ps in Fig. 1(a)

(upper white circle), which detaches itself from the main

bump and reaches r � 530 lm at t¼ 530 ps (black circle).

A peak of EEðr; tÞ forms in Fig. 1(b) at the blast shell

boundary r ¼ 300 lm immediately after the simulation

started. It is the ambipolar electric field that is driven by the

initial density jump. Its magnitude exceeds the displayed

color range by the factor 10. This initial pulse spreads out

and elevated values of EEðr; tÞ are present in the interval,

which is delimited by the line r ¼ 300 lm, and the line that

starts at the same position goes to r ¼ 150 lm at t¼ 530 ps.

This electric field patch outlines the density gradient of the

rarefaction wave.

Statistical fluctuations of the particle number in a vol-

ume element in PIC simulation or in a real plasma yield fluc-

tuations in the charge and current density and, hence,

electromagnetic fluctuations.15 The field energy density

increases with the particle’s thermal energy density. The lat-

ter is large in the blast shell plasma, causing an elevated

level of EEðr; tÞ at low r in Fig. 1(b).

The large electric field energy in the density bump at

large r is related to the thermalization processes in a colli-

sionless plasma. A sharp propagating electric pulse is

observed that travels from 300 lm at t � 0 to 400 lm at

t¼ 100 ps, after which it starts to become more diffuse. The

speed of this pulse is 2:3cs for 0 < t < 100 ps, and is thus

the forward shock.

Figure 2 shows the spatial distributions of nðr; a; tÞ and

EEðr; a; tÞ. A sharp electric field pulse is present at r �
400 lm in Fig. 2(a), which coincides with the density jump

between the expanding blast shell and the dilute ambient

medium in Fig. 2(b). This pulse is the electrostatic shock.

The shock has propagated to r � 490 lm at t¼ 200 ps in Fig.

2(c). It has lost its sharpness, and waves are observed

upstream of it. Such a fragmentation is typical for shocks

that reflect a significant part of the inflowing upstream ions,

which triggers ion acoustic instabilities.16,17 The onset of

such instabilities explains why the shock has become diffuse

in Fig. 1(b).

Another structure has emerged at r � 410 lm in Fig.

2(c), which is close to the left boundary of the density bump

in Fig. 1(a). It reveals two stripes with a large electric field

energy density that are separated by a minimum, which coin-

cides with a density spike in Fig. 2(d). We refer with ion sol-

itary wave (ISW) to such a structure. The ISW and the

forward shock at r � 490 lm enclose a turbulent region with

an elevated plasma density.

Figures 2(e) and 2(f) show EEðr; aÞ and nðr; aÞ at

t¼ 530 ps. We observe two strong ISWs at r � 540 lm and

at r � 570 lm and entangled ones at larger r. The average

density increases with increasing r in the interval

550 lm � r � 650 lm, in which we find the entangled

ISWs. The trailing ISW had the practically constant value

r ¼ 410 lm at t¼ 200 ps, while it shows strong variations of

r with a at 540 lm and t¼ 530 ps. The wavelength of the

oscillation at r � 540 lm and a � 70� is about 20�, which

corresponds for this value of r to an arc length of �190 lm.

FIG. 1. Panel (a) shows the averaged proton density distribution n(r, t). The

linear color scale is clamped to a minimum of 2.2 and a maximum of 20.

Lower and higher densities are thus not resolved by the color map. The aver-

aged energy density 103 � EEðr; tÞ of the in-plane electric field is shown in

panel (b). The linear color scale is clamped to 0.007 and 0.2. The horizontal

lines denote the times t¼ 100 ps and t¼ 200 ps and the circles are explained

in the text.
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The amplitude and wavelength of this oscillation are close to

the values observed at a thin shell of dense ions in a labora-

tory plasma under similar conditions.18

The nonlinear plasma structures can be identified unam-

biguously with the help of the phase space density distribution

of the protons. Figure 3 shows the phase space density distribu-

tion fpðr; a; ðjvj=vthÞ2Þ of the protons at the time 200 ps, where

vth ¼ ðkBT0=10mpÞ1=2
is the proton thermal speed �105 m/s.

The mean velocity of the rarefaction wave increases linearly

with r in the interval 300 lm � r � 360 lm, and its velocity

increase slows down between r ¼ 360 lm and r ¼ 400 lm.

