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ABSTRACT
Compiler-based fault injection (FI) has become a popular technique
for resilience studies to understand the impact of soft errors in
supercomputing systems. Compiler-based FI frameworks inject
faults at a high intermediate-representation level. However, they
are less accurate than machine code, binary-level FI because they
lack access to all dynamic instructions, thus they fail to mimic
certain fault manifestations. In this paper, we study the limitations
of current practices in compiler-based FI and how they impact the
interpretation of results in resilience studies.

We propose REFINE, a novel framework that addresses these limi-
tations, performing FI in a compiler backend. Our approach provides
the portability and efficiency of compiler-based FI, while keeping
accuracy comparable to binary-level FI methods. We demonstrate
our approach in 14 HPC programs and show that, due to our unique
design, its runtime overhead is significantly smaller than state-of-
the-art compiler-based FI frameworks, reducing the time for large
FI experiments.

CCS CONCEPTS
•Computingmethodologies→ Simulation tools;Model verifi-
cation and validation; • Software and its engineering→ Compil-
ers; • Hardware → Analysis and design of emerging devices
and systems;

KEYWORDS
Resilience, Fault Injection, High-Performance Computing, Compiler-
based Instrumentation

1 INTRODUCTION
As soft-error rates may increase in future supercomputing sys-
tems [7], understanding the effect of soft errors in these systems is
becoming increasingly important. Some errorsmay escape hardware-
and system-level detection and correctionmechanisms, which could
directly impact the results of the scientific applications that run
on these systems. A number of resilience techniques have been
proposed to cope with these errors at different levels of the HPC
software and hardware stack. However, to be able to build efficient

and correct resilience techniques, a critical piece of the puzzle is to
have an accurate way to quantify the manifestation of errors—from
visible failures to silent errors—on different applications and inputs.

Fault injection (FI) is a well-established technique that has been
used for years to quantify the effect of soft errors [9, 12, 16, 42]. A
wide variety of FI techniques exists, and while most use some kind
of software approach to inject faults, some approaches can be as
extreme as physically irradiating hardware components [9, 15, 27,
29]. In any of these cases, their purpose is to accelerate the process
of observing error manifestations since real soft errors per bit occur
rarely in reality [30].

A common method is to inject directly at the binary level [8,
21, 33, 40, 41]. This approach has shown to be both sufficiently
accurate as well as efficient. However, it also has a few significant
drawbacks: due to its low-level nature it makes it hard both to port
to new platforms and to correlate observations with higher-level
code structures.

As a counterpart to binary-level FI, a second approach, compiler-
based FI, has recently become popular. It instruments high-level
code via transformations done by the compiler. Compiler-based
FI has several advantages over binary-level FI. First, performing
injections in the compiler permits close integration with error-
propagation analysis as both classes of analysis (error propagation
and FI) operate in the same software layer. Error-propagation anal-
ysis is harder to implement at a low level as the original structure
of the programs, such as loops, data structures and annotations
(e.g., to enable parallelism [10]), may not be available at that level.
Second, compiler-based FI provides portability—the generated code
with the FI can be transparently compiled for different architectures,
whereas binary-level FI usually requires architecture-specific tools,
like PIN [28] or Valgrind [24] to transform binary code.

On the downside, though, compiler-based FI has three disadvan-
tages compared to binary-level FI, all caused by the fact that existing
methods perform injection at the compiler intermediate representa-
tion (IR) [6, 31, 32, 36]: (1) not all low-level dynamic binary instruc-
tions are available at the IR level for FI; (2) instrumentation at the
IR level interferes with code generation and optimizations—even
if FI instrumentation is done after all IR optimizations are applied,
the code that is input to the compiler backend can be significantly
different from the original non-faulty code, which may generate



very different (many times unoptimized) machine binary code; and
(3) since code cannot be fully optimized (because of (2)), most frame-
works incur significant (unnecessary) overhead, increasing the time
to complete FI studies in large applications.

Because of the above limitations, current practices in compiler-
based FI are inaccurate in quantifying error manifestations in ap-
plications. Resilience studies often quantify the proportions of dif-
ferent error manifestations using FI, such as the percentage of
aborts, silent data corruption (SDC), and benign cases. It is impor-
tant to get an accurate picture of these proportions; for example,
an application that experiences a large percentage of SDCs may
require algorithmic error detection mechanisms, at the expense
of runtime overhead. A concern in the HPC community is that a
significant number of resilience studies have been based on this FI
method [3, 4, 6, 17, 18, 25, 31, 32, 34–36] (including our own work),
which can potentially skew FI results and, in some cases, lead to
incorrect conclusions. There has been research done in showing
these inaccuracies. For example, Wei et al. [41] show that for errors
that cause SDC, the accuracy of compiler-based FI can be signifi-
cantly different from that of binary-level FI; however, no solutions
have been proposed to the problem to the best of our knowledge.

In this paper, we identify the main accuracy problems in current
compiler-based FI practices and propose REFINE1, a compiler-based
FI framework that delivers the advantages of compiler-based FI,
while providing the accuracy of binary-level FI. REFINE implements
FI in the backend code of the LLVM compiler. As the backend
code seats at a lower level than the IR code—where most tools
today perform FI—the accuracy of FI at this level is comparable
to the accuracy of binary-level FI, while still performing FI in a
compiler and still enabling the correlation with high-level program
abstractions and data structures.

The main contributions of our paper are:

• We identify the main problems that existing compiler-based
FI frameworks have, which are potentially shared with the
studies that use them.
• We present the design and implementation of REFINE, a
compiler-based FI that addresses these problems by perform-
ing efficient FI in the backend of the LLVM compiler.
• We measure the accuracy of REFINE and compare it against
state-of-the-art compiler-based FI and binary-level FI. We
show that REFINE’s accuracy is comparable to that of binary-
level FI, and that it is significantly different from existing
compiler-based FI tools.