The reduced acceleration is caused by the presence of shocked

ambient protons at this location. The density contribution of

these protons decreases the proton density gradient in this

interval and, hence, the ambipolar electric field that accelerates

the protons of the rarefaction wave.

The mean velocity of the blast shell protons oscillates in

the interval 400 lm � r � 450 lm with an amplitude that

exceeds vth significantly. These velocity oscillations corre-

spond to the previously observed ISWs. They are immersed in

hot protons, which originate from the shock-heated ambient

protons. They form a dilute cloud with a large thermal spread

in the interval 400 lm � r � 500 lm. A forward shock is

located at r � 500 lm, which moves to increasing r. The

ambient protons that cross this shock are heated to the down-

stream temperature. A fraction of the protons is reflected by

the shock potential. These protons feed the dilute low-energy

part of the energetic proton beam in the interval r > 500 lm.

Reflected protons are a characteristic of electrostatic shocks.

Blast wave protons that crossed the downstream region and

were accelerated to larger energies by the shock potential

form the denser high-energy part of the fast proton beam

ahead of the shock. The shock thus also acts as a double

layer.19 The interaction between the energetic proton beam

FIG. 2. The distributions of EEðr; aÞ (upper row) and nðr; aÞ (lower row) at t¼ 100 ps (first column), t¼ 200 ps (second column) and t¼ 530 ps (third column).

Both color bars have a linear color scale and are valid for all figures of the respective row. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4991694.1]

FIG. 3. The proton phase space density distribution fpðr; a; ðjvj=vthÞ2Þ at the

time 200 ps. The color scale is 10-logarithmic. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4991694.2]

FIG. 4. Slice of fpðr; a ¼ 45�; ðjvj=vthÞÞ at 530 ps: the phase space density is

normalized to its peak value in the displayed interval, and the color scale

corresponds to 10-logarithmic phase space density.
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and the ambient protons in the interval r > 500 lm causes an

ion-ion instability,20 which replaces the narrow uni-polar elec-

tric field pulse at r ¼ 400 lm in Fig. 1(a) by the broad turbu-

lent layer that starts to form in Fig. 2(c) at r � 500 lm.

Figure 4 shows fpðr; a; ðjvj=vthÞÞ for a ¼ 45� and t¼ 530

ps. The blast shell protons enter with the speed 8� 105 m/s

at r ¼ 450 lm and are slowed down by the ISW at

r � 530 lm, which is the density band to the left in Fig. 2(f).

The amplitude of its velocity modulation is 4vth, which is

close to cs, and its width is about 5 electron Debye lengths

kD � ð�0kBT0=n0e2Þ1=2 ¼ 1:35lm of the ambient plasma.

The large amplitude of the ISW is close to the limit, at which

it changes into a shock.21

The ISW has moved from r � 410 lm in Fig. 2(d) to

�530lm in Fig. 2(f), and its speed 3:6� 105 m/s is approxi-

mately constant (see Fig. 1). The ISW propagates at the

speed �cs towards lower values of r in the rest frame of the

proton beam that moves with the speed 	8vth in Fig. 4. The

local ion acoustic speed exceeds cs because the electron tem-

perature, averaged over the interval 525 lm < r < 540 lm

in which the ISW is located, is 30% larger than T0 (not

shown). Even the strongest ISW is thus not an IAS, which

would require it to propagate faster than the local cs.
22

The blast shell protons traverse the ISW and encounter a

second one at r � 560 lm. More ISW’s are observed to the

right, which form the entangled ISW’s in Fig. 2(f). The size

of the ISW’s and the density of the blast shell protons

decrease with each ISW crossing, and the hot proton back-

ground gets denser. The hot low-energetic protons have a

density minimum at the location of each ISW; the electric

potential of each ISW repels protons.

In conclusion, we have modeled the expansion of a

radial blast shell into a uniform plasma. A shock formed,

which moved at more than twice the ion acoustic speed and

compressed, heated and accelerated the ambient protons.

ISW’s formed in the post-shock plasma, which consisted of

a dense beam of blast shell protons and the shock-heated

ambient protons. The ISW’s grew in a turbulent plasma and,

hence, they were non-planar to start with. Instability ampli-

fied their initial oscillations.23 The electric field distributions

of these entangled ISW’s and their interaction with the

shocked ambient protons slowed down and compressed the

blast shell protons and helped confining the shock-heated

ambient protons.
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