In our experiments, we inject faults into 14 HPC programs
(AMG2013, CoMD, HPCCG, Lulesh, XSBench, miniFE and 8 NAS
Parallel Benchmarks) and use rigorous statistical methods [20] to
determine the number of samples for having an acceptable margin
of error (≤ 3%) and confidence level (95%). Moreover, we employ a
rigorous statistical inference technique, chi-squared testing with
a significance level of 5%, to evaluate the accuracy of different
approaches. We found that REFINE is more accurate than state-of-
the-art compiler-based FI approaches for all benchmark programs.
Furthermore, because of our unique backend FI methodology, our

1REalistic Fault INjEction (REFINE)

approach can be up to 3× faster than existing FI approaches, in-
creasing in this way the speed in which FI experiments can be
performed.

2 BACKGROUND AND RELATEDWORK
In this section we take a look at the five most common FI techniques,
as they apply to high-performance computing (HPC): radiation,
hardware simulation, debugger, binary-level, and compiler based
FI. A more comprehensive survey of FI methods can be found in
the literature [9, 12, 16, 42].

Radiation-basedmethods irradiate hardware to induce bit flips
in a processor or other component [9, 15]. A common approach is
to expose a processor’s area to a proton beam and then to measure
soft error rates (SER) using a verification program that detects in-
correct architectural state [27, 29]. While these methods mimic the
root-cause of soft errors (hardware bit flips occur due to actual par-
ticles strikes) well, their disadvantages are that they are generally
non-deterministic [42] and very costly both in terms of time and
money [30].

Hardware simulation methods, which are software based, in-
troduce bit flips using a hardware simulator or hardware model.
These methods operate at a low level, and can inject faults into
the architectural state, i.e., machine state that are accessible by
software, such as memory and registers, or into the microarchitec-
tural state like pipeline logic (such as latches and RAM cells). As
examples of architectural-level injectors, Parasyris et al. [26] show
a framework to inject soft errors using the Gem5 simulator, and
Sanda et al. [29] describe how soft errors are injected into the IBM
Mambo architectural simulator to evaluate the resilience of the
POWER6 microprocessor chip. Examples of the microarchitectural-
level injections are shown in [22, 38, 39]. Although these approaches
inject faults in a realistic manner at the hardware level, their disad-
vantages is that they are generally heavy-weight and targeted to
single-node experiments. Microarchitectural-level injectors suffer
from the fact that many faults that affect microarchitectural state
do not propagate to application state (they are masked) [23], and as
a result such FI approaches are not well suited for application-level
error propagation studies.

Debugger-basedmethods use a debugger, which, by controlling
the execution of the program, injects faults into application-level
state, such as registers [11, 13, 14, 37]. Although they can inject soft
errors into any application state, they have two disadvantages. First,
they are slow due to the overhead caused by having to frequently
handle software interrupts (traps). Second, in parallel multi-process
programs, e.g., MPI programs, it is difficult to control in what pro-
cess or code location to inject errors since this decision must be
done by the debugger, which has limited knowledge of the source
code and of the runtime systems (e.g., MPI). Nevertheless, this
method provides a practical solution—debuggers are available in
most platforms—that works in many scenarios.

Binary-level approaches use dynamic binary instrumentation
tools, such as PIN [28], DynamoRIO [5], and Valgrind [24], to inject
soft errors [8, 21, 33, 40, 41]. The advantages of these methods is
that, since they deal with low level hardware instructions, FI is
accurate with respect to what is expected in reality from errors that
propagate to application (architectural) state. Two PIN-based tools



Table 1: Advantages of the fault injection techniques that are relevant to HPC.

Fault-Injection Techniques for HPC

Radiation Hardware Sim. Debugger Binary Compiler

Accuracy, reliability ✓ ✓ ✓ ✓
Access to source code abstractions ∼ ✓
Architecture independence ∼ ✓
Suitable for multi-process, multi-node experiments ✓ ✓
Suitable for application-level error propagation analysis ✓
Low-cost solution in terms of money ✓ ✓ ✓ ✓

✓fully applies; ∼ applies to some degree

to inject soft errors are BIFIT [21] and PINFI [41]. The FITgrind [40]
tool uses Valgrind for error FI. Although this method is considered
to be the most accurate and flexible software-based FI method for
soft errors, its main disadvantage is that it is not portable since
the underlying instrumentation tools are naturally architecture-
dependent. This is a major drawback for resilience studies in HPC
due to the variety and heterogeneity that exists in supercomputing
hardware. Another disadvantage is that, because they operate at
the binary level, high-level source-code abstractions, such as loops,
data structures and annotations are lost at that level, thus making
it hard to inject errors into particularly selected structures for the
purpose of application-level FI.

Compiler-based methods perform FI using a compiler and ad-
dress the two major problems of binary-level FI methods: they
provide a cross-platform solution (instrumented code can be gener-
ated for different platforms under the same compiler) and they allow
fault injections in particular given source-code abstractions. Re-
cently, a number of compiler-based FI frameworks have been devel-
oped using the LLVM compiler [19]—some examples are LLFI [36],
KULFI [32], VULFI [31], and FlipIt [6]. These methods are easy to
use in large-scale parallel programs, and cooperate well with error
propagation analysis frameworks since these frameworks typically
operate at the compiler level too. The key disadvantages are that,
first, most of them operate at the intermediate representation (IR)
level and as a result do not have access to all low level instructions,
and that reduces their accuracy; and second, they interfere with
the optimization workflow of the compiler, which generates very
different, usually poorly optimized, binary code. The latter has a
large impact in terms of the time duration of large FI campaigns.

Overall, the latter two methods are the dominant ones, as they
are practical as well as efficient, yet each one has a significant
drawback. In this paper we aim at creating an FI framework that
combines the positive aspects of both. We start with a compiler-
based FI, since it provides the ability to correlate the result to the
source as well as to drive the FI by source level arguments, and
discuss how to augment this approach to achieve the same accuracy
as provided by binary level FI (see Table 1).

3 PROBLEM DESCRIPTION
In this section, we describe our fault model and provide a more
detailed view of the problems in compiler-based FI.

3.1 Fault Model
We focus on soft errors (also known as transient faults) in the
computation nodes of HPC systems. These faults are temporary and
they upset the application-visible architectural state of the system.
We assume that certain parts of the machine, such as memory and
cache, can be protected by parity or ECC (error correcting codes),
but that other parts (such as logic and/or latches) are unprotected
and can be subject to these errors. We assume a single bit-flip error
per application run as previous research has shown that multiple
bit flips in a short time (or CPU cycles) is extremely low [30].

We assume that faults are propagated to instructions. For fault
injection, we assume a random, uniform distribution when select-
ing an instruction to inject a fault to—if an application executes
N instructions, any instruction has the same probability 1/N of
having a fault. Note that FI selects an instruction out of the pool
of instructions executed dynamically. This means that certain in-
structions emitted statically by the compiler may execute multiple
times; each of those instruction instances has an equal probability
to be selected. Since an instruction may have multiple output reg-
isters, choosing the register to insert the fault is based on another
random, uniform distribution. Finally, deciding which bit to flip
from a register follows a random, uniform distribution too.

3.2 Overview of LLVM and its IR
We provide a quick overview of the LLVM compiler, and explain
only the intermediate representation (IR) aspects that are relevant
to this paper. Amore detailed explanation can be found in the LLVM
documentation [19].

The LLVM IR is a language-independent representation of a pro-
gram. LLVM uses the IR internally for the various transformation
passes, including optimization, from source to machine code. It
resembles an assembly language for a LOAD/STORE architecture,
akin to RISC-like instruction sets. The LLVM IR assumes an infinite
number of available virtual registers and follows the SSA-form to
facilitate code analysis and optimization. A program in the IR is
functionally equivalent to the source code parsed by the compiler
frontend and to the machine code emitted by the backend, after
LLVM lowers the IR to machine code. Most LLVM-based FI tools
take advantage of this for portability.



1 define internal i32 @eamForce (% struct.SimFlatSt * ←-
nocapture %s) #0 {

2 entry :
3 % ptime.i.i248 = alloca % struct.timeval
4 % ptime.i.i = alloca % struct.timeval
5 % nbrBoxes = alloca [27 x i32]
6 % dr290 = alloca [3 x double ]
7 ...
8 %8 = load % struct.DomainSt ** % domain
9 %9 = load % struct.LinkCellSt ** % boxes
10 % call10 = call % struct.HaloExchangeSt * ←-

@initForceHaloExchange (% struct.DomainSt * %8, ←-
% struct.LinkCellSt * %9)

11 ...
12 for.end388 :
13 % ePotential = getelementptr inbounds %←-

struct.SimFlatSt * %s, i64 0, i32 7
14 store double % etot.7.lcssa , double * % ePotential
15 ret i32 0
16 }

(a) LLVM IR

1 _eamForce :
2 ## % entry
3 push rbp
4 mov rbp , rsp
5 push r15
6 push r14
7 push r13
8 push r12
9 push rbx
10 sub rsp , 280
11 ...
12 mov qword ptr [rbp - 224] , rcx
13 mov qword ptr [r14 + 88] , rax
14 mov rdi , qword ptr [rbx + 16]
15 mov rsi , qword ptr [rbx + 24]
16 call _initForceHaloExchange
17 ...
18 ## % for.end388
19 xor eax , eax
20 add rsp , 280
21 pop rbx
22 pop r12
23 pop r13
24 pop r14
25 pop r15
26 pop rbp
27 ret

Func. prologue

Func. epilogue

Register spilling

(b) x64 assembly

Listing 1: Code excerpt from the CoMD application

3.3 LLVM Intermediate Representation FI
Injecting faults in the IR-level results in loss of accuracy, because
the IR abstracts away important aspects of the machine architec-
ture, such as register allocation and machine instruction selection.
Moreover, adding FI code in the IR interferes with machine code
generation, which impacts both accuracy and speed. Next, we elab-
orate on these problems.

3.3.1 Unavailability of Machine Instructions. The LLVM IR ab-
stracts away many types of machine instruction emitted during
code generation for a specific target. Listing 1 shows an indicative
example using a code excerpt from the CoMD proxy application [1]
(a molecular dynamics code). Specifically, listing 1a shows the func-
tion eamForce in its (simplified) IR form and listing 1b shows it in

assembly. The IR assumes an infinite number of available registers,
hence it misses function prologue and epilogue code sequences or
any stack management instructions for register spilling and filling.
However, those instructions are an integral part of lowering to
machine code for register allocation and conforming to the ABI
of function calling. More importantly, those instructions could be
subject to soft errors; thus, FI tools must take them into account
when injecting.

1 define i32 @compute_residual (...) {
2 ...
3 %sub = fsub double %0, %1
4 fi = call double @injectFault0 (i64 3076 , double %←-

sub , i32 11, i32 0, i32 1, %i32 0, i8* ←-
getelementptr inbounds (...))

5 %call = tail call double @fabs ( double %fi) #2
6 %cmp3 = fcmp ogt double %call , % local_residual.08
7 fi1 = call i1 @injectFault1 (i64 3078 , i1 %cmp3 , ←-

i32 47, i32 0, i32 1, i32 0, i8* ←-
getelementptr inbounds (...))

8 % local_residual.1 = select i1 %fi1 , double %call ,←-
double % local_residual.08

9 ...
10 }

(a) FI LLVM IR

1 _compute_residual :
2 ...
3 vsubsd xmm2 , xmm2 , qword ptr [rdx]
4 vandpd xmm2 , xmm2 , xmm1
5 vmaxsd xmm0 , xmm2 , xmm0
6 ...

(b) x64 assembly without FI instrumentation

1 _compute_residual :
2 ...
3 vsubsd xmm0 , xmm0 , qword ptr [r15]
4 {mov edi , 3076}[ mov esi , 11}
5 {xor edx , edx }{ mov ecx , 1}
6 {xor r8d , r8d }{ mov r9 , r13}
7 call _injectFault0
8 vandpd xmm0 , xmm0 , xmmword ptr [rip + LCPI0_0 ]
9 vmovsd qword ptr [rbp - 56] , xmm0
10 vucomisd xmm0 , qword ptr [rbp - 48]
11 seta al
12 mov qword ptr [rsp], r14
13 movzx esi , al
14 {mov edi , 3078}{ mov edx , 47}
15 {xor ecx , ecx }{ mov r8d , 1}
16 {xor r9d , r9d}
17 call _injectFault1
18 vmovsd xmm0 , qword ptr [rbp - 56]
19
20 ...

(c) x64 assembly including FI instrumentation

Listing 2: Code excerpt from the HPCCG application

3.3.2 Code Generation Interference. The way in which most
LLVM IR-based FI tools inject faults into IR instructions is by adding
a function call to the target instruction [6, 31, 32, 36]. This function
call performs large changes to the value of the result of the instruc-
tion or its arguments, and it may get inlined after optimization
passes. Instrumenting the IR in this way interferes with code gen-
eration in the backend of the compiler. In particular, the backend



lowers the instrumented IR, which is functionally equivalent but
structurally different to the uninstrumented one. This significantly
changes the output of instruction selection, register allocation and
optimization of the machine code generation passes. Ultimately, it
results in a binary which is significantly different from the binary
that FI targets to emulate.

Listing 2 shows an indicative example using a code excerpt from
the HPCCG application [2]. Here, we use LLFI, a state-of-the-art
open-source LLVM-based FI tool, to instrument floating point in-
structions in the IR. Listing 2a shows a reduced output from the tool
LLFI after instrumentation has taken place. The function is iden-
tical to the original IR, barring the injectFault call instructions
that instrument the IR instructions fsub and fcmp respectively.
Listing 2b shows the assembly generated without any FI instru-
mentation, whereas listing 2c shows the assembly produced when
including FI at the IR, in the x64 architecture.

As it can be seen, code generation from the FI IR induces a
significant number of register spills and reloads. Further, it cannot
benefit from memory-to-register optimizations due to the fault
injection routines. Hence, it performs all operations mostly on
memory operands, using only one XMM register (xmm0) and fails
to use the vmaxpd, which takes only register operands.

4 DESIGN AND IMPLEMENTATION
Here we describe the key conceptual aspects of our approach,
REFINE, and of our implementation in LLVM.

4.1 Overview of REFINE
Figure 1 gives an overview of REFINE. REFINE follows a split ap-
proach for fault injection using compiler-based instrumentation
and an FI library for runtime control of the fault injection process.

The compiler takes a list of functions, instruction types and reg-
ister type operands to be instrument as input. The compiler-based
instrumentation of REFINE is carried out by a backend pass during
code generation that analyzes the machine instruction representa-
tion of the program and augments it with instrumentation code for
the fault injection. The generated instrumented binary invokes calls
from a user-provided library whenever an instrumented instruction
executes. The library controls fault injection at runtime by deciding
whether to inject a fault on that specific instruction, which operand
to alter and the bit to flip.

4.2 Addressing the Problems of IR Based FI
4.2.1 Access to Machine Instructions. By contrast to existing

IR fault injection methods, REFINE is part of the backend of the
compiler, and as such, it instruments the actualmachine instructions
generated after the IR has been lowered and any optimization have
been applied. This way, REFINE has access to the full range of
instructions generated by the compiler, including function setup
and stack management instructions.

4.2.2 Elimination of Code Generation Interference. REFINE does
not interfere with code generation for the application under com-
pilation. This is because it does not inject code until after code
generation has finished transformations and optimizations on appli-
cation code. In particular, REFINE injects code at the final machine

code representation of the application, right before code emission
outputs code in assembly or in a binary object format.

Figure 2 shows a diagram of the implementation. Most of its
implementation uses the target-agnostic, machine instruction rep-
resentation (MIR) of LLVM to analyze and instrument code. The
MIR of LLVM is a generic representation of the code that includes
the control flow of code organized in functions broken down into
basic blocks. Although being target agnostic, MIR conveys seman-
tic information common across architectures to describe machine
instructions. This includes the types of operands (source or desti-
nation) as well as instructions (e.g., memory, branch, arithmetic).

4.2.3 Basic Block Instrumentation Approach. Instead of using
function-call-based instrumentation, as IR FI tools do (see Sec-
tion 3.3.2), REFINE uses a basic block augmentation approach to add
instrumentation code. This approach saves the runtime overhead
associated with function calling. REFINE analyzes basic block code
in the MIR to find potential fault injection targets and intervenes in
the control flow to insert extra basic blocks for instrumentation and
fault injection. REFINE injects three basic blocks for setup and con-
trol and a variable number of FI blocks depending on the number of
instrumented operands. Those basic blocks and their functionality
are:

(1) PreFI saves any register state that may be clobbered during
instrumentation and calls the injection library to return true
or false to trigger, or not, fault injection.

(2) SetupFI calls the injection library to return the operand
and bit to flip, then, it jumps to the FI block for this operand.

(3) FI1...n implements bit flipping for an operand, typically us-
ing an XOR instruction.

(4) PostFI restores clobbered register state and resumes execu-
tion in application code.

The target-agnostic part of instrumentation modifies the control
flow to include the extra basic blocks and invokes a target-specific
module to emit assembly code in them. Code emission is target-
specific because it depends on the specific machine architecture on
which state registers to save, typically the stack and base pointers
and any flag register, which ABI convention to conform to and how
to implement bit flipping. For example, on the x64 architecture,
there is a different XOR instruction for general (64-bit) and vector
(≥ 128-bit) registers.

4.2.4 Control Runtime Library. The instrumented code inter-
faces at runtime with an external library to control fault injec-
tion. The library needs to implement two functions: selInstr and
setupFI. After an instrumented instruction executes, the code
injected in PreFI invokes the function selInstr. The function re-
turns true to trigger fault injection or false to skip it. Since REFINE
does all the static analysis during compilation, selInstr imple-
ments only runtime analysis, typically by performing dynamic
instruction counting to inject in the right dynamic instruction.

If fault injection does trigger, the code in SetupFI calls the
function setupFI in the library. Note that an instruction may have
multiple output registers, each with its own bit size. For example,
in x64 architectures, most arithmetic instructions modify the flags
register besides the destination register of the operation itself. The
function setupFI takes as input the number of FI target operands
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Figure 1: Overview of REFINE
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Figure 2: REFINE compiler-based instrumentation

and their respective size in bits. It returns the operand to inject to
and which bit to flip. The injected code in the SetupFI basic block
jumps to the specific FI block for that operand to perform the actual
bit flipping.

4.2.5 Portability Considerations. The target-agnostic part of
REFINE’s compile-based instrumentation is readily portable, be-
cause it operates on the generic machine instruction representation
in the compiler. The target-specific code emission module that gen-
erates assembly code needs porting. However, the effort is much
less compared to binary-level frameworks, which need to port their
tracing API and instruction analysis for each different machine
architecture.

The fault injection library is portable as it can be implemented
in any high-level language, such as C, as long as it conforms to the
ABI calling conventions of the target.

4.3 User-level Workflow
Wedescribe theworkflow of using REFINE to perform a FI campaign
in an HPC program.

4.3.1 Profiling Phase. REFINE performs a profiling step to ob-
tain a dynamic instruction count. Note that this is also the case
for all other fault injection tools, including LLFI and PINFI. Pro-
filing needs to be run once for each application and input. Due
to the design of REFINE, the FI binary produced by compile-time
instrumentation is used unmodified during profiling, since the fault
injection library implements the runtime analysis. Figure 3a shows
the workflow diagram for profiling, including the library imple-
mentation in pseudo-code.

The fault injection library counts the number of dynamic instruc-
tions in selInstr and always returns False to skip fault injection.
A destructor function writes the dynamic instruction count to a file
for persistence. Profiling produces a golden output for the applica-
tion, that is an error-free output, to be used during fault injection
campaigns for determining the occurrence of Silent Output Cor-
ruption (SOC) errors.

Figure 3b shows the workflow for the fault injection and classifi-
cation of the outcome of execution. The dynamic instruction count
file from the profiling step is the input to the injection library which
implements the single bit-flip fault model. The injection library also
outputs a log file which records the target instruction, operand and
bit flipped for reference and repeatability.

4.3.2 Output Classification. In our approach, we classify the
outcome of a fault injection as either a crash, a Silent Output Corrup-
tion (SOC), or as benign. A crash occurs either when the application
returns a non-zero exit code or execution times out after a lengthy
period: we set this period to be 10× the execution time of the pro-
filing step. A SOC happens when the application’s output does
not match the error-free, golden output—we use a deterministic
application input to obtain the golden output. When comparing
application outputs, classification uses only the final results and
filters out any intermediate data produced during computation. A
benign outcome is when fault injection has no effect on the results
of the execution.

4.4 Compiler Flags to Steer REFINE
The backend pass in the compiler exposes a set of flags to control
fault injection. Those flags can be used whenever the LLVM compi-
lation driver is invoked. Table 2 summarizes the user interface of
REFINE. For example, invoking REFINE on the Clang driver for FI
on all functions and instruction types, one would need to include
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Figure 3: Workflow of REFINE for profiling and fault injection

Option Arguments Description

-fi true or false Enables/disables FI
(default: false)

-fi-funcs comma-separated list Performs FI only in
of function names or regex the provided functions

-fi-instrs stack, arithm, mem, all Performs FI only on
the selected instr. types

Table 2: Compiler flags interface of REFINE

the following options to the compiler flags: -mllvm -fi=true
-mllvm -fi-funcs=* -mllvm -fi-instrs=all. This is the ac-
tual string of options we use in our experimentation.

4.5 Discussion
Lastly, we discuss the restrictions of our implementation and study.
Real-world faults that affect the OP codes of instructions can yield
either incorrect valid OP codes or invalid OP codes. In this imple-
mentation, REFINE can produce only correct valid OP codes when
injecting a fault in the OP code. This is because the final, assembly
emitting stage of the compiler aborts on an invalid OP code to avoid
generating an incompatible binary. Although, this restriction exists
in the current implementation of REFINE, it can be addressed either
by extending the runtime injection library to corrupt the memory
addresses of OP codes or by relaxing the verification requirements
for instruction validity in the compiler. This is an enhancement
we plan to perform in future versions of REFINE. Also, although
most of REFINE’s functionality is implemented as a target agnostic
pass, the code emission module still needs to be ported on different

architectures. Nevertheless, based on our experience implementing
code emission for the x64 architecture, this only requires modest
programming effort.

5 EVALUATION
In this section, we describe our evaluation of REFINE. We evaluate
two key aspects of REFINE: (1) its accuracy in injecting faults with
respect to existing compiler-based and binary-based FI frameworks;
(2) its runtime and compile time overheads. The former is critical
in producing accurate results in resilience studies, whereas the
latter is important for large-scale FI studies, which under existing
approaches can take a enormous amount of time to complete.

5.1 Hardware and Software Platform
We perform our experiments on nodes with the octo-core Intel
Xeon E5-2670 processor and 32GB RAM. Nodes run Chaos Linux
5.5 with kernel version 2.6.32. The REFINE implementation extends
LLVM version 3.9. Also, we use Intel PIN v3.0-76991 needed by the
binary-level FI tools.

5.2 Comparison Tools
We use LLFI 2 and PINFI 3 as comparison FI frameworks, as both
represent state-of-the-art techniques for compiler-based and binary-
based FI, respectively. LLFI in particular has been used in several
recent resilience studies [3, 4, 25, 34, 35].

Regarding PINFI, we make modifications to the available source
code to render it compatible with the recent version of the Intel
PIN framework and for faithfully implementing the fault model.

2https://github.com/DependableSystemsLab/LLFI
3https://github.com/DependableSystemsLab/pinfi



Program Input
AMG2013 -in sstruct.in.MG.FD -r 24 24 24
CoMD -d ./pots/ -e -i 1 -j 1 -k 1 -x 32 -y 32 -z 32

HPCCG-1.0 128 128 128
lulesh (default)

XSBench -s small
miniFE -nx 18 -ny 16 -nz 16
BT A
CG B
DC W
EP A
FT B
LU A
SP A
UA B

Table 3: Benchmark programs and their input

In addition, for a fair comparison, we implement an important
performance optimization on the original implementation of PINFI,
which dramatically increases the speed of execution: PINFI now
removes any instrumentation and detaches from the application
once the single fault has been injected.

5.3 Experiments Setting
In each experiment, we use one fault injection tool—PINFI, LLFI
or REFINE— injecting a single fault during execution, selecting
randomly in a uniform fashion the target instruction to inject the
fault, the destination register, and the bit to flip.

Table 3 shows the applications used for experimentation and
their input. All applications execute sequentially on a single thread.

We perform 1,068 experiments for each application and tool con-
figuration. In total, considering the 14 HPC benchmark programs
and the three tools we compare, there are 1, 068 × 14 × 3 = 44, 856
FI experiments. We use the method shown by Leveugle et al. [20]
to calculate the number of samples for each experiment, which
ensures a margin of error ≤ 3% for a confidence level of 95%. The
confidence intervals presented in plots later reflect this setting.

5.4 Accuracy Results
First, we show a graphical overview of the outcomes of execution
under fault injection to contrast visually the results of different
tools. Then, we present a rigorous statistical analysis using PINFI
as the measure of accuracy by performing chi-squared tests to infer
similarities with other tools.

5.4.1 Confidence Intervals Comparison. Figure 4 shows the sam-
pled probabilities of each outcome (crash, SOC or benign) for all
tools and applications. Each application results into its own dis-
tribution of outcomes, depending on the impact of faults to its
execution.

As a rule of thumb, sampled probabilities that fall within the
confidence interval of the baseline PINFI are considered similar.
Notably, this is the case for all applications when contrasting PINFI
and REFINE. However, that is not true for LLFI. A concise way of
visualizing diversions and similarities is by plotting the probability
mass function (PMF) of each tool as stacked bars corresponding

Table 4: Contingency table for LLFI vs. PINFI (AMG2013)

Data categories
Tool Crash SOC Benign Total
LLFI 395 168 505 1068
PINFI 269 70 729 1068
Total 664 238 1234

to the different outcomes. By visual inspection, REFINE and PINFI
have similar PMFs whereas LLFI diverge for most applications.

5.4.2 Chi-squared Tests. Next we present our evaluation using
chi-squared tests on contingency tables for each pair of tools. As a
reference, the chi-squared test is widely used to determine whether
there is a significant difference between the expected frequencies
and the observed frequencies in one or more categories, between
two approaches.

For each program and pair of tools, the chi-squared test uses a
contingency table of the frequencies of fault outcomes as input. For
each application, we compare the outcomes of approach A versus
approach B, and test it for (dis)similarity. Table 4 shows an example
of a contingency table to test LLFI (approachA) and PINFI (approach
B) for similarity.

Our null hypothesisH0 is using approachA or B has no effect
in the outcome frequencies (Crash, SOC, Benign); our alterna-
tive hypothesis Ha is using approach B has significant effect
in the outcome frequencies with respect to approach A. Thus,
rejecting the null hypothesis H0 means that the choice of the fault
injection tool is important for determining the fault outcomes. Since
PINFI is the most accurate tool, we use it as the baseline to compare
with LLFI and REFINE and evaluate their accuracy. If the null hy-
pothesis is rejected, then the tool under test is significantly different
from the baseline PINFI, thus it is less accurate. We choose the
significance level to be α = 0.05, therefore, if the calculated p-value
of the chi-squared test is less α , the tool is deemed significantly
different to PINFI.

Table 5 shows the results of the chi-squared tests across appli-
cations. Notably, LLFI is significantly different from PINFI for all
applications. The computed p-values are close to 0, which is far
below the significance level. The fact that LLFI is different to PINFI
is a strong result of high certainty. By contrast, REFINE is never
significantly different from PINFI, with only two cases in which
the p-value is close to the significance level (CG and CoMD). This
means REFINE and PINFI are similar, effectively sampling the same
population of outcomes from fault injection.

5.5 Speed Results
Next, we compare the execution time that each tool takes to carry
out the experimentation campaign. Here, we measure the runtime
of all application fault injection experiments—we do not measure
compilation time since this is done once and the execution time
of experiments represent the bulk of any FI campaign. A fast FI
tool has multiple advantages: (1) it makes it feasible to experiment
with larger program inputs; and (2) it enables the collection of more
samples to increase accuracy in the same timeframe of a slower
tool.
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(b) CoMD
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(c) HPCCG-1.0
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(d) lulesh
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(e) XSBench
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(f) miniFE
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(g) BT
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(h) CG
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(i) DC
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(k) FT
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(l) LU
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Figure 4: Results of fault injection outcomes



Table 5: Chi-squared test results (α = 0.05)

Base Compassion p-value Signif. diff.? p-value Signif. diff.? p-value Signif. diff.? p-value Signif. diff.?
LLFI PINFI AMG2013 CoMD HPCCG-1.0 XSBench

≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes
miniFE lulesh BT CG

≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes
DC EP FT LU

≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes ≈ 0.00 yes
SP UA

≈ 0.00 yes ≈ 0.00 yes
REFINE PINFI AMG2013 CoMD HPCCG-1.0 XSBench

0.40 no 0.08 no 0.81 no 0.69 no
miniFE lulesh BT CG

0.14 no 0.60 no 0.26 no 0.06 no
DC EP FT LU

0.13 no 0.55 no 0.92 no 0.21 no
SP UA

0.92 no 0.83 no
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(d) lulesh
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(f) miniFE
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(o) Total

Figure 5: Experimentation time

Figure 5 shows total execution time per application for LLFI
and REFINE, normalized with respect to PINFI. Figure 5o shows
the aggregated total, or overall, execution time of all applications.
PINFI is most of the time the fastest due to its dynamic binary
instrumentation approach, at the expense of portability. REFINE’s
speed is comparable to that of PINFI; it is 20% slower than PINFI

overall, and 30% faster than PINFI in the best case. REFINE is always
faster than LLFI—3× in total as shown in Figure 5o—except for EP,
in which LLFI fault injection results in a large number of crashes
that terminate early execution.



6 CONCLUSIONS
Compiler-based fault injection frameworks are gaining popularity
in HPC to perform resilience studies due to its platform indepen-
dence and close relationship to the source code; however, they lack
the high accuracy that their counterpart binary-level frameworks
have. In this work, we identify the key drawbacks that current
practices in compiler-based FI have, and address these issues in the
REFINE framework, using the backend layer of the LLVM compiler
to select target low-level instructions, and via careful, non intrusive
instrumentation to improve speed. The impact of this work is im-
portant since many recent resilience studies have made conclusions
that rely on the current practices of compiler-based FI—these prac-
tices can potentially skew the outcomes of FI results, which in turn
can lead to incorrect conclusions. In particular, using statistical in-
ference techniques, we show that our compiler-based FI framework
is more accurate than state-of-the-art compiler-based FI approaches
for all the tested benchmark programs. We also show that by se-
lecting the right method for fault injection code instrumentation,
our approach can be up to 3× faster than existing FI approaches,
significantly increasing the speed in which FI experiments can be
performed.
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A ARTIFACT DESCRIPTION: [REFINE:
REALISTIC FAULT INJECTION VIA
COMPILER-BASED INSTRUMENTATION
FOR ACCURACY, PORTABILITY AND
SPEED]

A.1 Abstract
The description in this appendix details the software and hardware
requirements for deploying our fault injector REFINE presented in
the paper. Also, we provide extended information on the experi-
mentation process that compares REFINE to the two alternative,
state-of-the-art fault injection tools: LLFI for IR-level fault injection
and PINFI which is a binary-level fault injector.

A.2 Description
A.2.1 Check-list (artifact meta information).

• Program: Several publicly available benchmarkprograms for
evaluation of the fault injection tools: AMG2013, CoMD,HPCCG,
Lulesh, XSBench, miniFE, NAS Parallel Benchmarks in C
• Compilation: GCC 4.9.2 with optimization level O3 for pro-
ducing compiler-based tools (REFINE, LLFI) and the Pin-tool
PINFI. Benchmark programs are compiled with the compiler
implementationused for compiler-based toolsREFINE (Clang/L-
LVM3.9), LLFI (Clang/LLVM3.4). Benchmark programs fed to
PINFI are compiled with Clang/LLVM3.9
• Data set: Standard datasets provided for each benchmark pro-
gram and any input arguments are documented
• Run-time environment: Chaos Linux 5.5, kernel version 2.6.32
• Hardware: Intel Xeon E5-2670, tools support any x64 archi-
tecture
• Execution: Benchmark programs execute sequentially in a
single thread
• Output: We use the same methodology for all benchmark
programs and tools to classify the output of a program un-
der fault injection as a crash, SOC or benign
• Experiment workflow: Install LLFI, install Intel Pin, install
REFINE, build benchmark programs from source following
the compilation process of each tool, run the profiling step
for each tool, execute benchmark programs to obtain the re-
sults of FI outcomes (crash, SOC, benign) for each tool
• Publicly available?: Yes

A.2.2 How software can be obtained (if available). The REFINE
software is released as open source, accessible in the following URL:
https://github.com/ggeorgakoudis/REFINE. We also make public
the updated, optimized PINFI Pin-based tool. We use the latest
version of LLFI 4, which is publicly available.

A.2.3 Hardware dependencies. Implementation and experimen-
tation is based on the x64 architecture, specifically the processor
Intel Xeon E5-2670. Although the tools used support any x64 pro-
cessor, the results we present are based on the evaluation of this
particular target machine.

A.2.4 Software dependencies. REFINE implements a backend
pass in the LLVM compiler. Therefore, it needs the source tree of
LLVM 3.9 to build. Besides LLVM, the Clang 3.9 frontend is needed
for C/C++ benchmark program compilation. LLFI bundles together

4https://github.com/DependableSystemsLab/LLFI

the Clang/LLVM version 3.4, which is the latest version that LLFI is
compatible with. For the Pin-based PINFI tool, we deploy the Intel
Pin framework v3.0 (rev. 76991). The rest of software dependencies
are the benchmark programs detailed in the evaluation section and
the meta information check-list.

A.2.5 Datasets. Table 3 in the evaluation section of the paper
details the datasets and input arguments used for all the programs.

A.3 Installation
Section A.2.4 discusses the what software needs to be installed for
the deployment of FI tools. The building process of benchmark
programs was modified and we present the modifications needed
for each tool.

A.3.1 LLFI. LLFI needs to operate on the IR of the compiler
as produced by LLVM. We follow the approach proposed by LLFI
creators 5 for modifying the build system of each program, usu-
ally based on GNU make. Application sources are first compiled to
the LLVM IR, then IR optimizations are applied, LLFI instruments
the resulting IR and the last step invokes the native machine code
compiler that implements any machine-level optimizations. The fol-
lowing Makefile is the one used for compiling the program HPCCG
with LLFI (comments are removed for clarity) :
CXX = $( LLFI_BUILD_ROOT )/llvm/bin/ clang ++
CXXFLAGS_LL = -emit -llvm -S -w -fno -use -cxa - atexit
LINKER_LL = $( LLFI_BUILD_ROOT )/llvm/bin/llvm -link
USE_MPI =
CPP_OPT_FLAGS = -O3 -ftree - vectorize
USE_OMP =
SYS_LIB = -lm
TARGET = test_HPCCG
CXXFLAGS = $( CPP_OPT_FLAGS ) $( OMP_FLAGS ) $( USE_OMP ) $(←-

USE_MPI ) $( MPI_INC )
LIB_PATHS = $( SYS_LIB )

TEST_CPP = main .cpp generate_matrix .cpp read_HPC_row .cpp \
compute_residual .cpp mytimer .cpp dump_matlab_matrix .cpp \
HPC_sparsemv .cpp HPCCG .cpp waxpby .cpp ddot.cpp \

make_local_matrix .cpp exchange_externals .cpp \
YAML_Element .cpp YAML_Doc .cpp
TEST_OBJ = $( TEST_CPP :. cpp =. ll)

$( TARGET ): $( TARGET ).ll
${ LLFI_BUILD_ROOT }/ llfi/bin/ instrument --dir 'llfi ' --←-

cflags "$( CXXFLAGS )" --readable ${ SYS_LIB } $<

$( TARGET ).ll : $( TEST_OBJ )
$( LINKER_LL ) -S $( TEST_OBJ ) -o $( TARGET ).all.ll
${ LLFI_BUILD_ROOT }/ llvm/bin/opt -O3 $( TARGET ).all.ll -o $@

test:
@echo "Not implemented yet ..."

%. ll : %. cpp
$(CXX) $( CXXFLAGS_LL ) $< -o $@

clean :
@rm -f *.o *~ $( TARGET ) $( TARGET ).exe test_HPCPCG
rm -rf *. ll llfi *

The Makefiles for the rest of the benchmark programs are modified
in a similar way.

A.3.2 REFINE. To compile benchmark programs for the REFINE
tool, we need to use the Clang/LLVM of REFINE and set the ap-
propriate option flags to the compiler driver (clang or clang++) to
enable fault injection. The modification needed for compiling a
program include extending the compiler flags for enabling FI and
5https://github.com/DependableSystemsLab/LLFI/wiki/Get-Started-with-LLFI-
Using-Command-Line

https://github.com/ggeorgakoudis/REFINE


the fault injection library in the compilation. We show only the
changes needed, again for the HPCCG benchmark, the rest of the
Makefile is identical to the original one:
CC=$( REFINE_BUILD_ROOT )/bin/ clang
CXX=$( REFINE_BUILD_ROOT )/bin/ clang ++
FI_FLAGS = -mllvm -fi="true " -mllvm -fi - funcs ="*" -fi - instrs←-

="all"
...
CXXFLAGS = $( CPP_OPT_FLAGS ) $( OMP_FLAGS ) $( USE_OMP ) $(←-

USE_MPI ) $( MPI_INC ) $( FI_FLAGS )
...
TEST_OBJ = $( TEST_CPP :. cpp =.o) injectlib .o

$( TARGET ): $( TEST_OBJ )
$( LINKER ) $( CPP_OPT_FLAGS ) $( OMP_FLAGS ) $( TEST_OBJ ) $(←-

LIB_PATHS ) -o $( TARGET )

injectlib .o: $( REFINE_BUILD_ROOT )/ injectlib / injectlib .c
$(CC) -O3 -c $< -o $@

...

Modifications for the rest of the benchmarks are similar.

A.3.3 PINFI. For PINFI, we use Clang/LLVM3.9 when compiling
benchmarks to use the Clang/LLVM suite across tools. Modification
in Makefiles are the same with REFINE, omitting the FI flags and
the fault injection library.

A.4 Experiment workflow
For experimentation, we collect 1068 samples for each fault injector.
This means that considering the 14 different benchmarks and the
3 fault injection tools, there is a total of 1, 068 × 14 × 3 = 44, 856
experiments. Due to the large experimentation space, we perform
the experimentation on a cluster of machines, each node being two
8-core Intel Xeon E5-2670 processors in a dual socket configura-
tion and sharing 32GB of RAM. We fully subscribe a node since
benchmarks run sequentially to perform the experiments simul-
taneously. Moreover, we make sure that concurrent execution of
benchmarks does not deplete the memory of the node. Further, we
set the timeout to a large value, that is 10× of the profiled execution
for each tool, to ensure that any slowdown from concurrency does
not cause spurious timeouts, wrongfully classified as crashes. This
is verified because we observed only 3 timeout outcomes out of all
the experiments.

A.5 Evaluation and Expected Result
Our evaluation is based on rigorous statistical methodologies. The
choice of 1,068 samples results in a margin of error of ≤3% for a con-
fidence level of 95%. Also, we compare across tools using statistical
inference in the form of Chi-squared testing with a significance
level α = 0.05.

Table 6 presents the complete results across benchmark applica-
tions and fault injection tools obtained through experimentation,
used for plotting the bar charts and performing chi-squared testing.

Application Crash SOC Benign

AMG2013
LLFI 395 168 505

REFINE 254 87 727
PINFI 269 70 729

CoMD
LLFI 372 117 579

REFINE 136 55 877
PINFI 175 59 834

HPCCG-1.0
LLFI 320 195 553

REFINE 159 68 841
PINFI 162 77 829

XSBench
LLFI 55 355 658

REFINE 179 194 695
PINFI 188 203 677

miniFE
LLFI 420 327 321

REFINE 186 177 705
PINFI 215 162 691

Lulesh
LLFI 21 4 1043

REFINE 76 2 990
PINFI 76 4 988

BT
LLFI 224 543 301

REFINE 20 347 701
PINFI 15 363 690

CG
LLFI 352 0 716

REFINE 201 0 867
PINFI 175 0 893

DC
LLFI 495 298 275

REFINE 310 154 604
PINFI 347 155 566

EP
LLFI 181 470 417

REFINE 44 335 689
PINFI 31 341 696

FT
LLFI 386 70 612

REFINE 104 51 913
PINFI 96 51 921

LU
LLFI 238 528 302

REFINE 18 386 664
PINFI 17 436 615

SP
LLFI 268 800 0

REFINE 45 612 411
PINFI 42 626 400

UA
LLFI 792 136 140

REFINE 98 237 733
PINFI 105 242 721

Table 6: Complete results of outcome frequencies
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